
Research Article
Packet Payload Monitoring for Internet Worm Content
Detection Using Deterministic Finite Automaton with Delayed
Dictionary Compression

Divya Selvaraj and Padmavathi Ganapathi

Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women,
Coimbatore 641043, India

Correspondence should be addressed to Padmavathi Ganapathi; ganapathi.padmavathi@gmail.com

Received 26 June 2014; Revised 5 October 2014; Accepted 7 October 2014; Published 10 November 2014

Academic Editor: Tin-Yu Wu

Copyright © 2014 D. Selvaraj and P. Ganapathi.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Packet content scanning is one of the crucial threats to network security and network monitoring applications. In monitoring
applications, payload of packets in a network ismatched against the set of patterns in order to detect attacks like worms, viruses, and
protocol definitions. During network transfer, incoming and outgoing packets aremonitored in depth to inspect the packet payload.
In this paper, the regular expressions that are basically string patterns are analyzed for packet payloads in detecting worms.Then the
grouping scheme for regular expression matching is rewritten using Deterministic Finite Automaton (DFA). DFA achieves better
processing speed during regular expressionmatching. DFA requires more memory space for each state. In order to reduce memory
utilization, decompression technique is used. Delayed Dictionary Compression (DDC) is applied for achieving better speeds in
the communication links. DDC achieves decoding latency during compression of payload packets in the network. Experimental
results show that the proposed approach provides better time consumption and memory utilization during detection of Internet
worm attacks.

1. Introduction

With rapid development, today the Internet has becomemore
vulnerable to various threats and attacks such as intrusions,
worms, viruses, spyware, and Trojans. Internet worm is a
malicious code or program that exploits security holes and
enters into the network without human interference [1, 2].
Internet worm is a self-propagating and fast spreading attack
which has affected the Internet dramatically in the last few
years. Moreover, malware attackers aim is to alter network
traffic and create payload to cause infection at the host level
[3]. Exploiting the software vulnerabilities, worms propagate
and affect network services [4]. In order to protect the
network from these attacks, effective defense mechanism is
necessary.

The Morris worm in 1988 is the first network worm that
infected DEC hosts and Sun3 operating systems to the large
on Internet [5]. In 2004, Witty worm payload of 637 bytes

is padded with data from system memory to fill the random
size and a packet is sent out from source port 4000. After
sending 20,000 packets, Witty seeks to a random point on
the hard disk, writes 65 kbytes of data from the beginning
of iss-pam1.dll to the disk. After closing the disk, the worm
repeats this process until the machine is rebooted or until
the worm permanently crashes the machine [6]. On October
2008, Conficker worm generated a large amount of network
traffic and also caused user account lockouts [5]. Slammer
and Code Red worms affected billion dollars and thousands
of computers within an hour [3].

Network Intrusion Detection Systems (NIDS) have been
adopted to defend against attacks that exploit the vulnera-
bilities of a protocol and attacks that seek to survey a site
by scanning and probing. Presently, NIDS depends on the
content based detection in minimizing the false alarm rate
[7]. Scanning and probing attacks are detected by analyzing
the network packet headers or monitoring the network traffic

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2014, Article ID 206867, 9 pages
http://dx.doi.org/10.1155/2014/206867

2 Journal of Computer Networks and Communications

connection attempts and session behavior.The Internetworm
attacks create payload to a vulnerable service or application.
These can be detected by inspecting the packet [8].

For earlier NIDS, string matching is essential because it
contains a collection of strings represented as signatures. Dif-
ferent software and hardware solutions have been proposed
for the string matching problems [9–12]. Various signatures
based approaches are proposed for Internet worm detection
[13–16]. Other than signatures, worms payload can be effec-
tively detected by regular expressions through scanning every
incoming packet. NIDS has a limitation for faster network
links to match signatures with the incoming packets. To
overcome this challenge, regular expression representation
provides better network traffic monitoring by deep packet
inspection [17]. Pattern matching methods provide better
detection of Internet worms.

Deep packet inspection allows Network Intrusion Detec-
tion System (NIDS) to accurately identify the malicious pay-
load occurring in the network during transfer of packets [17].
Pattern matching consumes more data volume, which takes
more computation time and memory. Regular expression
based DFA and NFA approaches can also be used for pattern
matching in networks, but NFA has significant computation
and storage complexities. NFA hasmultiple concurrent active
states and bandwidth costs [18]. To overcome the challenge of
existing approaches in scanning large number of packets with
better speedup, DFA is implemented.

The proposed approach DFA for regular expression pat-
tern matching inspects packet payload. DFA reduces the size
of packets by splitting it into subpackets with the regular
expression patterns to fit into thememory space. Accordingly,
DFA applied with DDC increases speed in communication
links and provides better decoding latency. Consequently, the
proposed approach DFAwith DDC provides better detection
of the payload during transfer of packets in the network.

This paper is constructed as follows. Section 2 describes
the previous approaches applied for Internet worm detection.
Section 3 illustrates DFA used for regular expression pattern
matching and the proposed approach in detail. In Section 4,
the experimental results are shown comparing the proposed
method with the existing approach. Section 5 concludes the
paper.

2. Literature Review

Internet worms are causing a million-dollar damage by
infecting thousands of machines within fewminutes. Various
defensemechanisms have been proposed by different authors
to protect the network from Internet worm attacks. Some of
the techniques proposed for detection of Internet worms are
discussed below.

Wang et al. [19] implemented an approach for worm
mitigation to validate the efficiency of the model through
its extensive simulations. Considering the network-delay
factor, the initial infection rate of active worms is detected.
This approach also analyzes worm-free equilibrium point
and derives basic reproduction number to quantify the
guideline for effective worm defense. Amador and Artalejo

[20] introduced an approach named block-structured state-
dependent event (BSDE) to improve the computer network
security. BSDE is used to find computer network infections
and to boost up the computer security.

Khule et al. [21] proposed a novel method Netflow, to
monitor traffic profiles in the network. The traffic statistics
of packets received on an interface is counted as “flow” and
stored in a dynamic flow cache. Toutonji et al. [1] proposed
a mathematical model which combines both dynamic quar-
antine and passive benign worms for containment of worm
propagation. To minimize the number of infected hosts by
benign worms, the further research suggested by the author
is to have quarantine measures.

Saikia et al. [7] implemented an approach to detect the
worms using behavioral signature especially for improving
network security. Yu et al. [22] found that C-worm propa-
gation is detected using spectrum based detection scheme
in distinguishing normal and abnormal background traffic.
With the frequency domain, the pattern distinguishes C-
worm traffic from normal traffic.

Yu et al. [23] introduced threshold-based, trace-back
based, and spectrum based defense schemes. Threshold and
trace-back are integrated to defend against static worms and
the combination of above three schemes are used to defend
dynamic self-disciplinary worms. The propagation patterns
are analyzed for detection of worms. Zaki and Hamouda
[24] proposed an anti-worm system to reduce effectively
the spreading speed of infecting worms in network routers.
WSRMAS (worm spreading reduction multiagent system)
consists of amultiagent system to limit or even stop the worm
spreading. Internet security is in real need for a realistic anti-
worm system.

Table 1 summarizes various detection techniques pro-
posed and the parameters used by proposing authors for their
evaluation.

In Table 1, various techniques used for Internet worm
attack detection are discussed with the proposed authors,
parameters used, and its observed results. The observations
indicate that the techniques proposed are efficient in increas-
ing security for network, reducing worm propagation and
identifying the attacks earlier.

Various signature based approaches have been developed
by different authors for early worm detections. Cai et al.
[25] proposed Wormsheild, a worm signature generation
system to monitor the traffic. Distributed fingerprint filtering
reduces aggregation traffic and the distributed aggregation
trees improve load balancing to calculate fingerprint statis-
tics. Wang et al. [26] analyzed network traffic based on
patterns or signatures. The patterns at the network level are
analyzed for detection of polymorphic worms to exploit the
buffer overflow vulnerability. Based on both ploit-specific and
vulnerability driven signatures, the zero day polymorphic
worms are detected. Simkhada et al. [13] proposed a system
to detect worms in a hierarchical manner by generating
worm signatures automatically in large networks. Tang and
Chen [14] proposed position-aware distribution signature
(PADS) with expectation-maximization and Gibbs sampling
algorithm for effective detection of worms. Tang et al. [16]
proposed SRE signature based on exploitation of operating

Journal of Computer Networks and Communications 3

Ta
bl
e
1:
Re

vi
ew

of
lit
er
at
ur
ef
or

de
te
ct
io
n
of

In
te
rn
et
w
or
m
s.

Ye
ar

Au
th
or

Te
ch
ni
qu

e(
s)
us
ed

Pa
ra
m
et
er
su

se
d

O
bs
er
va
tio

ns

20
09

To
ut
on

ji
an
d
Yo

o
[1
]

Pa
ss
iv
ew

or
m

dy
na
m
ic
qu

ar
an
tin

e
𝜆
1
qu

ar
an
tin

er
at
eo

fi
nf
ec
te
d
ho

sts
𝜆
2

an
d
𝜆
3
qu

ar
an
tin

er
at
eo

fs
us
ce
pt
ib
le

an
d
pa
ss
iv
eh

os
ts

Eff
ec
tiv

ely
de
cr
ea
se
sb

ot
h
th
en

um
be
ro

f
in
fe
ct
io
us

ho
sts

an
d
w
or
m

pr
op

ag
at
io
n

sp
ee
ds
.W

id
es
pr
ea
d
w
or
m

pr
op

ag
at
io
n

m
ax
im

iz
es

qu
ar
an
tin

er
at
e.

20
10

Yu
et
al
.[
23
]

G
am

et
he
or
y

(i)
In
fe
ct
io
n
ra
te

(ii
)F

al
se

po
sit
iv
er

at
e

Pr
op

ag
at
io
n
pa
tte

rn
sm

in
im

iz
et
he

de
te
ct
io
n
pr
ob

ab
ili
ty
.

20
10

Za
ki
an
d
H
am

ou
da

[2
4]

W
or
m

sp
re
ad
in
g
re
du

ct
io
n

m
ul
tia

ge
nt

sy
ste

m
(W

SR
M
A
S)

In
fe
ct
io
n
pe
rc
en
ta
ge

an
d
Im

m
un

ity
pe
rc
en
ta
ge

W
or
m

sp
re
ad
in
g
sto

pp
ed

th
ro
ug

h
m
ul
tia

ge
nt
.

20
11

Yu
et
al
.[
22
]

Sp
ec
tr
um

-b
as
ed

sc
he
m
e

(i)
D
et
ec
tio

n
ra
te

(ii
)M

ax
im

al
in
fe
ct
io
n
ra
tio

Po
w
er

sp
ec
tr
al
de
ns
ity

sh
ow

sl
ow

fre
qu

en
cy

ba
nd

s.

20
13

A
m
ad
or

an
d
A
rt
al
ej
o
[2
0]

Bl
oc
k-
st
ru
ct
ur
ed

st
at
e-
de
pe
nd

en
t

ev
en
t(
BS

D
E)

(i)
Sc
al
ar

pa
ra
m
et
er
s𝐾

(p
op

ul
at
io
n

siz
e)

(ii
)𝛽

(c
on

ta
ct
ra
te
)

(ii
i)
𝛾
(in

di
vi
du

al
re
co
ve
ry

ra
te
)

(iv
)𝛿

(e
xt
er
na
lr
at
eo

fi
nf
ec
tio

n)
(v
)V

(w
ar
ni
ng

ra
te
)

Re
du

ce
st
he

pr
op

ag
at
io
n
of

vi
ru
sb

y
ad
di
ng

w
ar
ni
ng

sig
na
ls

Be
tte

rn
et
w
or
k
se
cu
rit
y
pr
ov
id
ed

by
BS

D
E
m
od

el

4 Journal of Computer Networks and Communications

Packet

Input

Monitor and scan
regular expression

with patterns
Divide packet
into subpacket

Construct subpacket
as state using

transition function

Encode state into
stateless compression

using DDC
Decode stateless

into state
Compare each state

with other statesPayload

Output

Figure 1: Proposed flow for pattern payload detection.

system and vulnerability of network services. Kong et al.
[15] proposed semantics aware statistical (SAS) algorithm, to
detect packets from the suspicious flow pool and generate
worm signatures automatically. These signatures generated
cannot survey for longer periods, instead regular expression
is essential.

However, the above techniques have certain limitations in
improvingmemory latency on detection of payload with reg-
ular expression.Thus the proposed approach is implemented
by a compression algorithm to overcome the limitations of
the existing approaches.

3. Proposed Methodology

Theproposed approachDFAwithDDCscans every incoming
packet in depth to detect the payload occurrence of those
affecting the network. Regular expressions are analyzed and
for matching regular expressions, DFA-based pattern match-
ing is developed to detect payload. To achieve bettermatching
speed, DDC is combined withDFA. DDC algorithm provides
better increased speed links andminimizes decoding latency.

The steps followed for scanning and detecting the payload
patterns during network transfer are given in Figure 1.

Figure 1 gives the proposed procedure. The techniques
involved are regular expression matching, DFA, and DDC.

3.1. Matching Regular Expressions with DFA. The natural
formalism used for regular expressions is finite automata and
it is Deterministic Finite Automaton (DFA) and Nondeter-
ministic Finite Automaton (NFA). In DFA, all transitions
are deterministic; each transition leads to exactly one state.
The analysis of regular expressions and developing memory-
efficient DFA-based solutions providing high speed process-
ing are discussed.While inNFA transitions are nondetermin-
istic, each transition leads to subsets of states.

DFA is one of the finite automaton, in which all tran-
sitions are deterministic. DFA consists of a definite set of
input symbols, denoted as ∑, and definite set of states and a
transition function, denoted as 𝛿. ∑ Consists of 28 symbols
from extended ASCII code. Transition function 𝛿 gets the
start state 𝑞

0
and an input symbol as an argument and enters

the state. Each transition leads to exactly one active state.
Regular expressions compare the packet with the pattern in
the list. When it matches with the patterns, they split as
states.

3.1.1. Patterns to Split Regular Expressions. The collection of
strings that are not listed in a specific format are defined
as regular expressions. For scanning and analyzing packet
payload with limited memory latency, the features listed in
Table 2 are used.

When the regular expressions meet the patterns listed
in Pseudocode 1, they are stored as subpackets containing
limited number of strings. This overcomes the length restric-
tions in regular expression matching. For payload detection,
the regular expressions uses DFA-based pattern matching
approach. To reduce the buffer size, compression technique
is applied.

3.2. Proposed DFA with DDC. This section finds the solution
to matching individual regular expression analyzed as DFA
state in compressed stage. Compressing each state makes
the DFA feasible and fits into the memory. Compression
technique is applied to overcome the memory limitation by
implementing DDC algorithm.

3.2.1. Delayed Dictionary Compression (DDC). The Delayed
Dictionary Compression algorithm generates the model 𝑀
with a parameter additionally combined with Δ, that is,
a nonnegative integer. When there is a delay of Δ units,
updating is done in dictionary either as characters or packets.
From the input reading, dictionary 𝐷 is a function of all 𝑛 −
Δ−1 units, for 𝑛 ≤ Δ−1. Δ = 0 for every standard dictionary
compression algorithm.The above defined approach is called
Basic Delayed Dictionary Compression (BDDC).

The DDC algorithms are formed by the combination
of BDDC and stateless compression. This algorithm pro-
duces better decoding latency using stateless compression.
The encoder encodes the current characters 𝑇, encoding
all characters till prior to last Δ characters. Each encoded
packets point to a phrase. The encoded packet created as
phases are stored in a dictionary as delay of Δ packets. DDC
algorithm compresses the packets with the updated delay
Δ proportional to network propagation delay. All encoded
packets are compressed and stored in history except final Δ
packets, as it precedes the currently encoded packet. Encoder
transmits the entire encoded packet. Encoder transmits all
the encoded phase to the receiver. A receiver, receiving all
packet headers specified in the history, decodes the packets.

DDC is a general framework that can be applied for any
dictionary algorithm; it consists of two main processes of

Journal of Computer Networks and Communications 5

Table 2: Patterns for regular expression.

Syntax Meaning Example

∧
At the beginning, the pattern should be
matched with this input.

∧FH Shows FH starts with this pattern as
input. F with this pattern “∧”, matches FH
anywhere in the input.

| OR relationship F|H Represents F or H.
. A single character wildcard F. Represents end of the string.
? Representing one or less quantifier F? Represents F or an empty string.
∗ Representing zero or more quantifier F∗ Denotes an arbitrary number of Fs.
{} Repeat F{200}Means 200 Fs.
[] A class of characters [ejk] Represents a letter 𝑒, j, or k.

[
∧
] Anything but [

∧
\𝑛] Represents any character

But not \𝑛.

Input: Packet 𝑝
Output: Payload
Begin

For each packet 𝑝 transfer
Scan and compare 𝑝 with regular expression pattern 𝑅

𝑝

If (𝑝matches 𝑅
𝑝
)

Divide 𝑝 into subpacket 𝑠𝑝
for 𝑖 = 1 to 𝑛
{

Construct 𝑠𝑝(𝑖) into state 𝑠(𝑖) using transistion function 𝛿
Compress stateless 𝑠𝑠(𝑖) = encode (𝑠(𝑖))
𝑠(𝑖) = decode (𝑠𝑠(𝑖))
}

Compute decode latency
for 𝑖 = 1 to 𝑛
{

for 𝑗 = 1 to 𝑛
{

Compare (𝑠(𝑖), 𝑠(𝑗))
If (𝑠(𝑖)matches 𝑠(𝑗))
{

Count = count + 1
}

}

}

If (count > threshold)
Payload occurred

Until end of packet
End

Pseudocode 1: Pseudocode for proposed approach.

encoding and decoding where the dictionary parser and the
output parser are completely separated. This gives to update
the dictionary freely for parser process.

In this section, states obtained from the above process of
DFA are given as input here. If there are large data used in
DFA, the memory space allocated for it will be large in size.
To reduce the memory and to decrease the computational
time, DDC is used. DDC algorithm performs encoding,
stateless compression, and decoding to achieve decoding
latency.

(1) Encoder. The states matching with patterns and their
transition are given as input denoted by I.Then, compression
algorithm maintains set of substrings called dictionary (𝐷).
The parsing process for constructing the dictionary is called
dictionary parser which is denoted as 𝑃

𝑑
; the obtained output

parser is denoted as 𝑃
𝑜
.

The additional parameter which updates the dictionary
with the delay is represented as Δ. It is a nonnegative integer,
constant, or adapted according to any rule that user chooses.
For every standard DDC it is taken as zero.

6 Journal of Computer Networks and Communications

Dictionary parser
(state)

Dictionary Output parser
(stateless)

Input (I) Output C (I)

D(Δ)
Pd Po

Figure 2: DDC-encoder.

H Data1 H Data2 H Data n· · ·

(a) Uncompressed traffic

H H H· · ·S(Data1) S(Data2) S(Data n)

(b) Compressed traffic

Figure 3: Stateless compression algorithm for packet payload.

Dictionary parser
(state)

Dictionary Output parser
(stateless)

D(Δ)

Original text
I

Compressed
text C (I)

Pd Po

Figure 4: DDC-decoder.

From Figure 2, the overall process of encoding is shown.
Here the input I is given to the dictionary parser (𝑃

𝑑
). Then

dictionary 𝐷(Δ) consists of a set of substrings which is
bidirectional.The packets accessed by 𝑃

𝑑
and𝐷 are given as a

secret code to 𝑃
𝑜
. These secret codes are taken as compressed

output.

(2) Stateless Compression Algorithm. The Compression algo-
rithm is applied to compress the packets independently dur-
ing encoding. In stateless, the compression and decompres-
sion are done independently for every packet. The receiver
receiving the packets decompresses it regardless of its arrival
order. This stateless compression minimizes the decoding
latency.

The uncompressed traffic consists of “𝑛” packets with
each packet having its header and data. The compressed
traffic in Figure 3(b) consumes less memory compared to
uncompressed traffic. Each packet is compressed for less
buffer size consumption.

(3) Decoder. The secret codes obtained from the encoding
technique of the DDC are given as input. The decoding
process is the same as encoding where the reverse operation
of it is done.Thepacket taken as input consists of secret codes.
These codes are replaced with its corresponding phrases
which builds the dictionary.

From Figure 4, the overall process of decoding is shown.
Here the compressed text C(I) is given as input to the

dictionary parser (𝑃
𝑑
). Then dictionary 𝐷(Δ) consists of a

set of substrings which is bidirectional as in the encoder. The
packets accessed by𝑃

𝑑
and𝐷 of secret codes are replacedwith

its phrases in 𝑃
𝑜
. These phrases are the original text (I).

This compression technique makes the DFA fit in a
reducedmemory.This gives the way to match a large number
of individual patterns with a lesser memory. The compressed
states are monitored to detect payload.

3.2.2. DFAMatching to Detect Payload. For the payload scan-
ning, regular expressions and automata theory are directly
applied. In packet payload scanning, input packets or sub-
strings of input entering into the network are matched with
regular expression patterns. DFA faces complexity in recog-
nizing all substring matches without any prior knowledge of
start and end positions of substrings. In order to complete the
matching process with DFA for all substrings exhaustive and
nonoverlapping matching styles are executed.

In exhaustive matching, pattern matches all the input
substrings taken for matching and provides a set of results
completely for the given input stream and regular expression
pattern. For example, for given pattern cb∗ and input cbbb,
the report will be three matches such as cb, cbb, and cbbb.

For the matching process, let 𝑀 be a function from a
pattern 𝑃 and a string 𝑆 to a power set of 𝑆 such that

𝑀(𝑃, 𝑆) = {substring 𝑆󸀠 of 𝑆 | 𝑆󸀠 is accepted

by the DFA of 𝑃} .
(1)

Using this style of matching is expensive and matching
every substring report is considered as unnecessary. To
overcome the requirement of exhaustive matching, nonover-
lapping matching is proposed.

In Nonoverlapping approach, for the matching process,
let𝑀 be a function from a pattern 𝑃 and a string 𝑆 to a power
set of 𝑆 such that

𝑀(𝑃, 𝑆) = {substring 𝑆
𝑖
of 𝑆 | ∀𝑆

𝑖
, 𝑆
𝑗
accepted by

the DFA of 𝑃, 𝑆
𝑖
∩ 𝑆
𝑗
= 𝜑} .

(2)

Journal of Computer Networks and Communications 7

0 1 2 3 4
ab

ab

cd

cd

efi

efi

gh

gh

efi
gh

Figure 5: DFA illustrating regular expression.

Scan packet, p, and compare with regular expression pattern,Rp

Divide p into subpacket, sp, when it meets Rp

For each sp

Construct each sp into states s using transition function

Encode state s and compress to stateless, ss

Decode compressed ss to state, s

Input packet, p

Compute decode latency

Scan initial state with remaining states

If match
occurred

Count the total no of matches

If
count > threshold

Payload = true

End

Payload = false

Yes

Yes

No

No

, 𝛿

Figure 6: Flowchart for proposed approach.

From the input strings, this matching process reports all
nonoverlapping substrings that match the pattern appearing
in multiple locations of the input. For example, given pattern
cb∗ and input cbbb, the report provided by this match is only
one and even the prefix “cb” overlapped thrice. Nonoverlap-
pingmatching for payload scanning provides better analyzing
of pattern attacks found in the packet. This matching lacks in
a memory-efficient DFAs.

To handle pattern substring matching, one pass search
execution model is created by DFA in this paper. DFA
created explicitly for extended patterns which matches the
pattern anywhere with the input. Rather than scanning from
beginning till end, DFA is able to begin its substringmatching
at different positions of the input. To suit the network
applications, this one pass search approach achieves O(1)
computation cost per character.

8 Journal of Computer Networks and Communications

In this paper, for the packet payload scanning applica-
tions, DFAuses nonoverlappingmatches and one pass search.
Figure 5 illustratesDFA for regular expressions ∧ab∗cd?efi.gh

Pseudocode 1 provides the pseudocode for the proposed
approach. The approach integrates compression state with
DFA technique for better memory latency.

In Pseudocode 1, the packets divided into states are con-
verted to stateless.Then again the states are decompressed for
achieving decode latency. Using DFA payloads are detected.

Figure 6 gives the flow diagram of the proposed approach
DFA with DDC algorithm for monitoring and detecting the
payloads created by Internet worms.

The proposed approach monitors and detects the packet
payload created by Internet worms during the network trans-
fer level to prevent its spread. Figure 6 shows the approach
proposed that uses the DFA with DDC for monitoring and
analyzing the packet payloads with the datasets trained.
The DDC algorithm in the proposed approach detects the
Internet worms in compressed state to overcome thememory
space limitation.

4. Experimental Results

The approach proposed has been evaluated using the param-
eters likememory utilization and time computation.Memory
consumed by the CPU during the detection of Internet
worms based on payload is measured using memory utiliza-
tion metric. Detection time is calculated to find the time
consumed for detecting the Internet worms in the network
using time utilization metric

Memory Utilization = Memory consumption of CPU at

the end of the process

−Memory consumption of CPU at

the start of process

Time Consumption = Finishing time of processing

− Starting time of processing.
(3)

The evaluation is done using Java platform with the
real data set. There are 500 sample data collected from
Internet for monitoring and detecting the worm attacks.
The dataset contains 387 malware files and 113 normal files.
The data during data transfer are monitored and the attacks
are detected through packet payload occurrence with the
proposed DFA with DDC.

From Table 3, it is shown that the proposed DFA with
DDC approach gives better results in terms of memory
utilization and time consumption.

Figure 7 shows proposed pattern matching method in
identifying packet payload with minimum memory require-
ments providing for resource scalability. Using DFA with
DDC provides high speed matching and efficiency in mem-
ory utilization compared to the existing GFGS algorithm.

Figure 8 illustrates a comparison of computation time for
the existing GFGS with EHAMA and proposed DFA with

Table 3: Proposed approach metric comparison.

Techniques
Existing

GFGS with
EHAMA

Proposed
DFA with
DDC

% of
improvement

Memory
utilization (KB) 59622 46371 22.22%

Time
consumption
(Sec)

22031 3202 85.46%

0

10000

20000

30000

40000

50000

60000

70000

Methods
Memory utilization

M
em

or
y

(K
B)

Existing GFGS with
EHAMA

Proposed DFA with
DDC

Figure 7: Comparison of memory utilization.

0

5000

10000

15000

20000

25000

Existing GFGS
with EHAMA

Proposed DFA
with DDC

Ti
m

e (
m

s)

Methods
Time utilization

Figure 8: Time utilization comparison.

DDC. Figure 8 clearly shows that the proposed approachDFA
with DDC algorithm gives lesser computation time than the
existing GFGS with EHAMA.

Journal of Computer Networks and Communications 9

5. Conclusion

In networking applications, packet payload occurrence cre-
ates threats to the Internet users. In this paper, regular
expression pattern matching with compression algorithm is
implemented formonitoring packet payload created by Inter-
net worms. DFA-based pattern matching implementation
provides faster detection of payload occurrence. DFA focuses
on detecting repeatable suspected packets and speeds up the
scanning process. Additionally, DFA with DDC overcomes
the compression overheads and reduces the usage ofmemory.
DDC algorithm applied with DFA provides better decoding
latency as well as speed in communication links. The exper-
imental results in Section 4 shows that proposed method
gives better memory utilization and time computation for
detection of Internet worms compared to that of existing
approach.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] O. Toutonji and S.-M. Yoo, “Passive benign worm propagation
modeling with dynamic quarantine defense,” KSII Transactions
on Internet and Information Systems, vol. 3, no. 1, pp. 96–107,
2009.

[2] P. Li, M. Salour, and X. Su, “A survey of internet worm detection
and containment,” IEEECommunications Surveys and Tutorials,
vol. 10, no. 1, pp. 20–35, 2008.

[3] M. H. R. Khouzani, S. Sarkar, and E. Altman, “Maximum dam-
age malware attack in mobile wireless networks,” IEEE/ACM
Transactions on Networking, vol. 20, no. 5, pp. 1347–1360, 2012.

[4] B. Bayoğlu and B. Soukpinar, “Graph based signature classes for
detecting polymorphic worms via content analysis,” Computer
Networks, vol. 56, no. 2, pp. 832–844, 2012.

[5] O. A. Toutonji, S.-M. Yoo, and M. Park, “Stability analysis
of VEISV propagation modeling for network worm attack,”
Applied Mathematical Modelling, vol. 36, no. 6, pp. 2751–2761,
2012.

[6] C. Shannon and D. Moore, “The spread of the Witty worm,”
IEEE Security and Privacy, vol. 2, no. 4, pp. 46–50, 2004.

[7] T. Saikia, F. A. Barbhuiya, and S. Nandi, “A behaviour based
framework for worm detection,” Procedia Technology, vol. 6, pp.
1011–1018, 2012.

[8] K. Wang and S. J. Stolfo, “Anomalous payload-based network
intrusion detection,” in Recent Advances in Intrusion Detection,
vol. 3224 of Lecture Notes in Computer Science, pp. 203–222,
Springer, Berlin, Germany, 2004.

[9] C. J. Coit, S. Staniford, and J. McAlerney, “Towards faster string
matching for intrusion detection or exceeding the speed of
Snort,” in Proceedings of the 2ndDARPA Information Survivabil-
ity Conference and Exposition, vol. 1, pp. 367–373, June 2001.

[10] M. Fisk and G. Varghese, “Fast content-based packet handling
for intrusion detection,” UCSD Technical Report CS2001-0670,
University of California, San Diego, Calif, USA, 2001.

[11] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match
for a 10Gbps FPGA-based network intrusion detection system,”

in Field Programmable Logic and Application, vol. 2778 of
Lecture Notes in Computer Science, pp. 880–889, Springer,
Berlin, Germany, 2003.

[12] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for effi-
cient and high-speed NIDS pattern matching,” in Proceedings
of the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM ’04), pp. 258–267, IEEE,
April 2004.

[13] K. Simkhada, T. Taleb, Y. Waizumi, A. Jamalipour, N. Kato,
and Y. Nemoto, “An efficient signature-based approach for
automatic detection of internet worms over large-scale net-
works,” in Proceedings of the IEEE International Conference on
Communications (ICC ’06), pp. 2364–2369, July 2006.

[14] Y. Tang and S. Chen, “An automated signature-based approach
against polymorphic internet worms,” IEEE Transactions on
Parallel andDistributed Systems, vol. 18, no. 7, pp. 879–892, 2007.

[15] D. Kong, Y.-C. Jhi, T. Gong, S. Zhu, P. Liu, and H. Xi, “SAS:
semantics aware signature generation for polymorphic worm
detection,” International Journal of Information Security, vol. 10,
no. 5, pp. 269–283, 2011.

[16] Y. Tang, B. Xiao, and X. Lu, “Using a bioinformatics approach
to generate accurate exploit-based signatures for polymorphic
worms,” Computers and Security, vol. 28, no. 8, pp. 827–842,
2009.

[17] L. Yang, R. Karim, V. Ganapathy, and R. Smith, “Fast, memory-
efficient regular expressionmatching with NFA-OBDDs,” Com-
puter Networks, vol. 55, no. 15, pp. 3376–3393, 2011.

[18] R. Smith, C. Estan, and S. Jha, “XFA: faster signature matching
with extended automata,” in Proceedings of the IEEE Symposium
on Security and Privacy, pp. 187–201, May 2008.

[19] F. Wang, Y. Zhang, C. Wang, J. Ma, and S. Moon, “Stability
analysis of a SEIQV epidemic model for rapid spreading
worms,” Computers and Security, vol. 29, no. 4, pp. 410–418,
2010.

[20] J. Amador and J. R. Artalejo, “Modeling computer virus with the
BSDE approach,”Computer Networks, vol. 57, no. 1, pp. 302–316,
2013.

[21] M. Khule, M. Singh, and D. Kulhare, “Enhanced worms
detection by Netflow,” International Journal of Engineering and
Computer Science, vol. 3, no. 3, pp. 5123–5127, 2014.

[22] W. Yu, X. Wang, P. Calyam, D. Xuan, and W. Zhao, “Modeling
and detection of Camouflaging Worm,” IEEE Transactions on
Dependable and Secure Computing, vol. 8, no. 3, pp. 377–390,
2011.

[23] W. Yu, N. Zhang, X. Fu, and W. Zhao, “Self-disciplinary
worms and countermeasures: modeling and analysis,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 10,
pp. 1501–1514, 2010.

[24] M. Zaki and A. A. Hamouda, “Design of a multi-agent system
for worm spreading-reduction,” Journal of Intelligent Informa-
tion Systems, vol. 35, no. 1, pp. 123–155, 2010.

[25] M. Cai, K. Hwang, J. Pan, and C. Papadopoulos, “WormShield:
Fast worm signature generation with distributed fingerprint
aggregation,” IEEE Transactions on Dependable and Secure
Computing, vol. 4, no. 2, pp. 88–104, 2007.

[26] L. Wang, Z. Li, Y. Chen, Z. J. Fu, and X. Li, “Thwarting zero-day
polymorphic worms with network-level length-based signature
generation,” IEEE/ACMTransactions on Networking, vol. 18, no.
1, pp. 53–66, 2010.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

