Hindawi Publishing Corporation

Journal of Computer Networks and Communications
Volume 2014, Article ID 128438, 9 pages
http://dx.doi.org/10.1155/2014/128438

Research Article

Hindawi

A Comparative Analysis of Performance of Shared Memory
Cluster Computing Interconnection Systems

Minakshi Tripathy' and C. R. Tripathy’

lDepartment of Computer Science, Bidya Computer Education & Development, Chhend, Rourkela, Odisha 769015, India
Department of CSE & A, VSS University of Technology, Burla, Sambalpur, Odisha 768018, India

Correspondence should be addressed to Minakshi Tripathy; minakshiom@gmail.com

and C. R. Tripathy; minakshiom@yahoo.co.in

Received 10 June 2014; Revised 16 October 2014; Accepted 10 November 2014; Published 9 December 2014

Academic Editor: Eduardo da Silva

Copyright © 2014 M. Tripathy and C. R. Tripathy. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In recent past, many types of shared memory cluster computing interconnection systems have been proposed. Each of these
systems has its own advantages and limitations. With the increase in system size of the cluster interconnection systems, the
comparative analysis of their various performance measures becomes quite inevitable. The cluster architecture, load balancing,
and fault tolerance are some of the important aspects, which need to be addressed. The comparison needs to be made in order to
choose the best one for a particular application. In this paper, a detailed comparative study on four important and different classes
of shared memory cluster architectures has been made. The systems taken up for the purpose of the study are shared memory
clusters, hierarchical shared memory clusters, distributed shared memory clusters, and the virtual distributed shared memory
clusters. These clusters are analyzed and compared on the basis of the architecture, load balancing, and fault tolerance aspects.

The results of comparison are reported.

1. Introduction

The cluster computing is becoming increasingly popular. The
latest technological developments and research innovations
are pushing clusters into mainstream computing. This poses a
number of new research challenges that need to be addressed
[1].

Parallelism has been employed for many years, mainly
in high performance computing. Parallel computing has
become the paradigm in computer architecture, in the form
of clusters that use multiple computers to work on the same
task. A cluster is a type of parallel system that consists of
a collection of interconnected computers used as a single
unified computing resource. When failure occurs in a cluster,
resources can be redirected and the workload can be redis-
tributed through appropriate scheme of load balancing [2].

The collection of several servers in a single unified cluster
makes it possible to share a computing load. If any resource
in a cluster server fails, the clusters as a whole can continue
to offer service by using resources on other cluster servers

regardless of whether the failed component is hardware
or software. In other words, when a resource fails, users
connected to the server cluster may experience temporarily
degraded performance but do not completely lose access
to the service [2, 3]. The nodes of a cluster are connected
each maintaining its own separate processor, memory, and
operating system. Special communication protocols and sys-
tem processes bind these nodes together and allow them to
cooperate to provide outstanding levels of availability [4, 5].

The cluster management software provides services like
failure detection, recovery, load balancing, and the ability
to manage the servers as a single system. This system level
software monitors local hardware and software subsystems,
tracks the states of the nodes, and quickly responds to failures
in a way that eliminates or minimizes application’s downtime
and provides a number of important other benefits including
improved availability, easier manageability, and cost-effective
scalability [3, 6].

The fault tolerant cluster is basically an open and dis-
tributed system, flexible and extensible, and its architecture

offers compliance to the principle of reusability and inter-
operability. The architecture of the cluster systems should be
flexible enough to handle any component or subcomponent
that is required to make the system. The fault tolerance in the
clusters provides error information in real time and makes it
possible to detect which part or component needs repair and
accordingly initiates a service call to identify the parts needed
for maintenance [5-11].

A shared memory system can be simultaneously accessed
by multiple programs to provide communication among
them and to avoid redundant copies. It refers to a large block
of memory that is accessed by several processors. A shared
memory cluster system is relatively easy to program since all
processors share a single view of data and the communication
between them can be as fast as memory accesses to a
particular location. The distribution of tasks among clusters
improves load balancing and provides better control of the
use of communication resources [12, 13]. With the increasing
performance needs, clusters provide additional mechanism
to take advantage of aggregate performance of the partici-
pating nodes through different types of cluster architectures.
The various important classes of shared memory clusters
studied in the literature are shared memory clusters [4],
hierarchical shared memory clusters [7], distributed shared
memory clusters [9], and virtual distributed shared memory
clusters [14].

Each of the shared memory cluster computing inter-
connection systems has its own advantages and limitations.
Therefore, in order to make a fair choice for any particu-
lar application, it is very much essential to compare their
performance on a common platform. The various desirable
performance measures for comparison of clusters considered
are availability, reliability, scalability, manageability, load bal-
ancing, fault tolerance, execution time, latency, bandwidth,
communication, access, and time complexity. The main goal
of cluster computing interconnection system is to reduce the
execution time for better performance.

The principal objective of this paper is to compare some
of the important performance parameters of the above said
cluster computing interconnection systems. The rest of the
paper is organized as follows. Section 2 describes the main
characteristics of shared memory clusters. Section 3 describes
the performance comparison of these clusters. Section 4
discusses the results of comparison and provides a brief
summary of the important findings. Finally, the conclusions
are drawn in Section 5.

2. Main Characteristics of
Shared Memory Clusters

Shared memory clusters are tightly coupled clusters with
attractive simple programming model. Tightly coupled clus-
ters work together closely so that in many aspects they
can be viewed as a single computer. The shared memory
cache facilitates interprocess communication to exchange

Journal of Computer Networks and Communications

data between programs running at the same time [5]. The
main characteristics of a shared memory cluster are

(i) efficient large-scale parallelism due to dynamic sys-
tem decomposition of clusters,

(ii) efficient intercluster communication based on switch-
ing processors between clusters,

(iii) efficient intracluster communication based on multi-
ple data reads on the fly,

(iv) efficient cache support to keep the overheads low.

A shared memory cluster system needs less expensive
interconnection network compared to that of a non-cluster-
based system. In this development the hierarchical shared
memory cluster system prevails due to its hardware simplicity
and cost-effectiveness. Several shared memory cluster sys-
tems with large number of processors have been designed
using hierarchy of processors in clusters [7, 8]. The hierar-
chical shared memory cluster system efficiently supports the
hierarchy of memories using a common memory. The advan-
tages of hierarchical shared memory clusters are as follows.

(i) Hierarchical shared memory cluster significantly
reduces the impact of inclusion of memory hierarchy
that exploits program locality at all levels in the
hierarchy.

(ii) A support for adaptive cache coherence to improve
the performance of parallel applications and this
approach is both manageable and advantageous.

(iii) The use of relaxed cache consistency models avoids
the adverse performance impact of unnecessary
invalidation and synchronization.

(iv) It supports the merging of access requests within the
memory hierarchy.

(v) Hierarchical shared memory clusters are scalable up
to very large processors that are an order of magnitude
larger than the scalability of shared memory shared
bus architecture.

The distributed shared memory clusters are loosely
coupled distributed systems that have evolved using mes-
sage passing as the main paradigm for sharing informa-
tion. Distributed shared memory clusters are heterogeneous
parallel distributed systems that enable sharing, selection,
and aggregation of geographically distributed autonomous
resources. The distributed shared memory cluster provides
an abstraction to give the impression of a single monolithic
memory, as in a traditional Von Neumann architecture [10, 11,
15]. The main characteristics of a distributed shared memory
cluster are following.

(i) Communication across the interconnection network
is achieved by read/write abstraction that simplifies
the task of the programmer.

(ii) A global address space is provided for data movement
across clusters using passing by reference.

(iii) While a data block is moved, the distributed shared
memory cluster exploits locality of reference to reduce
the communication overhead.

Journal of Computer Networks and Communications

Local [~] Intracluster bus
CA M
network
o
9]
=)
[}
=)
=l
L
3
5
Local =1 Intracluster bus
A M
networklc—'
/\ /\
Global GA Intercluster bus
network
Cluster 1 Cluster Z
MC MC MC MC
BRC BRC BRC BRC
- [P

| Synchronization path |

FIGURE 1: Shared memory cluster architecture (SMC).

(iv) Distributed shared memory cluster provides portabil-
ity of programs independent of operating system and
other low level system characteristics.

(v) Distributed shared memory cluster provides an
abstraction of a virtual memory.

Modern cluster systems rely upon the virtual machines.
Virtual shared memory cluster systems support the creation
and management of virtual clusters. The virtual shared mem-
ory cluster is a shared memory abstraction implemented over
distributed shared memory. Virtual shared memory clusters
moved from tightly coupled relationship between logical and
physical resources to more flexible, abstracted relationship
where physical resources are allocated as needed [16, 17]. The
advantages of virtual shared memory clusters are as follows.

(i) In virtual shared memory clusters, a guest operating
system called virtual machine inside the main oper-
ating system is known as host sharing the computing
resources from processor to memory.

(ii) It is good for testing and learning of software or
virtual network inside a virtual machine. If the virtual
machine ever crashes operating system, then the main
operating system is not affected but only the virtual
machine would be.

(iii) A server with lots of computing resources can be
divided and resold as virtual server. The virtual server
gets a slice of computer resources and if the virtual
server shuts down abnormally, the machine would
not be affected as they only have access to their virtual
machines.

(iv) For more than one monitor, each virtual machine can
be assigned to a monitor so that each virtual machine
has its own monitor.

(v) Virtual machines are portable.

(vi) Virtual machines provide greater resource allocation
flexibility and improve the utilization efficiency.

3. Performance Comparison of
Shared Memory Clusters

This subsection is concerned with the study and comparison
of performance of different types of shared memory cluster
computing interconnection systems. The basic motivation
is to compare the performance of shared memory cluster
[4], distributed shared memory cluster [9], hierarchical
shared memory cluster [7], and the virtual distributed shared
memory cluster computing interconnection systems [14]. In
this subsection, the above said four types of shared memory
clusters are compared on three common platforms: (i) cluster
architecture, (ii) load balancing, and (iii) fault tolerance.

3.1. Comparison of Cluster Architectures. The dynamically
reconfigurable shared memory cluster computing intercon-
nection system architecture (SMC) proposed in [4] uses
communication on the fly technique, which strongly speeds up
the communication. The shared memory cluster architecture
is shown in Figure 1. It is composed of a number of processors
(Pi), a memory controller (MC), a set of data memory
modules, a set of caches (Ci), and a set of buses. A memory
controller arbitrates accesses to a memory module through
the intercluster bus and intracluster buses. All the data

Journal of Computer Networks and Communications

Cluster controller

Main memory (M)

Global interconnection network (GIN)

Cluster 1

Ms!

Cluster Z

Ms

FIGURE 2: Hierarchical shared memory cluster architecture (HSMC).

memory modules are placed in the shared address space.
All the processors attached to the intracluster bus of a
data memory module constitute a processor cluster. Each
processor in a cluster is equipped with a bus request controller
(BRC). An arbiter selects the highest priority level request. At
first the writes are examined and if there is no write then,
it reads in the intercluster bus arbiters. Then, the arbiter
allows a processor’s bus request controller to perform the
transmission. The proposed shared memory cluster intercon-
nection architecture consists of dynamically reconfigurable
shared memory clusters, which can dynamically adjust to
computation and communication requirements. To control
communication in the shared memory clusters, data prefetch,
write, reads on the fly, and processor switching between
clusters and communication on the fly operations are used.
A read on the fly consists of capturing data written by
a processor in a cluster. The processor switching between
clusters involves disconnecting a processor from a cluster
and connecting it to another cluster. A processor switched
to a cluster brings new data in its cache for the target
cluster. Processor switching with reads on the fly is called
communication on the fly [4-6]. Thus communication on
the fly eliminates many data transactions and decreases the
overall interprocessors and memory traffic.

The hierarchical shared memory cluster computing inter-
connection system architecture (HSMC) uses hierarchical
memory that reduces global and local intra- and intercluster
communication [7]. The hierarchical shared memory cluster
architecture is shown in Figure 2. It mainly consists of
local interconnection network and global interconnection
network [8]. The local interconnection network connects
processors of each cluster to the cluster’s shared memory.
The global interconnection network connects the shared
memory of each cluster to the global main memory at
the top level of hierarchy. Cluster shared memory (Msl) is

globally shared by processors in each cluster at the 1st level
of hierarchy. Local private caches (Mc2) are associated with
each processor at the 2nd level of hierarchy. The bandwidth of
the global interconnection network supports the intercluster
traffic. Similarly, the bandwidth of each local interconnection
network is sufficient enough for intracluster traffic. Thus the
architecture effectively handles the available bandwidths at
global and local levels of the cluster.

The distributed shared memory cluster computing inter-
connection system architecture (DSMC) uses data structure
in the linked base type that allows data and resource sharing
in an effective manner [9, 18]. The distributed shared memory
cluster architecture is shown in Figure 3. In this architec-
ture, each cluster contains local distributed shared memory
(LDSM), an intercluster controller (ICCL), an intercluster
cache (ICC), processors with private caches, and a shared
local bus. The private caches attached to the processors are
meant for reducing the memory latency. The LDSM of each
cluster is partially or entirely mapped to the globally dis-
tributed shared memory (GDSM). Regardless of the network
topology, a specific ICCL is required to connect a cluster
into the system. The LDSM reduces memory contention
and improves data locality. The ICC facilitates data sharing
among the clusters utilizing data locality. It contains data
that are usually referenced by the intracluster processors.
The local bus acts as an intraconnection network among
intracluster processors, ICC, and LDSM, while the global
bus acts as an interconnection network among intercluster
nodes, intercluster interconnection network, and GDSM.
Information about states or current locations of particular
data blocks and the task scheduling queues are kept in the
data structure (DS). On distributed shared memory cluster
architecture, 2D cyclic distribution method is used to map
data blocks in the form of matrix to different processes [9-11].
Block data layout is a technique used to improve memory

Journal of Computer Networks and Communications

Cluster 1

ICCL DS

LDSM

ICC

| Local |
bus

Global bus

Intercluster interconnection network

Cluster Z

ICCL DS

ICC LDSM

| Local |
bus

.

Global distributed shared memory (GDSM)

FIGURE 3: Distributed shared memory cluster architecture (DSMC).

hierarchy performance. A task is bind to its output block such
that the computation is centered on data to minimize data
movement and maximize data locality.

The virtual distributed shared memory cluster computing
interconnection system architecture (VSMC) proposed in
[14] uses virtual machines management techniques from vir-
tual server that allows better performance of virtual clusters.
The architecture provides an abstraction of logical clusters
called virtual clusters consisting of virtual machines on
avaijlable physical clusters consisting of physical processors.
The virtual distributed shared memory cluster architecture
uses virtualisation technology with virtual machine and
virtual cluster to meet the virtual memory management
requirement [14, 19]. The virtual distributed shared memory
cluster architecture is shown in Figure 4. It is designed as a
flexible platform for constructing virtual clusters (VC) with
virtual machine management (VMM). The system supports
dynamic creation and management of VCs on a physical
cluster. It aggregates many virtual machines (VM) in a
VC. Each node of a VC is connected to a private virtual
network and to the underlying physical network. The running
VC shares the physical resources according to a creation
time mapping onto the physical cluster. The VCs may be
reallocated by means of the run time migration of the VM
between the physical nodes. One local node manager (LNM)
runs on each physical node and interacts directly with the
virtual machine monitor (VMM) to perform management
operations such as creating, deleting, and migrating VMs
on behalf of the controller. The LNM also collects resource
usage data from the VMM and monitors local events. Next,
the LNM reports resource usage updates and events back
to the controller. The controller is the central component of

the system. It communicates with the LNM:s to collect usage
data and manage VMs running on each physical node. The
architecture provides an environment that creates, conﬁg-
ures, monitors, and controls the placement, scheduling, and
migration of virtual machines.

3.2. Comparison of Load Balancing in Shared Memory Clus-
ters. For the load balancing, the shared memory cluster
computing interconnection system uses centralized dynamic
load balancing technique through worker manager model
with master slave paradigm [20]. A central manager collects
load information of each node and performs workload
distribution among the processors at run time. It minimizes
the response time of job and average load of the system giving
high speedup. The various load balancing activities in master
slave paradigm are determination of slave node, selection of
task, positioning of task, and collection of information. In the
first phase, the master and slave node for task migration are
determined. Then in the selection phase, the master selects
the most suitable task of a slave for efficient and effective
load balancing. In the positioning phase, task’s receivers are
determined. Finally, the last phase decides where and how to
collect information.

The load balancing in hierarchical shared memory cluster
computing interconnection system uses hierarchical load
balancing concept and follows local and global load balancing
in different hierarchical levels [21]. It focuses on reducing
execution time and redistribution cost while distributing
workload with quality load balancing. The load balancing
processes in hierarchical shared memory cluster are carried
out in two phases: global and local. In local load balancing
an overloaded processor transfers its excess workloads to

Journal of Computer Networks and Communications

DSM

Controller

MMM

MMM

MMM

FIGURE 4: Virtual distributed shared memory cluster architecture (VSMC).

an underloaded processor to distribute the workload evenly
and equally among the processors of a cluster. In global
load balancing if imbalance is observed among clusters, load
redistribution is performed. For the global balancing, the
major challenge is to effectively reduce the redistribution cost.

The proposed distributed shared memory cluster com-
puting interconnection system uses distributed dynamic load
balancing technique with work stealing [22]. In work stealing
when the system has a large number of processors with
many jobs running, the idle processors steal tasks from busy
processors for balancing of workload. Work stealing improves
execution time and efficiency of the system. Under work
stealing, whenever a processor runs out of work, it becomes
a thief and attempts to steal task from another processor
called victim. Idle processors select victim processors at
random to steal work from them maximizing the availability
of work. The load balancing activities in distributed shared
memory cluster are collecting information, task distribution,
and redistribution of task. In the first phase, the master
collects the slave node status for task assignment. In the
distribution phase, the master distributes task based on work
stealing. In the last phase, the redistribution is performed by
transferring tasks from heavily loaded processors to lightly
loaded processors.

The load balancing technique in virtual distributed shared
memory cluster computing interconnection system uses cen-
tralized dynamic load balancing principles with virtual cluster
server [23]. It focuses on the concept of on the fly that can add
virtual machines and resources any time with the ongoing
activities of the system. The virtual load balancing provides

support for multiple concurrently executing virtual machines
to utilize cluster wide memory. It also supports seamless
migration of virtual machines with large memory workloads.

3.3. Comparison of Fault Tolerance in Shared Memory Clusters.
For the fault tolerance, the shared memory cluster comput-
ing interconnection system uses shared memory checkpoints
that reduce task migration overhead and avoid establishing
communication with failed processes [24]. It performs data
and cluster availability to achieve high performance and
reliability. In the first phase, an analytical model is used
to describe the system’s response to fault along with the
mean time to failure and mean time to repair. It uses
high availability techniques to regain the lost availability. In
the second phase, fault tolerance is frequently implemented
through periodic checkpointing. Whenever a node fails, the
jobs running on it are stopped and restarted on a different
node from the most recent checkpoint.

For the fault tolerance, the hierarchical shared memory
cluster computing interconnection system uses hierarchical
fault tolerant model with hierarchical checkpointing and
recovery scheme [25]. The hierarchical checkpointing and
recovery is performed through local disk, mirrored and stable
storage checkpointing in different levels of hierarchy. This
scheme handles several types of failures improving the overall
system availability. The hierarchical fault tolerant model is
based on the hierarchical interconnection network. A fault
tolerant analysis has been made under fault free and faulty
condition to give an overall analysis of the hierarchical shared

Journal of Computer Networks and Communications

3500

3000

2500

2000

1500

Executive time (ms)

1000

500 i
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Number of nodes
—=— SMC —— HSMC
—4— DSMC —=— VSMC

FIGURE 5: Comparison of cluster architecture.

memory cluster system based on availability and bandwidth.
The system availability produces useful information about the
available request rates at the inputs of clusters at a given level
of hierarchy. The bandwidth availability is the expected value
of available bandwidth of the system at a particular time.

For the fault tolerance, the distributed shared memory
cluster computing interconnection system uses time based
coordinated checkpointing and rollback recovery that satisfies
consistency and recoverability properties [18]. It leads to bet-
ter performance, requires less space in stable storage, is easier
to implement, and obtains a predictable rollback distance.
With coordinated checkpointing and rollback recovery, the
fault tolerance brings a distributed shared memory cluster
system to a consistent state after failures. The time based
coordinated checkpointing and rollback recovery relies upon
the approximately synchronized clocks. It creates checkpoints
periodically when the local clock arrives at checkpoint time.
To recover from failure, the system rolls back to the last
stored global state and starts reexecution from there. This
scheme achieves failure free execution and avoids message
coordination overheads.

For the fault tolerance, the virtual distributed shared
memory cluster computing interconnection system uses
replicated and distributed checkpointing with virtual clus-
ter server and virtual machines [26, 27]. The checkpoints
stored in distributed file system guarantee system recovery
when a failure occurs with robustness and ease of use. The
virtual shared memory cluster system handles the virtual
fault tolerant model with virtual server. This model achieves
data replication in the virtual machine and transparently
recovers from faults. The checkpointing and recovery scheme
is integrated with distributed file system to store checkpoints.
The virtual fault tolerant model allows the system to restart
computation by restoring the replicated checkpoints from
other nodes without a global restart of the system.

16

14 -

12 -

10 -

Response time (ms)

0 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Number of tasks

—— HSMC
—— VSMC

—— SMC
—+— DSMC

FIGURE 6: Comparison of load balancing in clusters.

1 T T T T T T T T T

0.9
0.8 tH S

0.7 + = N

1
(7,

0.6 +

0.5} 5 &

1)¢

Cluster availability

0.4t

77

03¢}

73

02t

0.1 L L L L L L L L L "y
0 100 200 300 400 500 600 700 800 900 1000

Number of nodes

—=— HSMC
—— VSMC

—=— SMC
—*— DSMC

FIGURE 7: Comparison of fault tolerance in clusters.

4. Results and Discussions

This section presents the results of comparison of the above
said four types of cluster computing interconnection system
based on architecture, load balancing, and fault tolerance
and the results are depicted in Figures 5-7, respectively. For
the purpose of experiments on the cluster computing inter-
connection systems, 4-64 number of clusters are assumed
with 1-1000 number of nodes, 1-100 number of processes,
and 1-10 number of faults. The numbers of checkpoints are
generated randomly where the checkpoint size and check-
point interval is set in between 100-1000 ms, respectively. The
results were obtained using the average of 5-10 experiments
using MATLAB for final results and comparison. MATLAB
is a numerical computation and simulation tool developed
into commercial tool with a user friendly interface. It is

8 Journal of Computer Networks and Communications
TABLE 1: Summary of performance comparison of cluster computing interconnection systems.
Parameters SMC DSMC HSMC VSMC
. . Int ti .
Intra- and intercluster Interconnection ntraconnection Virtual network

Network architecture

bus

All nodes access

network scheme

Each node has local

network hierarchical
bus

All nodes access

scheme

Each node has local

global shared memory with large global shargd memory with large
Memory access . . memory with -
memory with local global distributed . . distributed and
hierarchical cache for .
cache for each shared memory cach virtual memory
Communication Explicit Implicit Explicit Implicit
Data sharing Fine grain between C(.)arse. grain process Fine grain between Cgarse. grain process
processes migration processes migration
Abstraction No abstraction Simple abstraction No abstraction Full abstraction
o1 . . Same as that of
Availability High Higher Less physical cluster
Communication on Distributed data Virtual machine
Architecture the fl structure in linked Hierarchical memory monitor with virtual
Y base type cluster
. Centralized dynamic Distributed dynamic Hierarchical load Vlrtualh cluster server
Load balancing . . . centralized dynamic
load balancing load balancing balancing)
load balancing
Shared memory Time based Hierarchical R.e pl{cated and
Fault tolerance checkpointin coordinated checkpointin distributed
P i checkpointing b & checkpointing
Scalability Limited scalability Highly scalable Hard to scale Good scalability
Latency Lower Higher Low High
Bandwidth Higher Lower High Low
Programming Easier to program Easy to program Critical to program Hard to program
End user Difficult to use Easier to use Elsird to design and Easy to use
Execution Fastest Fast Faster Moderate fast
Cost Cheapest Moderate Cheap High

an independent programming language with a library of
mathematical functions capable of treating complex prob-
lems. Figure 5 compares the four types of cluster architectures
based on their execution times. The results infer that the
distributed shared memory cluster has the highest scalability
with fast execution. Figure 6 shows the comparison of load
balancing in different types of shared memory clusters. We
compare the number of tasks with response time in Figure 6.
The shared memory cluster is found to be the best as
compared to three others in terms of load balancing. Figure 7
shows the comparison of fault tolerance in different types of
clusters. There, we compare the number of nodes with cluster
availability. As shown in Figure 7, the distributed shared
memory cluster provides the high availability. In virtual
shared memory cluster, virtual machines may not handle the
load when all physical nodes stop working at the same time.
Hence, virtual shared memory cluster provides almost the
same availability of the underlying physical cluster connected
through the distributed shared memory cluster environment.
Table 1 shows the summary of comparison of performance of
the four types of shared memory clusters.

5. Conclusions

In this paper, a comparative analysis of four different types
of shared memory cluster computing systems is made. Our
comparison mainly concentrates on the cluster architecture,
load balancing, and fault tolerance aspects of the above said
clusters. The important findings are presented.

The hierarchical shared memory cluster is observed to
support flexible form of communication through shared
memory. It also performs much better and enjoys high
availability. The distributed shared memory clusters intelli-
gently balances the load among nodes with the work stealing
approach. The virtual distributed shared memory clusters
hide dynamic changes of physical hardware configuration of
underlying distributed shared memory cluster. This architec-
ture also allows better fault tolerance of the system.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Journal of Computer Networks and Communications

References

(1]

[2

N

5

(10]

(16]

(17]

I. Ahmad, “Cluster computing: a glance at recent events,” IEEE
Concurrency, vol. 8, no. 1, pp. 67-69, 2000.

C.Kobhio, S. Pierre, and A. Quintero, “Redundancy schemes for
high availability computer clusters,” Journal of Computer Sci-
ence, vol. 2, no. 1, pp. 33-47, 2006.

B. Schroeder and G. A. Gibson, “A large-scale study of failures
in high-performance computing systems,” in Proceedings of the
International Conference on Dependable Systems and Networks,
pp. 249-258, June 2006.

M. Tripathy and C. R. Tripathy, “Design and analysis of a
dynamically reconfigurable shared memory cluster;” Interna-
tional Journal of Computer Science and Network Security, vol.
10, no. 9, pp. 145-158, 2010.

J. Protic, M. Tomasevice, and V. Milutinoviec, “A survey of
shared memory, in Proceedings of the 28th annual Hawaii
International Conference of System Sciences, pp. 74-84, January
1995.

M. Tudruj and L. Masko, “Communication on the fly and pro-
gram execution control in a system of dynamically configurable
SMP clusters,” in Proceedings of the 11th Euro Micro Conference
on Parallel and Network Based Processing, pp. 67-74, February
2003.

M. Tripathy and C. R. Tripathy, “A hierarchical shared memory
cluster architecture with load balancing and fault tolerance;
International Journal of Computer Application, vol. 25, no. 6, pp.
8-18, 2011.

Y.-J. Oyang, D. Jinsung Sheu, C.-Y. Cheng, and C.-Z. Yang, “The
M? hierarchical multiprocessor,” Future Generation Computer
Systems, vol. 9, no. 3, pp. 235-240, 1993.

M. Tripathy and C. R. Tripathy, “A distributed shared memory
cluster architecture with dynamic load balancing,” Journal of
Emerging Trends in Computing and Information Sciences, vol. 3,
no. 2, pp. 231-240, 2012.

S. Zhou, M. Stumm, K. Li, and D. Wortman, “Heterogeneous
distributed shared memory;” IEEE Transactions on Parallel and
Distributed Systems, vol. 3, no. 5, pp. 540-554, 1992.

J.-C. Ueng, C.-K. Shieh, T.-Y. Liang, and J.-B. Chang, “Proteus:
an efficient runtime reconfigurable distributed shared memory
system,” The Journal of Systems and Software, vol. 56, no. 3, pp.
247-260, 2001.

K.J. Barker, K. Davis, A. Hoisie et al., “Using performance mod-
eling to design large-scale systems,” Computer, vol. 42, no. 11,
Article ID 5331904, pp. 42-49, 20009.

B. Gopal and P. Kumar, “Framework for improving parallel-
ism by write-update coherence protocol in distributed shared
memory system,” International Journal of Recent Trends in
Engineering, vol. 1, no. 2, pp- 201-204, 2009.

M. Tripathy and C. R. Tripathy, “On a virtual shared memory
cluster system with virtual machines,” International Journal of
Computer and Electrical Engineering, vol. 3, no. 3, pp. 754-761,
2011.

M. Protic and V. Tomasevic, “An overview of distributed shared
memory, IEEE Computer Journal, vol. 24, no. 8, pp. 12-50, 1991.
C. Clark, K. Fraser, S. Hand et al., “Live migration of virtual
machines,” in Proceedings of the 2nd Symposium on Networked
Systems Design & Implementation (NSDI '05), pp. 273-286, May
2005.

K. Liand P. Hudak, “Memory coherence in shared virtual mem-
ory systems,” ACM Transactions on Computer Systems, vol. 7, no.
4, pp. 321-359, 1989.

(18]

(20]

(21]

(22]

(26]

(27]

M. Tripathy and C. R. Tripathy, “A new co-ordinated check-
pointing and rollback recovery scheme for distributed shared
memory clusters,” International Journal of Distributed and
Parallel Systems, vol. 2, no. 1, pp. 49-58, 2011.

M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker, “Usher: an
extensible framework for managing clusters of virtual
machines,” in Proceedings of the 21st Large Installation System
Administration Conference, pp. 167-181, November 2007.

H. Zhang, “On load balancing model for cluster computers,’
International Journal of Computer Science and Network Security,
vol. 8, no. 10, pp. 1590-1602, 2008.

Z. Lan, V. E. Taylor, and Y. Li, “DistDLB: improving cosmology
SAMR simulations on distributed computing systems through
hierarchical load balancing,” Journal of Parallel and Distributed
Computing, vol. 66, no. 5, pp- 716731, 2006.

J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha, “Scalable work stealing,” in Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis (SC '09), pp. 45-54, November 2009.

M. R. Hines and K. Gopalan, “MemX: Supporting large memory
workloads in Xen virtual machines,” in Proceedings of the 2nd
International Workshop on Virtualization Technology in Dis-
tributed Computing (VIDC ’07), pp. 1-8, Reno, Nev, USA,
November 2007.

H. Naik, R. Gupta, and P. Beckman, “Analyzing checkpointing
trends for applications on the IBM Blue Gene/P system,
in Proceedings of the 38th International Conference Parallel
Processing Workshops (ICPPW "09), pp. 81-88, September 2009.

A. A.Veglisand A. S. Pombortsis, “Performance related analysis
of L-level hierarchical shared - memory multiprocessors,” in
Proceedings of the 8th Mediterranean Electrotechnical Conference

(MELECON °06), pp. 1055-1059, Bari, Italy, May 1996.

K.-L. Wu and W. K. Fuchs, “Recoverable distributed shared
virtual memory,” IEEE Transactions on Computers, vol. 39, no.
4, pp. 460-469, 1990.

I. Goiri, E Julia, J. Guitart, and J. Torres, “Checkpoint-based
fault-tolerant infrastructure for virtualized service providers,”
in Proceedings of the 12th IEEE/IFIP Network Operations and
Management Symposium (NOMS ’10), pp. 455-462, Osaka,
Japan, April 2010.

International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

e

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components

