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The technological advancements in the field of remote sensing have resulted in substantial growth of the telemedicine industry.
While health care practitioners may now monitor their patients’ well-being from a distance and deliver their services remotely,
the lack of physical presence introduces security risks, primarily with regard to the identity of the involved parties. The sensing
apparatus, that a patient may employ at home, collects and transmits vital signals to medical centres which respond with treatment
decisions despite the lack of solid authentication of the transmitter’s identity. In essence, remote monitoring increases the risks
of identity fraud in health care. This paper proposes a biometric identification solution suitable for continuous monitoring
environments. The system uses the electrocardiogram (ECG) signal in order to extract unique characteristics which allow to
discriminate users. In security, ECG falls under the category of medical biometrics, a relatively young but promising field of
biometric security solutions. In this work, the authors investigate the idiosyncratic properties of home telemonitoring that
may affect the ECG signal and compromise security. The effects of psychological changes on the ECG waveform are taken into
consideration for the design of a robust biometric system that can identify users based on cardiac signals despite physical or
emotional variations.

1. Introduction the lack of physical presence at the time of collection of the
medical information (e.g., vital signals), the identity of the

For a number of severe diseases such as diabetes, hyperten-  yger that transmits the respective information is uncertain.

sion, or respiratory disorders, where hospitalization might
not always be justified or needed, home care is traditionally
preferred. Moreover, the visit of a medical practitioner to the
patient’s home is not necessarily an efficient solution either.
This is because (i) the high health care costs for this service
are undesirable; (ii) it may be infeasible for the personnel
to reach highly rural areas; and (iii) monitoring is usually
required on a continuous basis, rather than per visit. Home
telemonitoring is now a reality, addressing the above problem
very effectively, that is, it is not only cost-efficient but can also
reach isolated communities and allow for 24 hr reporting on
the patient’s status.

Nevertheless, the widespread utilization of telemonitor-
ing increases the risk of identity fraud in health care. Due to

Typically, every monitoring device is assigned with a unique
ID (e.g., a serial code) in order to identify the transmitter.
However, this only partially solves the problem since such a
strategy identifies the device but not the person that utilizes
it. What is needed is a means for authentication that is
directly linked to the user and which can identify that person
continuously.

Traditional approaches to identity authentication include
something that the user remembers (e.g., password, PIN
number) or possesses (e.g., ID card, token). Neither of these
two approaches can solve efficiently the problem of remote
authentication, since they cannot be performed in a contin-
uous manner. It is not practical to ask a user to be password
authenticated during monitoring sessions. Furthermore, the



above entities can be easily stolen or forgotten. Biometric
security was introduced as an alternative to this problem.
Linking identities with bodily characteristics that cannot be
forgotten or easily stolen provides airtight security.

In this work, the ECG signal is proposed for identity
authentication in remote monitoring settings. The rationale
behind this choice is that this signal is very likely to be
collected routinely in such environments as it is typically
used for medical diagnosis of several cardiac and noncardiac
conditions. In addition, as opposed to “static” face or iris
images, the ECG signal is time dependent which suits con-
tinuous authentication since a fresh reading can be acquired
every couple of seconds and be used to reauthenticate a
particular user.

From a security point of view, ECG falls under the cate-
gory of medical biometrics, that is, physiological characteris-
tics that are typically used within health care environments
for clinical diagnoses. However, there is evidence that some
of these vital signals such as the ECG, phonocardiogram
(PCG), photoplethysmogram (PPG), and blood volume
pressure (BVP) carry information which is unique for
every individual [1-5]. With the advances in the sensing
technology, the potential of using these signals for biometric
recognition is great. Although this work deals with the prob-
lem of human authentication using the ECG signal, similar
concepts are valid for most medical biometric modalities.

The ECG biometric provides inherent liveness detection
which has computational advantages, since most of the
existing modalities would require additional mechanisms to
validate the liveness of the sensor’s reading. In addition, ECG
is naturally immune to falsification or replay attacks, as it is
extremely difficult to steal and inject someone’s ECG into a
biometric system. Heart signals are universal, stable over a
large period of time, and sufficiently unique. The intersubject
variability comes from the fact that ECG pictures the electro-
physiological variations of the myocardium and is affected
by factors such as the heart mass orientation, conductivity of
cardiac muscles and activation order [6, 7]. This variability
has been extensively investigated in the medical research, for
the establishment of universal diagnostic standards [8].

Factors that affect the ECG waveform can be classified
as physiological or psychological. While a heart rate increase
due to exercise decreases the ECG “period” (in reality this
signal is quasiperiodic), emotions may also change the ECG
waveform. While the interaction between physiological and
psychological factors on the ECG signal is obscure, there is
evidence that emotional activity directly impacts the ECG
waveform [9-11]. This aspect of the ECG is very important
when deploying it for biometric recognition, because it can
significantly affect the overall accuracy. In welfare monitor-
ing environments, physiological and psychological variations
are expected and one needs to account for such effects.

The objective of this work is to first demonstrate
that changes in the psychological status of a subject can
potentially affect the ECG biometric template and second to
provide a solution to this problem for welfare monitoring
applications. While emotional activity can compromise the
stability and robustness of a biometric template, prior works
have concentrated on the effects of just physical activity. In
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this work, a template updating methodology is proposed to
automatically adjust to the psychological status of a user in
order to treat false rejections.

2. The Electrocardiogram (ECG)

The ECG is one of the most widely used signals in health care.
Recorded at the surface of the body, with electrodes attached
in various configurations, the ECG signal is studied for diag-
nostics even at the very early stage of a disease. In essence, this
signal describes the electrical activity of the heart over time
and pictures the sequential depolarization and repolarization
of the different muscles that form the myocardium.

The ECG is a quasiperiodic signal, composed of succes-
sive heart beats. Every heart beat has three essential compo-
nents as follows: the P wave, the QRS complex, and the T
wave. The P wave describes the depolarization of the right
and left atria. The amplitude of this wave is relatively small,
because the atrial muscle mass is limited. The QRS complex
is the largest of three since it represents the depolarization
of the right and left ventricles, which are the chambers with
the most substantial mass in the heart. Finally, the T has
a relatively small amplitude and it depicts the ventricular
repolarization.

Under normal physiological changes, that is, when the
heart rate increases due to physical activity (tachycardia), or
decreases due to meditative tasks (bradycardia), the relative
position of the T wave may vary. Although it is usually
observed about 300 ms after the QRS complex, it may appear
closer to the QRS complex at rapid rates and further away
at slow rates [12]. This variation is not so noticeable among
the P wave and the QRS complex, which are more stable
components of the heart cycle.

While the effects of physical activity on the ECG signal
are well established, the reactivity to psychological changes
is more obscure. The autonomic nervous system (ANS) has
nerve endings within the cardiac muscle which play a major
role in the cardiac output because they affect the rhythm at
which the muscle pumps blood. The fibers of the sympathetic
system run along the atria and the ventricles and when
activated stimulate the cardiac muscle to increase the heart
rate. On the other hand, the parasympathetic system reduces
the cardiac workload. In the presence of a mental stressor
specifically, the sympathetic system dominates the parasym-
pathetic, resulting in the following reactivity effects [13].

(1) Automaticity: the intrinsic impulse firing (automatic-
ity) of the pacemaker cells increases, which translates
directly to an increased heart rate.

(2) Contractility: during every contraction the fibers
of the heart shorten more, compared to the case
during homeostasis, thereby increasing the force of
contraction.

(3) Conduction rate: the natural pacemaker, the SA node,
is forced to conduct faster.

(4) Excitability: during sympathetic stimulation, the per-
son has increased perceptiveness to internal and
external stimuli, which increases the irritability of the
cardiac muscle and possibly lead to ectopic beats.
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(5) Dilation of coronary blood vessels: the diameter of
the coronary blood vessels increases, followed by
increased blood flow to the cardiac muscle.

While there are several open questions on the exact
effects on the ECG for every experienced emotion, the
ability of detecting emotion from this waveform has been
demonstrated in [9]. This work demonstrates that the effects
of psychological activity on the ECG waveform are significant
enough to endanger biometric accuracy.

3. ECG in Biometric Recognition

Prior works in the ECG biometric recognition field can be
categorized as either fiducial points dependent or indepen-
dent. Fiducials are specific points of interest on an ECG heart
beat such as the onset and the offset of the heart beat waves.
Fiducial-based approaches rely on local features of the heart
beats for biometric template design, such as the temporal or
amplitude difference between consecutive fiducial points. On
the other hand, fiducial points independent approaches treat
the ECG signal or isolated heart beats holistically and extract
features statistically based on the overall morphology of the
waveform.

Both approaches have advantages and disadvantages.
While fiducial-oriented features risk to miss identifying
information hidden behind the overall morphology of
the biometric modality, holistic approaches deal with a
large amount of redundant information that needs to be
eliminated. The challenge in the latter case is to remove this
information in a way that the intrasubject variability is min-
imized and the intersubject is maximized. For the ECG case,
detecting fiducial points is a very obscure process due to the
high variability of the signal. In fact, there is no universally
acknowledged rule that can guide this detection [7].

3.1. Fiducial-Dependent Approaches. Among the earliest
works in the area is Biel et al’s [14] proposal, in 2001, for
a fiducial feature extraction algorithm, which demonstrated
the feasibility of using ECG signals for human identification.
The standard 12 lead system was used to record signals
from 20 subjects of various ages. Kyoso and Uchiyama [15]
proposed four fiducial-based features for ECG biometric
recognition, that is, the P wave duration, PQ interval, QRS
complex, and QT durations and achieved 94.2% biometric
accuracy.

In 2002, Shen et al. [16] reported an ECG-based recogni-
tion method with seven fiducial-based features that relate to
the QRS complex. The underlying idea was that this wave is
less affected by varying heart rates and thus is appropriate for
biometric recognition. More complete biometric recognition
tests were reported in 2004, by Israel et al. [1]. This
work presented the three clear stages of ECG biometric
recognition, that is, preprocessing, feature extraction and
classification. In addition, a variety of experimental settings
are described in [1] such as examination of variations due to
electrode placement and physical stress.

Similarly, Palaniappan and Krishnan [17] used a form
factor, which is a measure of signal complexity, and tested
using a neural network classifier. An identification rate

of 97.6% was achieved over recordings of 10 individuals.
Kim et al. [18] proposed a method to normalize time domain
features by upsampling the heart beats. In a similar manner,
Saechia et al., [19] normalized to healthy durations and then
divided into three subsequences: P wave, QRS complex, and
T wave. The Fourier transform was applied on a heart beat
itself and all three subsequences.

Zhang and Wei [20] suggested 14 commonly used
features from ECG heart beats on which a PCA was applied
to reduce dimensionality. A classification method based on
Bayes’” Theorem was proposed to maximize the posterior
probability given prior probabilities and class-conditional
densities. Singh and Gupta [21] proposed a way to delineate
the P and T waveforms for accurate feature extraction.
Boumbarov et al. [22] investigated different models such as
HMM-GMM (hidden markov model with gaussian mixture
model), HMM-SGM (Hidden Markov model with single
Gaussian model) and CRF (Conditional Random Field),
to determine different fiducial points in an ECG segment,
followed by PCA and LDA for dimensionality reduction.
Ting and Salleh [23] described in 2010 a nonlinear dynamical
model to represent the ECG in a state space form with the
posterior states inferred by an extended Kalman filter.

Another fiducial-based method was proposed by
Tawfik et al. [24]. In this work, the ECG segment between
the QRS complex and the T wave was first extracted and
normalized in the time domain by using Framingham
correction formula or by assuming constant QT interval.
The DCT was then applied, and the coefficients were fed into
a neural network for classification. In summary, although
a number of fiducial-based approaches have been reported
for ECG-based biometrics, accurate localization of fiducial
points remains a big challenge. This ambiguity risks the
accuracy of the respective recognizers which require the
precise location of such points. In the likely event of failing to
adequately determine the locations of these points, fiducial
approaches would rather reject the heart beat and require
an extra reading, rather than risking the accuracy of their
decision. This, however, results in increased rejection rates.

3.2. Fiducial-Independent Approaches. The majority of the
nonfiducial approaches were reported after 2006. Among
the earliest is Plataniotis et al’s [25] proposal for an
autocorrelation- (AC-) based feature extractor. With the
objective of capturing the repetitive pattern of ECG, the
authors suggested the AC of an ECG segment as a way to
avoid fiducial points detection. Wiibbeler et al. [4] have
also reported an ECG-based human recognizer by extracting
biometric features from a combination of leads I, II, and
III, that is, a two-dimensional heart vector also known as
the characteristic of the ECG. A methodology for ECG
synthesis was proposed by Molina et al. [26]. A heart beat
was normalized and compared with its estimate, which was
previously constructed from itself and the templates from
a claimed identity. Chan et al. [27] reported ECG signal
collection from the fingers by asking the participants to
hold two electrode pads with their thumb and index finger.
The wavelet distance was used as the similarity measure
with a classification accuracy of 89.1%, which outperformed



other methods such as the percent residual distance and the
correlation coefficient. Chiu et al. [28] proposed the use of
DWT on heuristically isolated pulses. More precisely, every
heart beat was determined on the ECG signal, as 43 samples
backward and 84 samples forward from the R peaks. The
DWT was used for feature extraction and the Euclidean
distance as the similarity measure.

Fatemian and Hatzinakos [29] also suggested the wavelet
transform to denoise and delineate the ECG signals, followed
by a process wherein every heart beat was resampled, nor-
malized, aligned, and averaged to create one strong template
per subject. A correlation analysis was directly applied to test
heart beats and the template since the gallery size was greatly
reduced.

The spectrogram was employed in [30] to transform the
ECG into a set of time-frequency bins which were mod-
eled by independent normal distributions. Dimensionality
reduction was based on Kullback-Leibler divergence where
a feature is selected only if the relative entropy between
itself and the nominal model (which is the spectrogram of
all subjects in database) is larger than a certain threshold.
Ye et al. [5] applied the discrete wavelet transform (DWT)
and independent component analysis (ICA) on ECG heart
beat segments to obtain 118 and 18 features, respectively.
The feature vectors were concatenated. The dimensionality
of the feature space was subsequently reduced from 136 to
26 using PCA which retained 99% of the data’s variance.
Coutinho et al. [31] isolated the heart beats and performed
an 8-bit uniform quantization to map the ECG samples
to strings from a 256-symbol alphabet. Autoregressive
modeling was used in [32], and the cepstral domain was
investigated in [33].

It is clear from the above that a large variety of fidu-
cial-independent techniques have been proposed for ECG
biometric analysis. While some approaches are more com-
putationally intensive than others, or they operate on heart
beats rather than finite ECG segments, there are practically a
number of open issues in the literature with regard to ECG
biometrics. Among the most prominent ones is the question
of signal stability, or permanence, with time. The majority
of prior works did not examine the evolution of the ECG
signal with time. To some extent, the sources of intrasubject
variability of the ECG signal have been ignored. We advocate
that factors affecting the ECG waveform, which may render
the biometric template less accurate, should be carefully
studied and considered to enable real-life deployment of this
technology.

4. The Autocorrelation/Linear
Discriminant Analysis Method

ECG biometrics is essentially a pattern recognition problem,
comprised of three distinct steps, that is, preprocessing, fea-
ture extraction, and classification.

Preprocessing. The ECG data in raw format contain both
high (powerline interference) and low frequency noise (base-
line wander) that needs to be eliminated. Baseline wander is
caused by low frequency components that force the signal to
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extend away from the isoelectric line. The source of this kind
of artifacts is respiration, body movement, or inadequate
electrode attachment. Powerline interference is generated by
poor grounding or conflicts with nearby devices.

To reduce the effects of noise, a butterworth bandpass
filter of order 4 is used. Based on the spectral properties of
each wave in the heart beat, the cut-off frequencies of the
filter are 1 Hz and 40 Hz. The order of the filter and the
passband frequencies are selected based on empirical results
(34, 35].

Feature Extraction. As mentioned before, the core of the pro-
posed feature extraction method is the autocorrelation (AC)
of ECG signals. The rationale for AC is that it captures the
repetitive property of the ECG signal in a way that only
significant, iterative components contribute to the waveform,
that is, the P wave, the QRS complex, and T wave. By
analyzing the AC, incidental patterns of low discriminative
power are attenuated, while persistent components of dis-
criminative power are brought to light.

The syllogism behind AC with respect to fiducial points
detection is that it blends, into a sequence of sums of
products, ECG samples that would otherwise need to be
subjected to fiducial detection. Furthermore, the AC allows
a shift invariant representation of similarity features over
multiple cycles. The AC can be computed as

N—|m|-1

Z x[i]x[i + m], (1)

i=0
where x[i] is the windowed ECG fori = 0,1... (N —|m|—1),
and x[i + m] is the time-shifted version of the windowed
ECG with a time lag of m = 0,1,...(M — 1); M < N.
Even though the major contributors to the AC are the three
characteristic waves, normalization is required because large
variations in amplitudes appear, even among the windows
of the same subject. In addition, only a segment of the AC
vector propagates to LDA, as defined between the zero lag
instance and up to approximately the length of the P wave
and the QRS complex. This is because these components are
the least affected by the heart rate variability [7].

An AC vector can be used directly for classification.
However, it is important to further reduce the intrasubject
variability in order to control false rejection. In addition,
depending on the sampling frequency of the ECG signal, the
dimensionality of an AC window can be considerably high.
For these reasons the linear discriminant analysis (LDA) is
recruited for dimensionality reduction.

The LDA is a well-known machine learning method for
feature extraction. Supervised learning is performed in a
transform domain so that the AC vector’s dimensionality is
reduced and the classes are better separable. The remaining
discussion is based on the following definitions.

~

Rix[m] =

(i) Let U be the number of classes, that is, the number of
subjects registered in the system.

(ii) Let U; be the number of AC windows for a subject
(class) i, wherei = 1,...,U.
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(iii) We define as z;; an AC window j, where i = 1,...,U;
andj=1,...,U.
(iv) Let Z; be the set of AC windows for a subject (class)
i, defined as Z; = {z,-j}](-];'l.
(v) Let Z be a training set consisting of all AC windows
of all subjects, that is, Z = {Z,»}]U:I.

Then a set of K feature basis vectors {y,}5_, can be
estimated by maximizing the Fisher ratio which is equivalent
to solving the following eigenvalue problem:

¥ Spy |
arg max——-——-, (2)
S TyTS .,y
where ¥ = [y1,...,¥x] and Sp and S,, are the interclass and

intraclass scatter matrices respectively, computed as follows:

1 U
Sy = 2@ -D@ -2,
i=1
(3)

U U

S = o> (5~ 2) (2~ %)

i=1j=1

where z; = (1/U;) ZJL-];'I z; is the mean of class Z; and N is

the total number of windows and N = 37| U,

The maximization of Fisher’s ratio is equivalent to
forcing large separation between projected ECG windows of
different subjects and small variance between windows of the
same subject. The LDA finds ¢ as the K most significant
eigenvectors of (S,)" 'S, which correspond to the first K
largest eigenvalues. A test input window z is subjected to
the linear projection y = w7z, prior to classification. For
the purposes of this work, y is referred to as the biometric
template.

It is important to note that ECG biometrics benefit from
supervised machine learning approaches more than other
biometric modalities. This is because of this signal’s dynamic
and time-dependent nature which leads the biometric to
exhibit higher intraclass variability than traditional biomet-
ric modalities. With the LDA one can essentially control false
acceptance and false rejection.

Classification. For biometric matching, input and gallery
templates are associated using the Euclidean distance as a
measure of dissimilarity, while the final decision is made
upon voting of k-nearest neighbors. The normalized Euclide-
an distance is computed as follows:

D(y1,y2) = %\/(Yl -v2) (y1 —v2), (4)

where K is the dimensionality of the feature vectors. For a
U class problem, LDA can reduce the dimensionality of the
feature space to U — 1 due to the fact that the rank of the
between class scatter matrix cannot go beyond U — 1.

5. Template Destabilization due to Emotions

Central to the design of a robust biometric solution is the
study of factors that may affect the biometric signal. In the

ECG case, such factors may be physiological, psychologi-
cal, or environmental. Muscle contraction and movement,
body fluids, and powerline interference are examples of
environmental factors, that is, whose effect on the signal is
added after its generation. Typical noise filters, such as the
Butterworth suffice in addressing such artifacts.

A healthy physiological change is usually expressed by a
change in the heart rate. From a medical point of view this is,
a well-studied effect. From a biometric security perspective
this variation may be addressed by exploring aspects of the
signal that remain unaltered, that is, the P wave and the QRS
complex [7]. For instance, in the AC/LDA approach, only a
segment of the AC vector corresponding to these waves is
used for LDA projection.

However, the effects of psychology on the ECG signal
are not as well defined. While this signal has been employed
in affective computing [10, 11, 36—42] in most of these
cases the heart rate was used in order to determine the
arousal levels. The ECG waveform (not just the heart rate)
was also examined for valence classification in [9]. It was
demonstrated that it is possible to detect specific emotions
from the ECG signal as long as the emotional stimuli are
active. (Active stimuli engage the subject in the emotion
induction process (e.g., video gaming, reading, singing).
Passive stimuli are presented to the subject without his/her
direct engagement (e.g., film watching, listening to music)).

In home telemonitoring environments active arousal is
unavoidable as emotional stimulation is present in everyday
activities. It is therefore important to investigate whether the
emotional changes on the ECG can compromise the respec-
tive biometric template or not. In [2], it was shown that
over long recording periods, while subjects are performing
every-day working activities, the ECG biometric template
may destabilize, that is, change to a degree that endangers
security. While the experimental procedures reported in [2]
were not emotion specific, it was concluded that psychology
is the underlying cause of variation on the ECG signal.

The purpose of the present work is twofold:

(1) to associate, within a monitoring session, instances of
template destabilization with emotion changes;

(2) to provide a solution to the above problem based on
biometric template updating.

The reader should note that the above two objectives
do not directly encompass methods to detect or classify
specific emotions. While experimental procedures have been
designed in order to trigger specific emotional response,
determining which emotion is experienced is beyond the
scope of the current work and has been addressed separately
[9].

6. Emotion Elicitation and ECG Signals

The following experiment was conducted at the Affect and
Cognition Laboratory of the University of Toronto. The pur-
pose was to elicit active mental arousal using a commercial
video game.

In practice the experiment attempted to have the play-
er gradually immersed, by increasingly concentrating in



order to meet the game requirements. A research-platform
video game was used, namely, the Cube 2: Sauerbraten
(http://sauerbraten.org/). A pilot game was built to assist the
needs of the experiment. The subjects got motivated with
deception, by letting them know that the purpose of the
experiment is to measure game completion time.

All participants were seated in front of a computer screen
and presented with a short introduction to the video game.
A five-minute pilot game was played, for the participant to
learn and be adjusted to the game. During that time, no
physiological response was monitored. When the subject felt
comfortable with the process, the ECG sensor was placed
and the main game was initiated. In total 43 volunteers
participated in this study. Data from one person were
discarded due to excessive noise.

Depending on the familiarity of the subject with game
playing, the duration of the experiment varied between 20
and 45 minutes. During the game, ECG was monitored using
Hidalgo’s equivital sensor, which is portable and wireless.
Unobtrusiveness was very important for the subjects to be
naturally immersed in the game. ECG was recorded from the
chest and digitized at 256 Hz.

Because of the stochastic nature of the game and the
unforeseeable order of events that can take place, arousal
annotation was self-determined. For this reason, a video of
the player’s facial expressions was captured during the game
(synchronous to ECG). Upon game completion, the subjects
were asked to watch a playback video of the game and their
facial expressions while continuously reporting arousal using
FEELTRACE [43]. Figure 1 shows an example of such a self-
assessment video, while Figure 2 illustrates the data labeling
scheme.

7. Template Updating

The underlying idea of the proposed approach is to update
the ECG biometric template at instances of destabilization
due to psychological changes. An alternative to this solution
would be to preenrol a subject with a number of different
templates along the spectrum of emotional responses. How-
ever, this is not a practical solution since it is not feasible to
induce such conditions on demand or ensure that one indeed
succeeded in doing so. Furthermore, such an approach would
be very inconvenient for real-world environments.

In the proposed system, the user can be enrolled once,
by submitting his/her ECG signal irrespective of the psycho-
logical status. In return, during normal operation, when the
system detects that the existing biometric template has been
destabilized, that is, results in low-quality matching with
newly captured ECG segments, a new biometric template is
created to replace the first. Therefore, the objective of the
subsequent analysis is to update the biometric template at
instances corresponding to the destabilization or decoherence
of the correlation scores among consecutive ECG readings
and the biometric template.

The evaluation of the coherence of ECG readings has
been discussed in [2, 3]. The same approach is adopted in the
current analysis; however the objective of the present work
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FIGURE 1: Game and face video playback, used for self-assessment
of arousal.
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FIGURE 2: Data labeling for the active arousal experiment. The
FEELTRACE is a continuous arousal indication.

is to associate instances of destabilization with psychological
changes.

The proposed system constructs variable-length accumu-
lated durations of ECG segments based on some fundamental
time duration. The accumulated segments need to be
coherent, that is, exhibit high correlation with each other
(intraburst correlation). When decoherence is observed, tem-
plate update is initiated based on the latest ECG segments. In
practice, there is a tradeoff between frequency of template
updates and computational complexity. Frequent template
updating implies accurate tracking of events but increases
the computational effort. On the other hand, infrequent tem-
plate updating may cause inadequate system performance in
terms of increased false rejection. To efficiently address this
problem, a minimum time duration is forced over which the
system makes a decision about whether the template needs to
be updated. In an extreme case one can define this minimum
duration to be equal to the smallest time resolution in the
system, that is, the fundamental duration (5 seconds for
the AC/LDA algorithm). However, this is computationally
inefficient, and therefore the updating instances need to be
strategically chosen.

A variable-length accumulated duration (or burst) is
constructed by accumulating various fundamental durations
(for the proposed AC/LDA algorithm, these fundamental
durations correspond to ECG segments of 5-second length).
The following iterative description can be made.

Consider the following fundamental durations {dj,
dy,...}, where each d; corresponds to time duration of 5
seconds. This duration is chosen to acceptably accommodate
the time resolution requirement of the AC/LDA algorithm.
Now suppose that, at the current iteration, the current burst,
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Durrent, contains ¢ fundamental durations, that is, Deyrrent =
{dk,...,dksu—1}. For the subsequent segment, dj,,, the two
choices are as follows.

(C1) Add dy.y to the current burst, forming Dpotential =
{d,...,dksu}. Continue the operation with di,41 as
the next candidate.

(C2) Reject dy4y, and terminate Deyrrent- Reinitialize with
dy+y as the start of a new burst.

The correlation coefficient is used for the estimation of
the intraburst coherence and allows the system to decide
between (C1) or (C2) as follows.

(1) Compute the correlation profile for Dpgential relative
to starting point dy.

(2) Find the minimum correlation value ¢y, over
Dpotential~

(3) Compare to a threshold ¢y, for decision:

=
Cmin — Cth = 0. (5)
G

In order to account for buffering problems, along with
the minimum necessary burst duration, the system also uses
a maximum duration (e.g., dsizemax) which, when reached,
forces the system to update the biometric template. With this
treatment the algorithm can reset.

For the purposes of the current analysis, the subse-
quent procedure aims to validate that every coherent burst
describes a true emotional state. To do that, a measure g;
is introduced to describe the system’s confidence that burst
i represents consistently one emotional state. As explained
earlier in the signal collection section, every ECG window
x(t) (in the burst i) is labeled as high (H) or low (L) arousal.
Let Ni; and N} be the number of windows marked as high
and low arousal, respectively. Then g; can be calculated as

max(NﬁI,Ni)

‘ : (6)
Ny +Nj

qi =

If template updating succeeds, every burst that is identi-
fied by the updating algorithm should have a high g;, which
means that with high confidence each burst corresponds to
either high or low arousal.

The reader should note that the purpose of this work
is not to automatically detect emotional states. Emotional
confidence is calculated as an a posteriori validation to
demonstrate the coincidence of instances of emotional
change and biometric template destabilization.

8. Experimental Results

The performance of the proposed algorithm for template
updating was evaluated on emotion-annotated ECG signals.
ECG readings are available for the duration of the video
game, as previously described in Section 6. The first few
seconds of every reading were used for initialization, that

is, the design of an initial biometric template. Then in the
sequel, the correlation of this template with subsequent ECG
readings was determined and, if not sufficient, the template
was updated.

The number of template updates within the 30 min
gaming session varies for different individuals. Subjects that
were very emotionally consistent required only one template
update while others updated up to eight times.

The results are shown in Figure 3 which lists the g
values (in percentage) for all detected bursts of all subjects
in the database. Even though this measure relies on the
subjects’ self-reports and discrepancies are expected, the
average state confidence for the bursts is 96.47%. This
performance is illustrative of the accuracy of detecting
homogeneous emotional states, which leads to successful
template updating. Now, consider the original problem of
biometric recognition when a burst is terminated due to
decoherence the system performs a template update. While
the above results show that each burst corresponds to either
high arousal or low arousal, the question that naturally
arises is the following: do two consecutive bursts correspond
to opposite arousal labels? In other words, is change in arousal
the only factor that is responsible for burst termination?

In practice, the template updating algorithm is not only
affected by emotional states. A burst may be interrupted due
to one of the following three reasons.

(1) A state change, that is, a transition from one psycho-
logical state to another.

(2) Buffer overflow, that is, when dsizemay is reached.
dsizemax can be adjusted according to the require-
ments of the application environment. For the
present simulation dsizep,x was set to 10 minutes.

(3) Noise artifacts (e.g., due to a sudden movement), that
are not sufficiently treated by the filter.

Nevertheless, a template update is necessary in all cases.

For every individual in the database, a template is
updated every time a new burst is detected. To quantify
the verification accuracy after template updating, the false
acceptance (FA) and rejection (FR) rates are estimated for
every individual separately. Table 1 lists the equal error rates
(EER depicts the error rate at which the probability of false
acceptance equal that of false rejection) that were achieved
with this treatment, for all subjects in the active arousal
dataset. The average equal error rate in this case is 3.96%.
It should be noted that the baseline system performance that
is without template updating results in 15% EER. Figure 4
demonstrates the FA and FR tradeoffs for nine randomly
picked individuals. In each simulation FA was computed
with comparisons of the updated template of one individual
against the remaining subjects in the database.

A parameter that controls the above analysis is ¢y, that
is, the threshold on the correlation coefficient that is used to
determine burst coherency. As this threshold increases,
stronger coherence is imposed on the bursts, leading to
smaller EER, as shown in Figure 5. However, this is achieved
at the expense of more frequent template updating needed
(i.e., higher cost and complexity).
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FIGURE 3: Detected bursts and respective emotion consistency (g;) for all subjects in the database (N.B.: the above bursts are not necessarily
of the same duration, i.e., variable-length durations may be detected). The average state confidence is 96.47%.

TaBLE 1: Equal error rate for each individual in the active arousal database, after template updating. Mean equal error rate is 3.96%.

Subject EER Subject EER Subject EER Subject EER Subject EER
1 6% 11 4.3% 21 2.65% 31 5% 41 0.2%
2 4.2% 12 3.6% 22 3% 32 5.16% 42 0%
3 8% 13 1.1% 23 5.65% 33 2.65% 43 1.35%
4 4.4% 14 4.3% 24 3.95% 34 9.2%

5 4% 15 3.2% 25 3.38% 35 8.9%

6 0% 16 2.5% 26 4.04% 36 1.85%

7 0.5% 17 2.75% 27 3.35% 37 7.65%

8 5.5% 18 4.63% 28 1.46% 38 2%

9 0.05% 19 4.2% 29 2.75% 39 2.95%

10 3.8% 20 2.3% 30 0.5% 40 13.34%

9. Conclusion

In this work, a novel identity recognition system based on
the ECG signal has been presented. The proposed biometric
solution is suitable for welfare monitoring environments
which require remote, efficient, and continuous authenti-
cation of the involved parties. In such settings, the ECG is
typically collected among other vital signals and used for
diagnosis and treatment decisions. Relying authentication
on the very same modality not only increases security and

convenience but also enhances user privacy since no other
credentials are required to perform this task.

This technology has significant advantages, most of
which arise from the fact that ECG is a body-internal
signal. For instance, ECG-enabled biometric systems can
automatically and inherently assess the “liveness” of the
biometric reading. This is not the case with traditional
biometric modalities (e.g., iris or fingerprint) which require
additional computational effort to assess the liveness of the
sensor reading. In addition, ECG is a continuous signal that
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FIGURE 4: Verification performance with template