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The author analyzes a technique to prevent multiple simultaneous virus epidemics on any vulnerable computer network with
inhomogeneous topology. The technique immunizes a small fraction of the computers and utilizes diverse software platforms to
halt the virus outbreaks. The halting technique is of practical interest since a network’s detailed topology need not be known.

1. Introduction

Malicious software, or malware, on the Internet can cause
serious problems, not only for services like email and the
web, but for electricity, transport, finance, and healthcare ser-
vices due to their increasing Internet dependence. Infectious
malware like viruses and worms are especially troublesome as
they often spread too fast for human-assisted detection and
early removal. Because classical signature-based approaches
to malware defense do not provide adequate protection [1],
there is currently a need for alternative defensive approaches.

While authors [2–8] have long debated the benefits of
using added software diversity to halt malware, few results [9]
actually show when diversity increases a network’s robustness
to malware epidemics. We demonstrate that reasonable
software diversity prevents malware from controlling much
of the information on a network but only when the network’s
topology is homogeneous. If a diverse network is inhomoge-
neous, then malware on the hubs, that is, the nodes with the
most connections, can still control much of the information.
We show how node immunization and software diversity
together can halt infectious malware on inhomogeneous
networks.

In this paper, the term “virus” denotes any form of infec-
tious malware, and we consider the Internet as a collection of
networks infected by many different viruses [10]. The viruses
are allowed to reinfect machines because it is important to
halt viruses that adapt over time. In the future, adaptive
viruses could, with help from their creators, exploit new

vulnerabilities and thus reinfect machines even after software
patches have been installed.

Viruses spread by exploiting vulnerabilities in the oper-
ating system and application layers of a network. We build
a model simulating multiple simultaneous outbreaks on a
single layer. The network of attacked machines is modeled by
a graph with different node types representing the software
diversity. Since the spreading patterns of viruses vary with
the considered layer and the exploited vulnerabilities [11],
we model different network topologies to show that the
proposed technique can halt viruses with different inhomo-
geneous spreading patterns.

Using the framework of network science [12], other
authors have studied how to halt viruses on network mono-
cultures with a single-software platform [13–18]. We first
analyze a technique to halt multiple simultaneous virus out-
breaks on inhomogeneous networks with diverse software
platforms and known hubs. The halting technique is then
extended to diverse inhomogeneous networks with unknown
hubs [15]. The technique immunizes a small percentage of
all nodes and introduces a reasonable amount of platform
diversity [19, 20] to prevent the viruses from spreading.
When the halting technique is applied to inhomogeneous
networks, later virus outbreaks are quickly eliminated.

2. Characterizing Diversity

Two computing platforms on a network are distinct
when they have no exploitable vulnerability in common.
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A collection of platforms can be divided into classes of
mutually distinct platforms, that is, no two platforms
from different classes have a common vulnerability. Here,
we only consider the platforms’ OSes and web browsers.
The OSes and browsers are assumed downloaded from
application stores utilizing compilers with “diversity engines”
to generate different binary images [19]. Assuming that the
compilers generate roughly equally large classes of distinct
downloadable images, the number of classes is a measure of
the platforms’ software diversity.

To understand why we concentrate on the diversity of
OSes and web browsers, consider the computing platforms
at the hardware, network, OS, and application levels. Let the
hardware diversity be the number of microprocessors with
different instruction set architectures. The small number
of unique microprocessors limits the hardware diversity in
current and forceable systems. Further, hardware diversity
is “nullified” by byte code interpreters or instruction set
emulators at the OS level.

The network level’s ability to prevent virus spreading
is also limited because all realizations of a communication
protocol must have the same functionality. Since different
OSes have similar but not equal functionalities, there is
a greater potential for creating diversity at the OS level.
At the application level, the diversity of web browsers is
important since regular users utilize browsers most of the
time. Current realizations of multibrowser technologies like
Java Virtual Machines, Adobe Flash player, and JavaScript
are problematic because they simplify virus attacks across
different platforms.

Today, limited diversity is obtained by deploying different
OSes like Windows and Mac OS X and different web browsers
like Internet Explorer and Safari. Much larger diversity
is possible if future application stores utilize compiler-
generated diversity to make many distinct downloadable
software images [19].

In the following section, we establish an epidemiological
model with adjustable diversity. Since virus writes control
the spreading mechanisms of viruses, we are likely to see
widely different and surprising spreading patterns in the
future. Thus, we do not attempt to model the details of
how viruses spread. Instead the epidemiological model can
incorporate any homogeneous or inhomogeneous network
of vulnerable machines. In this paper, we extend well-
established network models from Network Science [12]
that are known to model different topological aspects of
the Internet. The epidemiological model is also created to
facilitate mathematical analyses.

3. Epidemiological Model

Let a computer network be infected by different viruses. The
network is modeled as an undirected graph with M edges
and N nodes of different types. The node types represent
machines with distinct software on the OS or application
layer and the edges represent virtual communication lines.
There is at most one edge between two nodes and no edge
connects nodes to themselves. If there is an edge between

two nodes, then these nodes are neighbors. The degree of a
node is the number of neighbors. The nodes’ average degree
is 〈k〉 = (2M)/N .

The topology of the network depends on the considered
software layer, and the vulnerabilities exploited to spread the
viruses. Email viruses and viruses on the web travel over
inhomogeneous networks on which a few nodes, the hubs,
have very large degrees k � 〈k〉 [11]. An inhomogeneous
scale-free network is a graph whose degree distribution
follows a power law, that is, the probability of a node having
k neighbors is proportional to k−γ. The well-established
Barabási and Albert (BA) model [21] grows a scale-free
network with exponent γ = 3 modeling the web. The hubs
are encoded by the power law’s tail. Figure 1(a) depicts a BA
network with N = 40 nodes and average degree 〈k〉 = 2.

The Watts-Strogatz (WS) model [22] generates a homo-
geneous network with node degrees k ≈ 〈k〉 capturing the
“small world” property of the Internet [12]. All nodes are
placed on a circle. Initially, each node has K neighbors in the
clockwise direction and K neighbors in the counterclockwise
direction. With probability r, 0 ≤ r ≤ 1, each of the K
clockwise edges is reconnected to a node chosen uniformly
at random over the entire ring (with duplicate edges and self-
loops forbidden). The WS network with N = 10 and K = 2
in Figure 1(b) has 〈k〉 = 4 and no hubs.

All BA and WS networks, as well as other networks
introduced later, have L different node types l = 1, 2, . . . ,L
for 1 ≤ L � N . Each node type occurs Nl times. A node
chosen uniformly at random is of type l with probability
Nl/N for N = ∑

l Nl. One of the generalized entropy
functions measures the diversity of a network [23]. Because
we will assume that Nl = N/L, the diversity is equal to the
number of node types L with the convention that a network
with only a single type, called a monoculture, has no diversity.
The networks in Figure 1 have diversity L = 3.

Multiple simultaneous virus epidemics are modeled by
L susceptible-infected-susceptible (SIS) models [13, 24]
operating on the same network topology but affecting L
disjoint subsets of nodes with different types. There are
L types of viruses. Each type of virus infects a particular
software platform, that is, node type. Initially, all nodes are
susceptible. At time step t = 0, the generic model selects
uniformly at random S (≥1) nodes of each type l and infects
the nodes. These L · S initially infected nodes are called
seeds. The stars in Figure 1 represent the seeds. For each time
step t = 1, 2, 3, . . ., any infected node of type l infects any
susceptible neighbor of type l with infection probability pl,
0 < pl ≤ 1. At the same time, any infected node of type l
recovers with recovery probability ql, 0 ≤ ql ≤ 1.

When ql > 0 for some l, a node can repeat the SIS
life cycle many times. The result is a stochastic model with
long-term dynamics, where it is assumed that the infections
and recoveries are updated in a random asynchronous order.
When pl = 1 and ql = 0 for all l, the L SIS models
become L susceptible-infected models. The generic model is
deterministic in this case since a virus infects all reachable
nodes with 100% probability. Consequently, the spreading
process is completely determined by the network’s topology
and configuration of node types. Because no node recovers
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from an infection, there are no long-term dynamics. The
spreading simply stops when all reachable nodes are infected.

4. Impact of Virus Outbreaks

To measure the impact of viruses on a network, one possi-
bility is to count the infected machines. Another possibility
is to consider the availability of the information on all
virtual communication lines. While an infected machine
should continue to operate nearly as normal to forestall
virus detection, a virus can still stop selected information on
the machine’s communication lines. A node in the generic
model whose adjacent edges are all controlled by viruses is
said to be isolated because the availability of any incoming
and outgoing information cannot be guaranteed. The seven
nodes with only red edges in Figure 1(a) are isolated. Note
that a node is isolated when it is infected or when all its
neighbors are infected.

A susceptible node always becomes isolated when it
is infected since the virus on the node itself controls all
adjacent edges. When an infected node recovers because
the virus is removed, only the adjacent edges connecting to
infected neighbors remain under control of viruses. Hence,
a susceptible (i.e., not infected) node can only be isolated
if all its neighbors are infected. It can be argued that we
should also count a healthy node when a few but not all
of its neighbors are infected. The author has ignored these
partially isolated nodes to simplify the mathematical analysis
in Appendix A.

Consider the deterministic model with pl = 1 and
ql = 0 for all l. If the network is a monoculture with
L = 1 node type, then a susceptible node with an infected
neighbor will also become infected. Hence, the number of
isolated nodes equals the number of infected nodes. When
an inhomogeneous network has L > 1 node types, the
number of isolated nodes is in general larger than the
number of infected nodes. Consider a node of type l with
a few neighbors of types l′ /= l. Even if the node itself is
not infected, it is easily isolated by viruses on the few
neighbors. These viruses control all edges connecting to
the susceptible node. (Only 3 of the 7 isolated nodes in
Figure 1(a) are infected.) Since the number of infected nodes
can seriously underrepresent the ability of multiple virus
outbreaks to control the availability of information on a
diverse inhomogeneous network, we count the number of
isolated nodes. Gorman et al. [10] were possibly the first to
use this measurement.

4.1. Average Node Isolation. The generic model was imple-
mented in NetLogo [25]. Initially, we utilize the deterministic
model to compare the average fractions of isolated nodes
on inhomogeneous networks with hubs and homogeneous
networks without hubs. It is reasonable to set the recovery
probabilities to ql = 0 because many viruses, especially
self-propagating worms, spread too fast for human-assisted
detection and early removal. The infection probabilities are
set to pl = 1 to quickly determine the maximum possible
number of isolated nodes. To explore the full effect of varying

the diversity L, we assume (nearly) equally many nodes per
type.

First, we evaluate inhomogeneous BA networks with 104

nodes and average degree 〈k〉 = 2. Figure 2(a) plots the
average fraction of isolated nodes for an increasing number
of node types L = 2, 3, . . . , 7 and an increasing number of
seeds S = 1, 3, 5, and 10 per node type. Every discrete
data point is averaged over hundred random configurations
of node types and seeds for each of hundred random BA
networks. BA monocultures with L = 1 have an average
fraction of isolated nodes equal to one (not shown in
Figure 2(a)) because they are connected graphs. Going to
L = 2, the average fraction of isolated nodes decreases with
roughly 85% or more depending on the number of seeds S
per node type. For L = 7, the average fraction reduces to no
more than 3% for S ≤ 10.

Second, we consider homogeneous WS networks with
104 nodes, average degree 〈k〉 = 6, and rewiring probability
r = 4%. Figure 2(b) shows the average fraction of isolated
nodes for an increasing number of node types L and an
increasing number of seeds S per node type. Each data point
is generated as before. For L ≥ 3 and S ≤ 10, the average
fraction of isolated nodes is less than 3%. While the WS
networks have a larger average degree than the BA networks,
the BA networks still need larger diversity L to reduce the
average fraction of isolated nodes to 3%.

Finally, we consider an inhomogeneous network with
more dominant hubs than the considered BA networks. The
dominant hub (DH) network represents a possible inho-
mogeneous spreading pattern for an outbreak of multiple
viruses. The DH network has 10670 nodes and 22002 edges.
The largest hub has degree 2312, which is nearly 11% of
the total number of edges. Figure 2(c) depicts the average
fraction of isolated nodes in the DH network for L =
4, 8, . . . , 40. Each data point is averaged over 103 random
configurations. The fraction of isolated nodes reduces much
more slowly and levels off at a higher value than for the other
networks. For L = 40, the average fraction is about 23% for
S = 10 and 3% for S = 1.

Inspections reveal that the big hubs in the DH network
isolate a large number of low-degree nodes, many of
which are not infected. Figure 2(d) plots the DH network’s
differences between the average fraction of isolated nodes
and the average fraction of infected nodes for S = 10. The
DH network has a large difference for all L = 1, 2, . . . , 7,
roughly 40% for L = 4. The simulation results in Figure 2
and the analysis in Appendix A show that the difference for
random BA networks is much smaller, and the difference for
random WS networks is essentially zero because they have no
hubs.

According to the plots in Figure 2, the average fraction
of isolated nodes in both homogeneous and inhomogeneous
networks drops when the diversity L increases. However, a
significant fraction remains even for large L when a network
contains big hubs. Further, the remaining fraction of isolated
nodes grows with increasing number of seeds S per node
type (see Figure 2(c)). These observations were confirmed
by simulations based on eight more DH networks and many
additional BA and WS networks.
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(a) (b)

Figure 1: Diverse (a) BA network and (b) WS network seeded with viruses at time step t = 0. Both networks have L = 3 different colored
node types. Circular nodes are susceptible and star-shaped nodes are infected. There is S = 1 seed for each node type. Only the L · S = 3
seeds are infected since the viruses have not started to spread. The viruses infecting the seeds control all adjacent edges (shown in red). The
BA network has four isolated nodes in addition to the three infected seeds. Only the seeds are isolated in the WS network.

4.2. Influence of Reinfected Hubs. We now study the stochastic
model to determine the hubs’ influence on the fraction
of isolated nodes in diverse inhomogeneous networks with
reinfections of nodes.

When there are Nl = N/L nodes per type, an arbitrary
node is a seed with probability S/Nl = (SL)/N , where S is the
number of seeds per node type. Since a node of degree D has
roughly D ·Nl/N = D/L neighbors of the same type, a node’s
number of neighboring seeds of the same type is estimated
by

(SL)
N

· D
L
= (SD)

N
. (1)

The right-hand side of (1) is independent of the number
of node types L. The number of seeds S per node type can
be large in practice because botnets are used to seed viruses.
Hence, a hub with very large degree D is likely to be infected
by a seed during the first time steps of a model run, even if
the diversity L is large.

A hub of type l is infected with probability pl · (SD)/N
during the model’s first-time step. Infection will almost
surely occur when pl · (SD)/N ≈ 1. During the following
time steps, the hub will infect many of its D/L neighbors
with the same type, where L� D for current networks. Even
more neighbors will be isolated. In particular, all degree-one
neighbors of any type l′ /= l will be isolated but not infected.
When the hub recovers with probability ql during a time step,
it will be quickly reinfected by one of the D/L neighbors.
Since the neighbors ensure that the hub is infected nearly all

the time, a nonzero fraction of isolated nodes is maintained
over time even when L is large.

Many simulations using the stochastic model confirm
the hubs’ important role in making the fraction of isolated
nodes much larger than the fraction of infected nodes. As
seen from Figure 3, if the largest hub on a DH or BA network
is immunized, that is, made permanently resistant to virus
attacks, then the instantaneous fraction of isolated nodes
drops significantly. There is no easily detectable reduction in
the instantaneous fraction of infected nodes, confirming that
the largest hub isolates many susceptible (i.e., not infected)
nodes. The large fluctuations in the instantaneous fraction
of isolated nodes in Figure 3(a) is due to temporary recovery
of hubs.

The instantaneous fraction of isolated nodes will even-
tually go to zero because there is a non-zero probability
that all nodes become susceptible in any finite-size network.
However, the nonzero averaged fraction of isolated nodes
was stable for very many time steps during the simulations.
Hence, when hubs are reinfected, multiple virus outbreaks
cause substantial long-term node isolation even for high
node diversity L.

5. Halting Technique

Our goal is to halt multiple simultaneous virus outbreaks on
any inhomogeneous network without changing its topology.
The halting technique should drive the fraction of isolated
nodes to zero in the stochastic model. For the deterministic
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Figure 2: Average fraction of isolated nodes in (a) random BA networks with 〈k〉 = 2; (b) random WS networks with 〈k〉 = 6 and rewiring
probability r = 4%; (c) single DH network with 〈k〉 = 4.12. (d) Difference between average fractions of isolated and infected nodes for
S = 10 in the DH network.

model with a total of L·S seeds, the fraction of isolated nodes
should not be much larger than (LS)/N after the viruses have
spread. Since node diversity alone only eradicates viruses on
homogeneous networks, we suggest the following two-step
technique.

(1) Immunize enough large-degree nodes in a network to
create a homogeneous subnet when the immunized
nodes and their adjacent edges are removed.

(2) Ensure that the node diversity of the homogeneous
subnet is large enough to halt (and possibly remove)
multiple simultaneous virus outbreaks.

5.1. Deterministic Example. To illustrate the technique, we
consider a second inhomogeneous DH network with 22963
nodes, maximum degree 2390, and average degree 4.22.

Deterministic spreading of all infections is obtained by
setting the infection probability pl = 1 and recovery
probability ql = 0 for all l. The model first runs without
applying the halting technique.

Figure 4(a) depicts the DH network without edges before
the viruses start to spread. The four node types have different
colors. The 164 largest hubs have bigger size and are placed
on top of the other nodes. Twenty seeds of each type are
colored red to signify infections (only a few are visible).

The seeds infect the hubs during the first few time steps of
the model run. The hubs again isolate very many low-degree
nodes. When the run terminates, as shown in Figure 4(b),
all infected nodes are colored red, and all susceptible nodes
with only infected neighbors are colored white. The red and
white nodes together constitute 18314 isolated nodes, that is,
no less than 80% of all nodes.
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Figure 3: Instantaneous fractions of isolated nodes (red line)
and infected nodes (green line) in diverse (a) DH network and
(b) random BA network. The vertical drop in each instantaneous
fraction of isolated nodes is due to immunization of the largest hub
only.

Figure 4(c) shows the same DH network, but now with
immunized, dark-pink-colored hubs. Further, the number
of node types is increased from four to six. Figure 4(d)
highlights the isolated nodes after the viruses have spread.
The 6 · 20 = 120 seeds only generated 283 isolated nodes or
1% of all nodes.

5.2. Stochastic Model Analysis. While our goal is to prevent
future virus epidemics, we continue to study the case where
L simultaneous virus outbreaks have already spread over the
stochastic model. The halting technique’s first objective is
then to immunize enough of the largest-degree nodes to
obtain a homogeneous subnet of susceptible and infected
nodes. To determine how many of the nodes to immunize,
consider the two statements A: “network is homogeneous”
and B: “fractions of isolated and infected nodes are equal.”
We argue that A and B are equivalent statements.

Let pl = p > 0 and ql = q > 0 for all l. Appendix A shows
that when a homogeneous network is modeled as a random
Erdös and Rényi graph [12], the fractions of isolated and
infected nodes are essentially equal, that is, A implies B in
this case. The same implication holds for generalized random
networks with arbitrary “thin-tail” degree distribution. More
generally, let h denote the fraction of infected nodes. The
likelihood that an arbitrary node is isolated but not infected
on a homogeneous network is approximated by (1 − h)h〈k〉,
which goes to zero as the average degree 〈k〉 increases.

To show that B implies A, is equivalent to show ¬A
implies ¬B where ¬ denotes negation. From Appendix A,
when an inhomogeneous network is represented by the BA
model, the fraction of isolated nodes is larger than the
fraction of infected nodes. The same is true for other network
models with scale-free degree distributions. In general,
there is a large fraction of nodes with few neighbors in
inhomogeneous networks. While many of these low-degree
nodes, for example, k ∈ {1, 2}, are not susceptible to locally
propagating viruses due to their node types, the nodes can
easily be isolated by infected neighbors.

Consequently, enough large-degree nodes should be
immunized to make the fractions of isolated and infected
nodes nearly equal because, at least according to the provided
evidence, only then do we obtain a homogeneous subnet of
susceptible and infected nodes.

The halting technique’s second objective is to ensure that
the number of node types L is large enough for the remaining
viruses to die out on the homogeneous subnet. Let the subnet
be modeled as a generalized random network with equally
many nodes of each type. According to Appendix B, the
needed number of node types is then lower bounded by

L > z∗ ·max
l

{
pl
ql

}
, (2)

where z∗ is the average degree of the subnet. From (2), the
largest of the spreading rates pl/ql essentially determines the
required node diversity L. Analysis in Appendix B shows that
all the infected nodes recover more quickly as L is increased
beyond the lower bound in (2).

5.3. Stochastic Example. We revisit the second-discussed DH
network. Assuming infection probability pl = 0.06 and
recovery probability ql = 0.04 for all l, we select L = 7 node
types. The instantaneous fractions of isolated and infected
nodes are shown in Figure 5(a). There is a large difference
between the fractions until time step one thousand when
the 216 largest hubs are immunized. The two fractions then
quickly become nearly equal. All remaining infected nodes
recover after an additional 2958 steps (not shown).

A real network spanned by viruses is most often embed-
ded in a larger network. If the larger network has adequate
diversity L, then future virus outbreaks can be halted by
immunizing most of the hubs visited by the viruses before
the actual outbreaks. Figure 5(b) shows the fractions of
isolated and infected nodes for the DH network when the 216
largest hubs have been correctly identified and immunized in
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(a) (b)

(c) (d)

Figure 4: (a) DH network with four-colored node types, 164 enlarged hubs, and twenty seeds per type. (b) After the viruses have spread,
all infected nodes are red and all susceptible isolated nodes are white. (c) Same DH network, but now with dark-pink-immunized hubs and
six-colored node types. (d) Since the viruses are nearly unable to spread-there are only few red-and white-isolated nodes (other nodes not
shown).

advance. There is very little spreading of the viruses and all
infected nodes recover after only 184 steps.

6. Generalized Halting

While we do not know the degrees of many nodes in real
inhomogeneous networks [14], it is still possible to immu-
nize hubs in advance of virus outbreaks. The acquaintance
immunization strategy [15] provides an elegant solution to
the problem of immunizing unknown hubs on a monocul-
ture (L = 1) infected by viruses: choose a set of nodes
uniformly at random and immunize one arbitrary neighbor
per node. While the original set of nodes is unlikely to con-
tain the relatively few hubs in an inhomogeneous network,
the randomly selected neighbors are much more likely to
be hubs, since very many edges are adjacent to high-degree
nodes.

We can generalize acquaintance immunization to diverse
networks. Assume Nl = N/L nodes per type. For some
fraction 0 < f < 1, choose a set of f · Nl nodes of type l
uniformly at random such that each node has at least one
neighbor of the same type. Immunize one randomly selected
neighbor of type l per node in the set. When the set of all
immunized neighbors f N = ∑

l f Nl is large enough, the set
f N will contain most of the hubs and the fractions of isolated
and infected nodes will be nearly equal.

6.1. Examples with Unknown Hubs. We consider the second
DH network a last time, assuming unknown node degrees.
Let the fraction of immunized neighbors be f = 0.04 (4%)
and set pl = 1, ql = 0, and L = 7. Figure 6(a) shows only the
immunized dark-pink nodes and the remaining susceptible
multicolored hubs after acquaintance immunization. Note
that most of the 216 enlarged hubs are immunized. Fig-
ure 6(b) highlights the isolated nodes after the viruses have
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Figure 5: Fractions of isolated and infected nodes caused by
multiple simultaneous virus outbreaks on DH network. (a) The
largest 216 hubs are immunized at time step one thousand. (b) The
hubs have been correctly identified and immunized before the virus
outbreaks.

spread. The 7 · 20 = 140 seeds generated 158 isolated nodes
or less than 1% of all nodes. Let pl = 0.06 and ql = 0.04.
When acquaintance immunization is performed in advance,
the fractions of isolated and infected nodes went to zero after
only 154 time steps. The plot of the isolated and infected
fractions (not shown) is very similar to Figure 5(b).

To verify the usefulness of the halting technique for
inhomogeneous networks with unknown hubs, we generated
additional model runs for different DH networks, including
runs where the infection and recovery probabilities pl and
ql varied with l. After first determining a suitable fraction f
of immunized nodes and number of node types L, the seeds
caused little spreading and all infected nodes recovered. The
speed at which the virus outbreaks die out depends on the
fraction f , diversity L, selection of L · S seeds, and spreading
rates pl/ql.

(a)

(b)

Figure 6: Acquaintance immunization of DH network. (a) Immu-
nized dark-pink nodes and remaining susceptible multicolored
hubs. (b) The few red and white isolated nodes after the viruses tried
to spread.

7. Final Discussion

The Internet is best viewed as a large collection of networks.
Because each network has different default settings, soft-
ware patch levels, firewall rules, browser settings, antivirus
signature sets, configuration management practices, and
diagnostic capabilities, they are not all vulnerable to the same
viruses [8]. However, we have seen many examples of large
networks with too little software diversity to prevent virus
epidemics.

Since the virus writers control the spreading mechanisms
of viruses, a practical halting technique must handle viruses
with widely different spreading patterns. The reported results
indicate that robust halting of viruses is obtainable when
application stores with “diversity engines” ensure adequate
software diversity on the OS, and application layers of a
network and vulnerable hubs are immunized (Appendix C
discusses the halting technique’s fragility to clustering of
platform types.)
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The virus halting technique is of practical interest
because it can handle inhomogeneous spreading patterns
with unknown hubs. For a reasonable number of node types
and nearly equally many nodes per type, the halting tech-
nique only needs to immunize a small percentage of all
nodes to remove multiple simultaneous virus outbreaks. In
contrast, acquaintance immunization of BA networks with
a single-node type must immunize roughly a quarter of the
nodes [15].

More work, preferably with contributions from practi-
tioners, is needed to transform the halting technique into a
practical “tool” to prevent virus epidemics. Initially, there is
a need for large-scale network simulations to further verify
the applicability of the technique. Mathematical analysis of
additional network models would also be useful. The author
believes the halting technique is particularly promising for
the mobile Internet because many users already download
OSes and applications to their smartphones from application
stores. The technique is also likely to be suitable for the
Internet of Things, where objects are periodically tethered to
smartphones acting as hubs.

Appendices

A. Mathematical Analysis

The simulations discussed in Section 4.1 show that the
average fractions of isolated and infected nodes differ in
the BA network model but not in the WS model. Here, a
mathematical analysis of four network models verifies and
generalizes these observations.

In the following, an approximate mathematical analysis,
based on a special case of the stochastic epidemiological
model, establishes a nonzero difference between the average
fractions of isolated and infected nodes in two-diverse
inhomogeneous network models with scale-free “fat-tail”
degree distributions. To confirm that this difference is caused
by the network hubs, we initially show that essentially all
isolated nodes are infected in two diverse homogeneous
network models with “thin-tail” degree distributions.

All virus types in our stochastic model use the same
spreading mechanism, that is, the underlying network topol-
ogy is the same for all viruses, but a virus of a particular
type only infects a single type of nodes. Hence, viruses of
different types infect distinct subsets of nodes. Let each
subset have Nl = N/L nodes of type l = 1, 2, . . . ,L, and
assume that all L subsets have infection probability pl =
p > 0 and recovery probability ql = q > 0. The subsets,
thus, have the same fraction of infected nodes when we
average over many model runs. Further, the average fraction
of infected nodes over all types, denoted hL, can be obtained
by considering an arbitrary subset of N/L nodes of the same
type.

We consider the stochastic model after the L simultane-
ous virus outbreaks, one per-node type, have reached a long-
term steady state. Let a randomly chosen node have degree k
with probability pk. Ignoring short loops of connected nodes
[26], the probability that a node is isolated but not infected,

that is, the node itself is susceptible and all its k neighbors are
infected, is approximated by

P
(
only isolated

) ≈ (1− hL)
∞∑
k=0

pk(hL)k. (A.1)

A.1. Small-World Networks. Initially, we calculate (A.1) for a
slight variation on the classical WS model obtained as follows
[12]. First, a regular graph is generated by placing N nodes
on a circle and then adding edges from each node to its K
nearest neighbors in the clockwise direction, 1 ≤ K � N .
The resulting graph has NK edges and all nodes have degree
2K .

Next, random edges or “shortcuts,” are added to the
graph: We view the N nodes as belonging to a random Erdös
and Rényi (ER) graph [12] and add edges until the expected
number is NKr for 0 < r < 1. The probability that there is
a shortcut between two nodes is then (NKr)/

(
N
2

)
, which is

equal to (2Kr)/N for large N .
The expected total degree of all nodes in the final network

is 2(NK+NKr) = 2NK(1+r) and the average node degree is
〈k〉 = 2K(1 + r). Since the classical WS model has 〈k〉 = 2K ,
the increase in average degree is negligible for small r.

Each node in the network has degree at least 2K , due to
the edges in the regular graph plus a binomially distributed
number of shortcuts. Thus, a node selected uniformly at
random has degree k with probability

pk =
(

N
k − 2K

)(
2Kr
N

)k−2K(
1− 2Kr

N

)N−k+2K

, (A.2)

for k ≥ 2K [12]. Substituting (A.2) into (A.1), modifying the
resulting expression, and using the Binomial Theorem, we
have

P
(
only isolated

) ≈(1− hL)(hL)2K

·
N∑
k=0

(
N
k

)(
2Kr
N

hL

)k(
1− 2Kr

N

)N−k
,

=(1− hL)(hL)2K
[

2Kr
N

(hL − 1) + 1
]N

.

(A.3)

The probability estimate in (A.3) is zero for hL = 0, 1. For
0 < hL < 1, the expression inside the square parentheses is
less than one, and the probability goes to zero for large N ,
regardless the number of node types L.

A.2. Homogeneous Random Networks. We now calculate
(A.1) for the homogeneous ER model [12]. The node degrees
have a binomial distribution, which in the limit where
the number of nodes N � k reduces to to the Poisson
distribution

pk = e−z
zk

k!
, k = 0, 1, . . . , (A.4)
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for z = 〈k〉 the average degree. Substituting (A.4) into (A.1)
and using the definition ex =∑∞

n=0 x
n/n! give

P
(
only isolated

) ≈ 1− hL
ez(1−hL)

. (A.5)

While a sparse ER network (z � N) is very unlikely
to have hubs, we have from (A.5) that the average fraction
of isolated nodes is still larger than the average fraction of
infected nodes for hL < 1. However, as we shall see, this is
due to the fraction p0 = 1/ez of nodes with degree zero. All
these nodes without edges are isolated and cannot become
infected as long as they are not seeds.

To estimate the average fraction of infected nodes hL in
(A.5), we extend an analytical technique for ER monocul-
tures (L = 1) introduced in [13]. Each virus outbreak in a
network with L > 1 node types operates on a subset of N/L
nodes of the same type. On average, a node has z/L neighbors
in the subset because the probability that a node is of type l
is Nl/N = 1/L. Let the spreading rate be ρL = (pz)/(qL) and
view hL = hL(t) as a continuous-time variable. Writing down
a differential equation representing change in the fraction of
infected nodes

dhL
dt

= p
(
z

L

)
hL(1− hL)− qhL (A.6)

and imposing the stationary condition dhL/dt = 0, we find
that the average fraction of infected nodes saturates at hL =
1− 1/ρL for ρL > 1. The fraction hL goes to zero in finite time
when ρL < 1.

For fixed infection probability p, recovery probability q,
and average degree z, the spreading rate ρL = (pz)/(qL) < 1
when the number of node types L > (pz)/q. Consequently,
hL goes to zero and (A.5) becomes equal to the fraction of
nodes without edges p0 = 1/ez, which shrinks as z grows.

A.3. Inhomogeneous γ = 3 Networks. The BA model with
integer parameter m ≥ 1 grows a scale-free network with
power-law exponent γ = 3, average node degree 〈k〉 = 2m,
and minimum degree m [12]. The degree distribution is
given by

pk = 2m(m + 1)
k(k + 1)(k + 2)

, k ≥ m. (A.7)

Using computing software (e.g., Maple or WolframAlpha) to
combine (A.7) and (A.1) gives

P
(
only isolated

) ≈ (1− hL)

(hL)2 ,

[
hL(3hL − 2)− 2(hL − 1)2 ln(1− hL)

]
,

[
hL((9− 2hL)hL − 6)− 6(hL − 1)2 ln(1− hL)

]
,

(A.8)

for m = 1, 2, respectively.
To estimate the average fraction of infected nodes hL, we

extend an analytical technique for BA monocultures (L = 1)
developed in [27]. Let hk,L denote the fraction of infected

nodes of degree k in a subset of nodes with the same type.
We then have

hL =
∞∑

k=m
hk,L · pk. (A.9)

Since, on average, a node of degree k has k/L neighbors of the
same type, the spreading rate for nodes of degree k is ρk,L =
(pk)/(Lq), and the overall spreading rate is

ρL =
∞∑

k=m
ρk,L · pk,

= p

Lq

∞∑
k=m

kpk = p〈k〉
Lq

= 2mp

Lq
.

(A.10)

The change in fraction of infected nodes with degree k is
given by the differential equation

dhk,L

dt
= p

(
k

L

)(
1− hk,L

)
Θ− qhk,L, (A.11)

where Θ denotes the probability that an edge from a node
connects to an infected node of the same type. Imposing
stationary, we obtain

hk,L = pkΘ

Lq + pkΘ
. (A.12)

According to (A.12), the higher the degree k, the more likely
a node, especially a hub, is to be infected.

The probability that an edge connects to an infected node
of a particular type is given by

Θ =
∑∞

k=m(k/L)pkhk,L

〈k〉/L =
∑∞

k=m kpkhk,L

2m
. (A.13)

If we view k as a continuous variable, then the sum on the
right-hand side of (A.13) can be estimated by an integral.
Utilizing (A.12) and the estimate pk ≈ 2 m2/k3 obtained
from (A.7), we get

Θ = mpΘ
∫∞
m

1
k

1
Lq + pΘk

dk

= Lq

mp

[
e(Lq)/(mp) − 1

]−1
,

(A.14)

which reduces to the case studied in [27] for L = 1.
Using an integral approximation one more time, we have

from (A.9) and (A.12) that

hL = 2m2p Θ

∫∞
m

1
k2

1
Lq + pΘk

dk. (A.15)

Finally, combining (A.14) and (A.15) gives

hL = 2
[
e2/ρL − 2/ρL − 1

]
(e2/ρL − 1)2 , (A.16)

where the spreading rate ρL is defined by (A.10).
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We plot the average fraction of infected nodes hL given
by (A.16) as a function of the average spreading rate ρL
in Figure 7(a). Unlike the ER model, there is no non-zero
value of ρL for which hL drops to zero. The probability in
(A.8) that a node is isolated and not infected is plotted as a
function of hL in Figure 7(b). Since the probability is positive
for all hL > 0, the hubs in the BA model (at least for m = 1, 2)
cause the average fraction of isolated nodes to be larger than
the average fraction of infected nodes for all spreading rates
ρL > 0.

A.4. Inhomogeneous γ > 2 Networks. Finally, to verify that
there is no need to have power-law exponent γ = 3, we
consider a class of inhomogeneous scale-free networks with
node degrees given by the Zeta distribution

pk = 1
ζ
(
γ
)k−γ, k = 1, 2, . . . , (A.17)

where ζ(γ) is the Riemann zeta function. The average degree
〈k〉 = ζ(γ−1)/ζ(γ) is finite for γ > 2. From (A.1) and (A.17),
a node is isolated but not infected with probability

P
(
only isolated

) ≈1− hL
ζ
(
γ
) ∞∑

k=1

(hL)k

kγ
,

=1− hL
ζ
(
γ
) Liγ(hL),

(A.18)

where Liγ(·) denotes the polylogarithm function. The prob-
ability in (A.18) is strictly positive for any average fraction of
infected nodes 0 < hL < 1.

B. Analysis of Needed Diversity

This appendix determines a lower bound on the number
of node types needed to eliminate all viruses. Since diverse
scale-free networks allow viruses to spread even for very
small spreading rates, hubs must be immunized to obtain
a homogeneous subnet on which epidemics die out. This
subnet, determined by deleting all immunized hubs and
their adjacent edges in the original network, is homogeneous
when the fractions of isolated and infected nodes are nearly
equal. In the following, we determine a lower bound on the
number of node types L needed to remove all epidemics from
the homogeneous subnet. When the subnet is not connected,
we consider its giant component.

Assume roughly Nl = N/L nodes per type and the same
infection probability p and recovery probability q for all
epidemics. Let f be the fraction of immunized nodes on the
original network. A node selected uniformly at random in
the subnet is of type l with probability [Nl(1 − f )]/[N(1 −
f )] = 1/L. On average, a subnet node has z∗/L neighbors
of the same type, where z∗ is the average node degree of the
subnet. Modeling the subnet as a diverse random network
and setting (A.6) equal to zero for z = z∗, we find that the
epidemics die out when the diversity

L >
pz∗

q
(B.1)
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Figure 7: Estimates for diverse BA networks with Nl = N/L, pl = p,
and ql = q for all l. (a) Average fraction of infected nodes hL as a
function of the average spreading rate ρL. (b) Probability of node
being isolated and not infected as a function of hL.

because the spreading rate ρL = (pz∗)/(qL) < 1. The
lower bound in (B.1) also holds when the subnet is modeled
as a generalized random network with arbitrary “thin-tail”
degree distribution or a random-like small-world network
with r = 1 because (A.6) is valid for these networks.

As we shall see, how fast the epidemics die out is deter-
mined by the infection probability p, recovery probability
q, diversity L, and average degree z∗. For simplicity, we
assume that all hub immunizations occur simultaneously
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Figure 8: Snapshot of multi-strain global epidemic on modified
WS network with five node types of different colors. The stars are
infected nodes and the red edges are adjacent to infected nodes.

and instantly. Setting z = z∗, we then solve (A.6) to
determine the average fraction of infected nodes hL = hL(t)
as a function of the time t(≥ 0) after hubs are immunized:

hL(t) = −h0ReRt

p(z∗/L)h0(1− eRt)− R
. (B.2)

Here, R = (pz∗)/L − q and h0 = h(0) are the fraction of
infected nodes immediately after hub immunizations. For
diversity L > (pz∗)/q, we have R < 0 and hL(t) go to zero
with increasing time t as predicted earlier.

More importantly, the smaller infection probability p
and average degree z∗, and the larger diversity L and recovery
probability q, the more negative R becomes and the faster hL
goes to zero. In particular, increasing L beyond the minimum
required value or immunizing more hubs to reduce z∗ speed
up virus eliminations.

We end this appendix with a generalization of the lower
bound in (B.1) for varying infection probabilities pl and
recovery probabilities ql. As before, there are N/L nodes
per type. Using the above technique, we can show that an
epidemic on nodes of type l dies out when L > (plz∗)/ql. Let
Q = maxl{pl/ql}, then all epidemics die when L > z∗ ·Q.

C. Fragility Analysis

The halting technique’s performance depends on the pattern
of node-type assignments in a network. In general, the
technique causes all epidemics to die out when the nodes
of each type have a uniform distribution over the network.
However, the technique fails in rare cases when most nodes
of each type are clustered together.

View the homogeneous diverse subnet obtained by
deleting immunized nodes and adjacent edges from the
original network as L distinct monocultures, each containing
all nodes of type l. Model a monoculture as a generalized
random network with arbitrary “thin-tail” degree distri-
bution, Nl nodes, average degree zl, and spreading rate

ρl = (pl · zl)/ql. Assume that each monoculture has a
giant component, that is, a connected component with size
proportional to Nl. If ρl > 1, then a fraction hl ≈ 1 − 1/ρl
of type l nodes will be infected [13]. The total number of
infected nodes is

∑
l hl · Nl when ρl > 1 for all l. A multi-

strain global epidemic infecting nearly all nodes occurs when
each hl ≈ 1.

To illustrate the longevity of a multi-strain global
epidemic on the stochastic model, we consider another slight
variation on the classical WS model [12]; during network
construction let a node’s clockwise edges, except the edge
to the nearest neighbor, be rewired with probability r = 1.
Then, for each node type l, assign type l toNl = N/L consecu-
tive nodes on the circle. The result is a modified WS network
with L connected monocultures. These monocultures are
giant components of size Nl allowing the seeds to infect all
N nodes.

Let pl = 0.03 and ql = 0.01 for all l. Figure 8 shows a
snapshot of a modified WS network with N = 100 nodes,
L = 5 colored node types, and average degree 2K = 6.
Infected nodes are represented by stars. An edge is colored
red if at least one adjacent node is infected. The fraction of
isolated nodes, averaged over no less than 106 time steps, is
0.9. Since the network is homogeneous, the averaged fraction
of infected nodes is nearly the same. The example illustrates
that homogeneous networks with large-connected subnets
of the same node types are fragile to long-lasting global
epidemics even for large diversity L. Such clustered patterns
of node types should be avoided in real networks.
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