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An important performance concern for wireless sensor networks (WSNs) is the total energy dissipated by all the nodes in the
network over the course of network lifetime. In this paper, we propose a routing algorithm termed as PCA-guided routing
algorithm (PCA-RA) by exploring the principal component analysis (PCA) approach. Our algorithm remarkably reduces energy
consumption and prolongs network lifetime by realizing the objective of minimizing the sum of distances between the nodes and
the cluster centers in a WSN network. It is demonstrated that the PCA-RA can be efficiently implemented in WSNs by forming
a nearly optimal K-means-like clustering structure. In addition, it can decrease the network load while maintaining the accuracy
of the sensor measurements during data aggregating process. We validate the efficacy and efficiency of the proposed algorithm by
simulations. Both theoretical analyses and simulation results demonstrate that this algorithm can perform significantly with less
energy consumption and thus prolong the system lifetime for the networks.

1. Introduction

Wireless sensor networks (WSNs) [1] consist of battery-
powered nodes which inherit sensing, computation, and
wireless communication capabilities. Although there have
been significant improvements in processor design and
computing issues, limitations in battery provision still exist,
bringing energy resource considerations as the fundamental
challenge in WSNs. Consequently, there have been active
research efforts devoted to lifting the performance limi-
tations of WSNs. These performance limitations include
network throughput, energy consumption and, network life-
time. Network throughput typically refers to the maximum
amount of packets that can be successfully collected by the
cluster heads (CHs) in the network, energy consumption
refers to the minimize energy dissipation that nodes in
the network consume, and network lifetime refers to the
maximum time limit that nodes in the network remain alive
until one or more nodes drain up their energy.

The routing algorithms have been specifically designed
for WSNs because the energy optimization is an essential
design issue. A good routing scheme is helpful in improving
these performance limits such as reducing the energy con-

sumption, prolonging the network lifetime, and increasing
the network throughput. Network researchers have studied a
great variety of routing protocols in WSNs differing based on
the application and network architecture. As demonstrated
in [2, 3], it can be classified into four categories: flit,
hierarchical clustering, location-based routing, and QoS-
based routing. The current routing protocols have their
own design trade-offs between energy and communication
overhead savings, as well as the advantages and disadvantages
of each routing technique.

As per the representative hierarchical clustering pro-
tocol, low energy adaptive clustering hierarchy (LEACH)
[4] has simplicity, flexibility, and scalability because its
manipulations rely on randomized rotation of the cluster
heads (CHs), but its features of unregulated distribution,
unbalanced clustering structure, uniform initial energy,
and so on, hinder its performance. Based on LEACH,
there are many variants, such as [5–8]. LEACH-E [5]
more likely selects the nodes with higher energy as the
CHs. LEACH-C [5] analytically determines the optimum
number of CHs by taking into account the energy spent
by all clusters. PEGASIS [6], TEEN [7], and ATEEN [8]
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improve the energy consumption by optimizing the data
transmission pattern. HEED [9] is a complete distributed
routing protocol which has different clustering formations
and cluster-heads selecting measures. These protocols have
many restrictive assumptions and applicable limitations, so
it has great improvement space and extensibility. The rapid
development of wireless communications technology, and
the miniaturization and low cost of sensing devices, have
accelerated the development of wireless sensor networks
(WSNs) [10, 11]. As in [12], Zytoune et al. proposed a
uniform balancing energy routing protocol (UBERP). The
BP K-means [13] and BS K-means [14] can improve the
structure of clusters and perform better load-balance and less
energy consumptions. HMP-RA [15] proposes a solution to
address this issue through a hybrid approach that combines
two routing strategies, flat multihop routing and hierarchical
multihop routing. ESCFR and DCFR can map small changes
in nodal remaining energy to large changes in the function
value and consider the end-to-end energy consumption and
nodal remaining energy [16]. Biologically inspired intelligent
algorithms build a hierarchical structure on the network
for different kinds of traffic, thus maximizing network
utilization, while improving its performance [17]. In the case
where sensor nodes are mobile, as in [18, 19], the nodes can
adjust their position to help balance energy consumption
in areas that have high transmission load and/or mitigate
network partition.

In this paper, we consider an overarching algorithm
that encompasses both performance metrics. It desires to
minimize the sum of distances in the clusters. We show
that the principal component analysis (PCA) [20], a useful
statistical technique that has found application in fields such
as face recognition and image compression, and a common
technique for finding patterns in data of high dimension, can
form a near-optimal K-means-like clustering structure, in
which the distance between the non-CH nodes and CHs is
near minimized.

Moreover, the data aggregating issue associated with the
measurements accuracy calls for a careful consideration in
scheme about data collecting and fusing. In this paper, we
investigate the PCA technology in a high relative measure-
ments context for WSNs. Our objective is to obtain a good
approximation to sensor measurements by relying on a few
principal components while decreasing the network load.

The remainder of this paper is organized as follows.
In Section 2, we describe the network and energy model.
Section 3 presents the PCA-guided routing algorithm (PCA-
RA) model and gives numerical results to demonstrate
the working mechanism of PCA-RA. Section 4 discusses
the PCA-RA algorithm solution strategies. In Section 5, we
simulate the PCA-RA and compare it with LEACH and
LEACH-E. Finally, Section 6 concludes this paper.

2. Syestem Model

2.1. The Network Model. Let us consider a two-tier architec-
ture for WSNs. Figure 1 shows the physical network topology
for such a network. There are three types of nodes in the

networks, namely, a base station (BS), the cluster-head nodes
(CHNs), and the ordinary sensor nodes (OSNs).

For each cluster of sensor nodes, there is one a CHN,
which is different from an OSN in terms of functions. The
primary functions of a CHN are (1) data aggregation for
data measurements from the local clusters of OSNs and
(2) relaying the aggregated information to the BS. For data
fusion, a CHN analyzes the content of each measurement
it receives and exploits the correlation among the data
measurements. An CHN has a limited lifetime, so we
need consider rotating the CHNs to balance to the energy
consumption.

The third component is the BS. We assume that there is
sufficient energy resource available at the BS and thus there
is no energy constraint at the BS.

2.2. The Energy Consumption Model. We compute the energy
consumption using the first-order radio model [5]. The
equations, which are used to calculate transmission costs and
receiving costs for an L-bit message to cross a distance d, are
shown below,

ETX(L,d) =

⎧
⎪⎪⎨

⎪⎪⎩

L
(
Eelec + εfsd2

)
, d < d0

L
(

Eelec + εmpd4
)

, d ≥ d0,

ERX(L) = LEelec.

(1)

In (1), the electronics energy, Eelec, depends on factors such as
the digital coding, modulation, filtering, and spreading of the
signal, whereas the amplifier energy, εfsd2 or εmpd4, depends
on the distance to the receiver and the acceptable bit-error
rate. d0 is the distance threshold.

3. PCA-Guided Routing Algorithm Model

PCA is a classic technique in statistical data analysis, data
compression, and image processing. PCA transforms a num-
ber of correlated variables into a number of uncorrelated
variables called principal components. The objective of PCA
is to reduce the dimensionality of the dataset, but not only
retain most of the original variability in the data. The first
principal component accounts for as much of the variability
in the data as possible. Mathematically, how to pick up the
dimensions with the largest variances is equivalent to finding
the best low-rank approximation of the data via the singular
value decomposition (SVD) [21].

The design of routing algorithm is important in wireless
sensor networks. Although plenty of interests are drawn on
it, there is still a challenge to face on the aspect of efficiency
and energy consumption. In this section, we will describe
the notations about PCA-guided routing algorithm model
firstly and then propose the PCA-guided clustering model,
and finally, we will present the PCA-guided data aggregating
model.

3.1. Notations. Let X = {x1, x2, . . . , xn} represents the
location coordinate matrix of a set of n sensors, Y =
{y1, y2, . . . , yn} represents the centered data matrix, where
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Figure 1: Physical topology for two-tier wireless sensor networks.

yi = xi−x, which defines the centered distance vector column
wise, and x = ∑

i xi/n is the mean vector column wise of X
matrix.

Let M = {m1,m2 · · ·mp} be a group of measurements
collecting from the sampling period. Each sensor generates a
stream of data. Let DN×P be a matrix with elements Dij , 1 �
i � n, 1 � j � p, being the measurement taken by sensor
i at point j. Let QN×P be a centered matrix with elements
qi j = di j − di./n, di. =

∑
j di j .

3.2. PCA-Guided Clustering Model. We define the equation
for the SVD of matrix Y [22] as follows:

Y =
∑

k

λkukvk. (2)

The covariance matrix (ignoring the factor 1/n) is

∑

i

(xi − x)T(xi − x) = YTY. (3)

The principal components vk are eigenvectors satisfying

YTYvk = λ2
kvk, vk = YTuk

λ2
k

. (4)

3.2.1. K-Means Clustering Model. According to [23, 24], we
find the PCA dimension reduction automatically by per-
forming data clustering according to the K-means objective
function [25, 26]. Using K-means algorithm, it can form a
better cluster structure by minimizing the sum of squared

errors. We define the squared distance between sensor nodes
and cluster centers as

JK =
K∑

k=1

∑

i∈Ck

(xi −mk)2, (5)

where mk =
∑

xi∈Ck
xi/nk is the center of cluster Ck and nk

is the number of sensor nodes in Ck. Given the fact that by
minimizing the distance between sensor nodes and cluster
centers, the energy consumption can be effectively reduced.
Our clustering algorithm is thus designed to be capable of
minimizing the above metric JK .

For the sake of convenience, let us start with the case of
K = 2. To obtain the explicit expression for Jk, letting

d
(

Cp,Cl

)

=
∑

i∈Cp

∑

j∈Cl

(

xi − xj
)2

(6)

be the sum of squared distances between two clusters Cp and
Cl, after some algebra one obtains the following:

J2 = d(C1,C1)
2n1

+
d(C2,C2)

2n2
, (7)

where n1 and n2 are the numbers of sensor nodes in C1 and
C2, n is the total number of sensor nodes; therefore, we get
n = n1 + n2.

If denoting

y2 =
∑

i y
T
i yi
n

= d(C1,C1)
2n2

+
d(C2,C2)

2n2
+
d(C1,C2)

n2
, (8)

JD = n1n2

n

[

2
d(C1,C2)
n1n2

− d(C1,C1)
n2

1
− d(C2,C2)

n2
2

]

, (9)
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we thus have

ny2 − 1
2
JD = n

(
d(C1,C1)

2n2
+
d(C2,C2)

2n2
+
d(C1,C2)

n2

)

− 1
2

(
n1n2

n

[

2
d(C1,C2)
n1n2

− d(C1,C1)
n2

1

−d(C2,C2)
n2

2

])

= d(C1,C1)
2n

+
d(C2,C2)

2n
+
d(C1,C2)

n

− 2n1n2d(C1,C2)
2nn1n2

+
n1n2d(C1,C1)

2nn2
1

+
n1n2d(C2,C2)

2nn2
2

=
(
d(C1,C1)

2n
+
n1n2d(C1,C1)

2nn2
1

)

+

(
d(C2,C2)

2n
+
n1n2d(C2,C2)

2nn2
2

)

+
(
d(C1,C2)

n
− 2n1n2d(C1,C2)

2nn1n2

)

=
(
n1d(C1,C1)

2nn1
+
n2d(C1,C1)

2nn1

)

+
(
n2d(C2,C2)

2nn2
+
n1d(C2,C2)

2nn2

)

= (n1 + n2)d(C1,C1)
2nn1

+
(n2 + n1)d(C2,C2)

2nn2

= d(C1,C1)
2n1

+
d(C2,C2)

2n2
= J2.

(10)

That is

J2 = ny2 − 1
2
JD, (11)

where y2 is a constant and it denotes the distance between
the sensor nodes and the center for all nodes; thus min (JK )
is equivalent to max (JD), and because the two resulting
clusters are as separated and compact as possible. Because the
averaged intracluster distance is greater than the sum of the
averaged intercluster distances, that is

d(C1,C2)
n1n2

− d(C1,C1)
n2

1
− d(C2,C2)

n2
2

> 0. (12)

From (9), it is seen that JD is always positive. This is to say,
evidenced from (11), for K = 2 minimization of cluster
objective function JK is equivalent to maximization of the
distance objective JD, which is always positive.

When K > 2, we can do a hierarchical divisive clustering,
where each step using the K = 2 is a clustering procedure.
This procedure can get an approximated K-means clustering
structure.

3.2.2. PCA-Guided Relaxation Model. In [24], it proves that
the relaxation solution of JD can get via the principal
component. It sets the cluster indicator vector to be

q(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
n2

nn1
, if i ∈ C1

−
√

n1

nn2
, if i ∈ C2.

(13)

The indicator vector satisfies the sum-to-zero and nor-
malization conditions. Consider the squared distance matrix
H = (hi j), where hi j = ‖xi − xj‖2. qTHq = −JD is easily
observed.

(1) The First Relaxation Solution. Let q take any value in
[−1, 1]; the solution of minimization of J(q) = qTHq/qTq
is given by the eigenvector corresponding to the lowest
eigenvalue of the equation Hz = λz.

(2) The Second Relaxation Solution. Let Ĥ = (ĥi j), where the
element is given by

ĥi j = hi j − hi.
n
− h. j

n
+
h..
n2

, (14)

in which, hi. =
∑

j hi j , h. j =
∑

i hi j , h.. =
∑

i j hi j .

After computing, we have qTĤq = qTHq = −JD, then
relaxing the restriction q, the desired cluster indicator vector
is the eigenvector corresponding to the lowest eigenvalue of
Ĥz = λz.

(3) The Third Relaxation Solution. With some algebra, we
can obtain Ĥ = −2YTY . Therefore, the continuous solution
for cluster indicator vector is the eigenvector corresponding
to the largest eigenvalue of the covariance matrix YTY which
by definition, is precisely the principal component v1.

3.2.3. PCA-Guided Clustering Model. According to the men-
tioned above, for K-means clustering where K = 2, the
continuous solution of the cluster indicator vector is the
principal component v1, that is, clusters C1 and C2 are given
by

C1 = {i | v1(i) ≤ 0}, C2 = {i | v1(i) > 0}. (15)

We can consider using PCA technology to clustering sensor
nodes for WSNs. It near minimizes the sum of the distances
between the sensor nodes and cluster centers.
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Example 1. Let us assume in a WSN there are 20 sensors
distributed in the network. X represents the 2D coordinate
matrix.

X =
[

29.471, 4.9162, 69.318, 65.011, 98.299,

55.267, 40.007, 19.879, 62.52, 73.336,

37.589, 0.98765, 41.986, 75.367, 79.387,

91.996, 84.472, 36.775, 62.08, 73.128;

19.389, 90.481, 56.921, 63.179, 23.441,

54.878, 93.158, 33.52, 65.553, 39.19,

62.731, 69.908, 39.718, 41.363, 65.521,

83.759, 37.161, 42.525, 59.466, 56.574
]

.

(16)

Compute the eigenvector of the matrix, YTY , that is, the
principal component v1:

vT1 =
[

−0.11623, −0.47282, 0.10624, 0.058301,

0.40896, 0.0013808, −0.20539, −0.22552,

0.033439, 0.17823, −0.15446, −0.45626,

−0.067391, 0.18908, 0.16501, 0.22147,

0.2697, −0.11445, 0.04397, 0.13673
]

.

(17)

If v1(i) � 0, sensor i belongs to C1, otherwise it belongs to
C2. We depicted the above clustering results into Figure 2.

When K > 2, we do a hierarchical divisive clustering,
where each step uses the K = 2 clustering procedure.

In summary, a PCA-guided clustering model can be used
to form a nearly optimal K-means-like clustering structure.

3.3. PCA-Guided Data Aggregating Model. As mentioned
above, DN×P represents the data measurement matrix col-
lected from the sampling period by the cluster heads. Q is
a centered matrix about D.

The vector {wk}1≤k≤N is the principal components
satisfying

QQTwk = λkwk. (18)

Because in most cases there exist high correlations
between sensor measurements, good approximations to
sensor measurements can be obtained by relying on few prin-
cipal components. The first principal component accounts
for as much of the variability in the data as possible, so
we can find the first principal component vector w1, such
that their projection data can effectively express the original
measurements. Approximations Q̂ to Q are obtained by

Q̂ = w1w
T
1 Q = w1Z, (19)

where

Z = wT
1 Q. (20)

The CHs only send three packets about Z, wk, and the
mean vector column-wise G of D matrix to the base station:

G =
(

gi = di.
p

)

, di. =
∑

j

di j . (21)

Because the mean vector column-wise G is subtracted by
the CHs prior to the aggregation of its value, the base station
can add back after the computation of the approximation.

Example 2. If the CH collects the matrix D as follow:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

20.3 20.2 20.8 20.3 20.3 20.4 20.5 20.4
20.4 20.3 20.6 20.4 20.4 20.5 20.6 20.5
20.2 20.1 20.4 20.2 20.2 20.3 20.4 20.3
20.3 20.2 20.8 20.3 20.3 20.4 20.5 20.4
20.3 20.2 20.8 20.3 20.3 20.4 20.5 20.4
20.4 20.3 20.6 20.4 20.4 20.5 20.6 20.5
20.2 20.1 20.4 20.2 20.2 20.3 20.4 20.3
20.3 20.2 20.8 20.3 20.3 20.4 20.5 20.4
20.3 20.2 20.8 20.3 20.3 20.4 20.5 20.4
20.2 20.1 20.4 20.2 20.2 20.3 20.4 20.3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(22)

Then the CH can compute the matrix Q and the principal
components w1,

Z = wT
1 Q =

[

−0.26306, −0.56555, 0.93394,

−0.26306 −0.26306, 0.039433,

0.34193, 0.039433
]

,

w1 =
[

0.39468, 0.21031, 0.21031, 0.39468,

0.39468, 0.21031, 0.21031, 0.39468,

0.39468, 0.21031
]

,

G =
[

20.4, 20.462, 20.262, 20.4, 20.4

20.462, 20.262, 20.4, 20.4, 20.262
]

,

(23)

then the packet about Z, w1, and G are delivered to the base
station. The base station will compute the approximation Q̂.



6 Journal of Computer Networks and Communications

After adding back the subtracted mean value G, we can
obtain:

D̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

20.296 20.177 20.769 20.296 20.296 20.414 20.535 20.416
20.407 20.344 20.659 20.407 20.407 20.471 20.534 20.471
20.207 20.144 20.459 20.207 20.207 20.271 20.334 20.271
20.296 20.177 20.769 20.296 20.296 20.414 20.535 20.416
20.296 20.177 20.769 20.296 20.296 20.414 20.535 20.416
20.407 20.344 20.659 20.407 20.407 20.471 20.534 20.471
20.207 20.144 20.459 20.207 20.207 20.271 20.334 20.271
20.296 20.177 20.769 20.296 20.296 20.416 20.535 20.416
20.296 20.177 20.769 20.296 20.296 20.416 20.535 20.416
20.207 20.144 20.459 20.207 20.207 20.271 20.334 20.271

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (24)

4. PCA-Guided Routing Algorithm
Solution Strategies

In Section 3, we have actually proposed a PCA-guided clus-
tering and data aggregating model for routing optimization
problem in WSNs by theoretical analyses and numerical
examples. The following steps provide an overview of the
solution strategy.

4.1. Initialization Stage. In the first stage, we assume that a
set of N location coordinates are gathered at the base station.
The base station computes the first principal component v1.
The two clusters C1 and C2 are determined via v1 according
to (15) by the BS.

4.2. Clusters Splitting Stage. When the number of sensor
nodes is huge, two clusters are not enough and can induce the
energy consume rapidly, considering splitting these clusters
whose memberships are more than the CH can support.

If there areK clusters, there are on averageN/K nodes per
cluster (one CH node and non-CH nodes). We define that

Ave = N/K. (25)

We can estimate the average energy dissipated per round
to get the most energy efficient number of the clusters as
follows:

Eround = k(ECH + Enon-CH)

= k
[

lEelec

(
N

k
− 1

)

+ alEelec + alεmpd
4
toBS

+
(
N

k
− 1

)
(
lEelec + lεfsd

2
toCH

)
]

.

(26)

The notation and definition of the parameters in (26) are
described as Table 1.

We can get

Eround= l

[

(2N + k)Eelec + 3kεmpd
4
toBS + εfs

M2

2π
N

k
− εfs

M2

2π

]

.

(27)

According to the average energy dissipated per round,
the scope of the clusters’ number can be estimated when
it is the most energy efficient. In [4, 13, 14], the authors
use the average energy dissipated per round to obtain the
optimal cluster number. Based on this methodology, here in
this paper, we study the appropriate upper limit of the cluster
nodes to perform the clusters splitting and thus extend this
methodology.

Example 3. If we assume the number of sensor nodes is 100,
the average energy dissipated per round as the number of
clusters is varied between 1 and 20. Figure 3 shows that it
is most energy efficient when there are between 3 and 5
clusters in the 100-node network. We define that the most
appropriate number of clusters is varied from 3 to 5 because

(Eround(3)− Eround(min))
Eround(min)

< 0.03,

(Eround(5)− Eround(min))
Eround(min)

< 0.03.

(28)

We obtain that the appropriate upper limit of the cluster
nodes is 100/3 = 34.

If the number of cluster nodes is more than 34, the PCA-
guided clustering algorithm will implement to split it.

4.3. Cluster Balancing Stage. We use the BS running the PCA-
guided clustering algorithm to divide sensor nodes based
on the geographical information. We get K clusters from
N nodes in the field rapidly and form better clusters by
dispersing the CHs throughout the network.

Now let us introduce the basic idea of the cluster
balancing stage. Above, we get the number of clusters K if
there are N nodes. We define the average node number per
cluster as Ave. The cluster-balanced step is added in each
iteration process. If |Cj| > Ave, 1 ≤ j ≤ K , the BS computes
dist(si,uq), where si ∈ Cj , j /= q and |Cq| < Ave. This means
to compute the distances between the nodes and each cluster
center whose cluster’s node number is less than Ave. The
BS gets si if its value is minimum and adjusts the node into
the corresponding cluster computed. After implementing the
cluster-balanced step, the BS limit the node number in each
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Table 1: Parameter description.

Parameters Head description

k The number of the clusters

N The total number of the sensor nodes

Eelec The energy consumption per bit when sending and receiving

l The sending data bit

εmp/εfs The energy consumption about the amplifier

a The data aggregating rate. It is application specific, where we assume a = 3 as mentioned in Section 2.

dtoBS The average distance between the CHs and the BS. We assume it = 75 m

dtoCH
The average distance between the CHs and the non-CH nodes. From [5], we obtain dtoCH =

√
(1/2π)(M2/k), in which, M

denotes the area of this field.

10

20
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90

100

0 10 20 30 40 50 60 70 80 90 100

C1 C2

Figure 2: The clustering structure for 20 sensor nodes.

cluster and change the clusters unequal distribution in the
space of nodes originally.

Example 4. Figure 4 gives an example to illustrate how the
cluster-balanced step works. In this example, if we only
consider the geographical information of sensor nodes while
using PCA-guided splitting algorithm, the sensor nodes s1

to s1 should belong to the C1. However, the nodes in C1 are
more than Ave(=5). Thus, this scenario motivates the cluster-
balanced step. To have a balance among all the clusters, in our
method, we suggest that the sensor s6 should be grouped into
C2 because its distance is nearest to C2. We obtain the final
balanced cluster structure by a serial standard PCA-guided
splitting stage and the cluster balancing stage.

4.4. Cluster Heads Selecting Stage. After the base station
divides the appropriate clusters using PCA technique, it
needs to select the optimal cluster heads in these clusters.
Assume that the initial energy is same, the base station can
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Figure 3: Average energy dissipation per round with varying the
number of clusters.

rank the matrix Y for each cluster and section the sensor
nodes which is the nearest to the cluster centers.

4.5. Data Aggregating Stage. The sensor nodes begin to
transfer the data to the cluster heads after finishing the cluster
formation. The cluster heads collect the measurements from
the sensor nodes and then compute the first principal
component w1 (as (18)), the mean vector G (as (21)), and
Z (as (20)). They can be delivered to the base station with
a constant packet size for each cluster head. At last, the base
station will compute the approximate measurements by these
packets.

4.6. The Description for PCA-Guided Routing Algorithm. The
procedure taken by the base station is as follows.

Step 1: compute the first principal component v1,

Step 2: according to (15), the two clusters C1 and C2

are determined via v1.

Step 3: compute Eround and get the appropriate upper
limit of the cluster nodes.

Step 4: while the cluster node number are more than
the appropriate upper limit.
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Figure 4: An example of the cluster balancing stage.

Step 5: compute a new v1 for the cluster.

Step 6: repeat Step 2 and Step 3.

Step 7: end

Step 8: if needed, implement the cluster balancing
stage.

Step 9: select the cluster heads.

Step 10: compute w1 (according to (18)), G (accord-
ing to (21)), and Z (according to (20)) for the
approximate measurements.

5. Simulation Results

To evaluate the performance of PCA-RA, we simulate it,
LEACH and LEACH-E, using a random 100-node network.
The BS is located at (50, 150) in a 100× 100 m2 field.

Figures 5 and 6 show the clustering structure for using
LEACH and PCA-RA. Comparing Figures 5 and 6, one finds
that each cluster is as compact as possible, and the cluster
heads locate more closely to the cluster centers by using PCA-
RA. This gives us an intuition that it is more efficient to
balance the load of network and to even distribute the nodes
among clusters by using PCA-RA.

The benefits of using PCA-RA are further demonstrated
in Figures 7 and 8, where we compare the network per-
formance of network lifetime and throughput under the
PCA-RA with that under LEACH and LEACH-E. Figure 7
shows the total number of nodes that remain alive over the
simulation time, while the first dead node remains alive for
a more long time in PCA-RA, this is because PCA-RA takes
into account the structure of clusters and the location of the
cluster heads. Figure 8 shows that PCA-RA sends much more
data in the simulation time than LEACH and LEACH-E.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 5: The clustering structure for using LEACH.

Note that the survey nodes in each round are NSi; each
node can send Di data. Then, the maximum throughput can
be expressed as follows;

ThroughputPCA-RA =
Tmax∑

i=1

NSi ·Di. (29)

From Figure 7, the Tmax for PCA-RA are more than the
Tmax for LEACH and LEACH-E. Then, ThroughputPCA-RA >
ThroughputLEACH and ThroughputPCA-RA > Through-
putLEACH-E.

For example, under the given test data, there are 60.456∗
103 bits data sent in whole network lifetime with PCA-RA.
And there are 33.394 ∗ 103 bits and 28.235 ∗ 103 bits by
using LEACH-E and LEACH, respectively. The mathematics
demonstrates that PCA-RA has 80.01% increase about
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Figure 6: The clustering structure for using PCA-RA.
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Figure 7: System lifetime using LEACH, LEACH-E and PCA-RA.

throughput compared with LEACH-E and 114.12% increase
about throughput compared with LEACH.

PCA-RA is a centralized algorithm, and the complexity
and communication cost of PCA-RA mostly happen in BS.
About the balance structure stage, we think the effect on time
complexity is small and consider that the time complexity is
comparable to LEACH-C.

Table 2 displays the network lifetime (in terms of the time
that the first node becoming dead) and the resulted square
error function of the senor node structure under K-means
algorithms and PCA-RA.

From Table 2, we can find that K-means algorithm can
get a minimum square error. Because of the cluster-balanced
step, PCA-RA can get a bigger square error, but the sensor
nodes can survive a longer time. This implies that one can
reach a certain tradeoff between the total spatial distance of
sensor structure and the network lifetime. The suboptimal
solution in PCA-RA can achieve such tradeoff.
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Figure 8: Throughput using LEACH, LEACH-E, and PCA-RA.

Table 2: A numerical example.

Parameters K-means PCA-RA

Square error 34392.980 38405.656

The first node dead time 88 rounds 99 rounds

In Figure 9, we simulate the sensor nodes collecting the
measurements about temperature in some regions. Assume
that the base station receive the packets from the cluster
head in two minutes interval. Figure 9 demonstrates the
approximations obtained by the base station about a certain
sensor node in some intervals.

6. Conclusions

In this paper, we propose the PCA-guided routing algorithm
for WSNs. By disclosing the connection between PCA and
K-means, we design a clustering algorithm by utilizing PCA
technique which efficiently develops a clustering structure in
WSNs. Moreover, as a compression method, we demonstrate
that the PCA technique can be used in data aggregation for
WSNs as well. We establish the explicit procedure of PCA-
guided routing algorithm for WSNs by incorporating PCA
technique into both the data aggregating and routing process.
The advantages of the proposed algorithm are demonstrated
through both theoretical analyses and simulation results.
The simulation results show that the PCA-guided routing
algorithm significantly reduces the energy consumption,
prolongs the lifetime of network, and improves network
throughput when compared with LEACH and LEACH-E.
Further, it keeps the accuracy about the measurements while
reducing the network load.

Future research will focus on the distributed strategies
of PCA-guided data aggregation and will investigate the
performance of PCA-RA with different values of parameter
K .
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