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A data-mining framework for analyzing a cellular network drive testing database is described in this paper. The presented method
is designed to detect sleeping base stations, network outage, and change of the dominance areas in a cognitive and self-organizing
manner. The essence of the method is to find similarities between periodical network measurements and previously known outage
data. For this purpose, diffusion maps dimensionality reduction and nearest neighbor data classification methods are utilized. The
method is cognitive because it requires training data for the outage detection. In addition, the method is autonomous because
it uses minimization of drive testing (MDT) functionality to gather the training and testing data. Motivation of classifying MDT
measurement reports to periodical, handover, and outage categories is to detect areas where periodical reports start to become
similar to the outage samples. Moreover, these areas are associated with estimated dominance areas to detected sleeping base
stations. In the studied verification case, measurement classification results in an increase of the amount of samples which can be
used for detection of performance degradations, and consequently, makes the outage detection faster and more reliable.

1. Introduction

Modern radio access networks (RAN) are complex infras-
tructures consisting of several overlaying and cooperating
networks such as next-generation high-speed-packet-access
(HSPA) and long-term evolution (LTE) networks and as
such are prone to the impacts of uncertainty on system
management and stability. Classical network management
is based on a design principle which requires knowledge
of the state of all existing entities within the network at
all times. This approach has been successfully applied to
networks of limited scale but it is foreseen to be insufficient
in the management of future complex networks. In order
to maintain a massive multivendor and multi-RAN infras-
tructure in a cost-efficient manner, operators have to employ
automated solutions to optimize the most difficult and time-
consuming network operation procedures. Self-organizing
network concept [1] has emerged in the last years, with the
goal to foster automation and to reduce human involvement
in management tasks. It implies autonomous configuration,

optimization, and healing actions which would result in a
reduced operational burden and improve the experienced
end user quality-of-service (QoS). One of the downsides of
the SON concept is the necessity to gather larger amounts
of operational data from user equipment (UE) and different
network elements (NE).

To guarantee sufficient coverage and QoS for subscribers
in indoor and outdoor environments, mobile operators
need to carry out various radio coverage measurements. In
the past, manual drive tests have been employed for this
purpose. However, there are some challenges and limitations
in manual drive testing that could be improved. Firstly,
manual drive testing is a resource-consuming task requiring
a lot of time, specialized equipment, and the involvement
of highly qualified engineers. Secondly, it is impossible
to capture the full coverage data from every geographical
location by using manual drive testing, since most of the UE
generated traffic comes from indoor locations, while drive
testing is limited mainly to roads. The cost and reachability
limitations of manual drive testing prompts the research



towards automated UE-assisted data gathering solutions
which can minimize the need for manual drive testing and
allow gathering of more comprehensive databases. If UEs
measure the radio coverage periodically and provide the
measurements together with location and time information
to the network, then large radio environment databases with
user-perceived coverage experience can be built to support
the RAN operation and optimization. However, essential
problems with these large databases are the information
overflow and a “curse” of dimensionality. Those problems
need to be addressed while analyzing and transforming the
raw measurement data in these huge operational databases
into meaningful information. This paper describes an
approach to the above-mentioned problems by proposing a
data-mining framework for the analysis of the UE-reported
radio measurements. This approach allows the detection of
the coverage problems in a cellular network on the basis
of learning the network’s prior operational behavior. The
proposed framework is validated with simulations by using
Renesas Mobile Europe’s state-of-art LTE system simulator to
construct large MDT measurement databases.

The article is organized as follows: Section 2 describes
the Minimization of Drive Tests concept which can be used
to gather and build the UE measurement report databases
for HSPA and LTE networks with the focus on coverage
aspects. Section 3 describes the data-mining framework
which is used for the analysis of the MDT databases, and
finally, Section 4 describes simulation scenarios and the
performance evaluation results of outage detection caused by
a specific type of network failure known as “sleeping cell.”

2. Minimization of Drive Tests

Minimization of Drive Testing use cases for self-organizing
networks were introduced by the operators alliance Next
Generation Mobile Networks (NGMN) during 2008 [2]
and at the time of writing this, the MDT solutions are
researched by the network vendors and operators in the
3rd Generation Partnership Project (3GPP) [3, 4]. The
goal of the MDT research in 3GPP is to define a set
of measurements, measurement reporting principles and
procedures which would help to collect coverage-related
information from UEs. MDT feasibility study phase [3]
started at late 2009 and during 2010 it focused on defining
the reported measurement entities and MDT use cases
for example, coverage optimization and QoS verification.
Coverage optimization use case targets for the detection of
such network problems as coverage holes, weak coverage,
pilot pollution, overshoot coverage, and issues with uplink
coverage, as described in [3]. After the feasibility study, the
research focused on defining MDT measurement, reporting
and configuration schemes for LTE release 10 during 2011
[4]. The MDT measurement and reporting schemes are
immediate MDT and logged MDT. The immediate MDT
scheme extends Radio Resource Control (RRC) measure-
ment reporting to include the available location information
to the measurement reports for UEs which are in connected
mode [4]. In the logged MDT scheme, the UEs can be
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configured to collect measurements in idle mode and report
the logged data to the network later [4]. After the release
10, the main focus of MDT work will be on enhancements
in the availability of the detailed location information and
improvements in QoS verification [5].

2.1. MDT Measurement Configuration. MDT measurements
can be configured in LTE either by using management
based or signaling-based configuration procedures [4, 6]. In
the management-based configuration, the base stations are
responsible for configuring all selected UEs in a particular
area to do the immediate or logged MDT measurements
[4, 6]. The signaling-based MDT is an enhancement to a
signaling-based subscriber and equipment trace functionality
[6] where the MDT data is collected from one specific UE
instead of a set of UEs in a particular area. Detailed signaling
flows for activating MDT measurements are described in [6].

The MDT measurement functionality allows operators
to collect measurements either periodically or at an instance
of a trigger such as a network event [3, 4]. The mea-
surement report consists of the available location, time,
cell-identification data and radio-measurement data. There
are different mechanisms for estimation of user locations.
The most coarse location info is the serving Cell Global
Identification (CGI) and in the best case the detailed location
is obtained from the Global Navigation Satellite System
(GNSS). The cell identification info consists of the serving-
cell CGI or Physical Cell Identifications (PCI) of the detected
neighboring cells. The radio measurements for the serving
and neighboring cells include the reference signal received
power (RSRP) and reference signal received quality (RSRQ)
for LTE system and common pilot channel received signal
code power (RSCP) and received signal quality (Ec/Ny) for
HSPA system [3, 4].

2.2. Logged MDT. The logged MDT measurement and re-
porting scheme enables data gathering from the UEs
which are camped normally in RRC idle state. The logged
MDT configuration is provided to the UEs via RRC signaling
while UEs are in RRC connected mode. Logged mode
configuration parameters are listed and described with more
details in [4]. When the UE moves to the RRC idle state,
MDT measurement data that is, time, location info and radio
measurements, are logged to UE memory. The network can
ask UEs to report the logged data when UE returns back to
RRC connected state. Currently there can be only one RAT
specific logged MDT configuration per UE which is valid
only for the RAN providing the configuration. If an earlier
configuration exists it will be replaced by newer one [4].
Since the logged MDT mode is an optional feature for UEs,
this paper focuses more on the immediate MDT which will
be a tool for operators to gather the measurements from LTE
release 10 and onwards.

2.3. Immediate MDT. Immediate MDT is based on the
existing RRC measurement procedure with an extension to
include the available location information to the measure-
ment reports. LTE release 10 RRC specifications [7] allow
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FIGURE 1: Immediate MDT reporting.

operators to configure RRC measurements in a way that
RSRP and RSRQ measurements are reported periodically
from the serving cell and intrafrequency, interfrequency
and inter-RAT neighboring cells with the available location
information. The immediate MDT measurement reporting
principles are depicted in Figure 1 as described in [6].
Before the immediate MDT reporting can be started,
a base station—E-UTRAN NodeB (eNB) is activated and
configured to collect immediate MDT measurements. In
step 1, an element manager (EM) sends a cell trace session
activation request to the eNB including MDT configuration
so that the eNB can later report the trace records back to
the trace element (TCE). After the cell traffic trace activation,
the eNB selects the UEs for MDT while taking into account
the user consent that is, users permission for an operator
to collect the MDT measurements. The eNB sends the RRC
measurement configurations to the selected UEs for example,
reporting triggers, intervals, and list of intrafrequency, inter-
frequency and inter-RAT measurements with a requirement
that UEs include the available location information into the
measurement reports as specified in the RRC specification
information element (IE) ReportConfigEUTRA field [7].
When the RRC measurement condition is fulfilled for
example, a periodical timer expires or a certain network
event occurs, the UE sends available RSRP and RSRQ
measurements to the eNB with the available LocationInfo IE
added to the measurement report [7]. If detailed location
information is available, then the latitude and the longitude
are included into the measurement report. If the detailed
location information is obtained by using GNSS positioning
method then the UE shall attach time information to the
report as well [4]. This GNSS time information is used to
validate the detailed location information. Note that in case
of the immediate MDT, the UE does not send the absolute
time information as it does in case of logged MDT. The eNB
is responsible for adding the time stamp to the received MDT

measurement reports when saving the measurements to the
trace record.

2.4. MDT Database. The MDT database is constructed by
collecting the MDT measurements from the network. In
our study the MDT database consists of periodical meas-
urements, as well as measurements collected at the time
instance of A3 (A3 event is E-UTRAN RRC measurement
event which triggers when neighboring cell becomes an offset
better than the serving cell) events preceding successful intra-
LTE handovers (HO) and radio link failures (RLF). It is
assumed that each measurement sample in the analyzed
database consists of 22 features as described in Table 1.

The MDT measurement samples consist of the latitude,
longitude, serving cell, and neighboring cell radio measure-
ments reported by the UE. In addition, time information,
serving-cell wideband channel quality indicator (WCQI) and
uplink power headroom report (PHR) values were added by
the eNB. Moreover, a label of the report condition is always
appended to a measurement sample, that is, eNB knows if
the MDT data sample is a periodical, A3 event-triggered
measurement report or UE RLF report [4]. Currently, the
release 10 MDT specifications do not support the feature
of collecting detailed location for A3 events. However, this
feature is to be included to MDT in release 11. Therefore,
the structure of the MDT measurement sample described in
Table 1 is assumed to be common for all of these three types
of MDT reports.

3. Outage Detection Data-Mining Framework

It is known that the SON framework includes three func-
tionalities, namely self-configuration, self-optimization, and
self-healing. Self-configuration is related to the initial steps
of the network setup. Self-optimization is concentrated on
monitoring the network state and automatic parameter
tuning for achievement of the highest possible network
performance without compromising the robustness of its
operation. In case of a network failure or malfunction,
the self-healing tries to autonomously detect problems,
diagnose root causes, and compensate or recover from the
malfunctioning state back to normal operation. A good
example of self-healing is the cell-outage management [8, 9]
use case in LTE networks, which aims to improve the offline
coverage optimization process by detecting and mitigating
outage situations automatically. For this purpose, the self-
healing algorithm requires several key performance indicator
(KPI) measurements from both eNBs and UEs. The KPIs
such as cell load, RLF counters, handover failure rate or,
UEs neighboring cell RSRP measurements may be used as
indicators of the network outage [8]. In [9], the condition
for the outage was based on predefined thresholds of received
signal strength and quality. However, deployment of several
self-organizing functionalities can increase significantly the
number of measured and reported KPIs thus increasing the
complexity of the network and SON architectures. This may
result in new challenges for network engineers as well. Firstly,
high-dimensional KPI databases of network measurements
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TaBLE 1: Structure of the MDT measurement.

Feature No. Feature Description

1 Time Time stamp

2-3 Location Latitude and longitude

4 Serving-cell info CGI

5 RSRP Serving-cell RSRP in dBm

6 RSRQ Serving-cell RSRQ in dB

7-13 Three strongest intra-LTE neighbors CGI and RSRP for each neighbor
14-20 Three best quality intra-LTE neighbors CGI and RSRQ for each neighbor
21 Serving-cell wideband CQI Indicator of wideband signal quality
22 Power headroom report Available uplink transmission power

are created, making expert-driven manual data analysis for
identifying the right KPI/fault-associations a complicated
task. The KPI/fault-associations are needed for developing
good algorithms. Secondly, since the networks are complex
and dynamic in nature, it is not obvious which KPIs should
be measured and how often. For example, how to select from
among several performance indicators, those which are going
to reveal a certain feature of the network behavior in the most
meaningful and effective manner?

It is envisioned that the above-mentioned challenges can
be solved with advanced machine learning and data-mining
algorithms which rely on autonomous learning of network
behavior and efficient processing of the high dimensional
databases consisting of wide range of KPIs. The data-mining
can be used for extracting interesting, previously unknown
and potentially useful information patterns from the large
databases [10]. Usually the data mining process consists of
several phases such as data cleaning, database integration,
task relevant data selection, data mining, and data-pattern
evaluation [10]. Data cleaning, integration, and selection
are data preprocessing phases where data is prepared for
further analysis [10, 11]. The data mining itself can consist
of several different functionalities such as classification of
data, association of data, clustering of data, dimensionality
reduction, and anomaly detection [10]. In the pattern
evaluation phase, the information patterns are visualized
and analyzed to see if novel and valid information can be
extracted from them. Even if interesting information patterns
are discovered, it does not mean that it is automatically
usable or useful from the data mining problem point of view,
and therefore, information patterns need to be validated.

Within the family of cell-outage use cases included into
self-healing of cellular radio networks there is a specific
problem called sleeping cell. The sleeping cell is a compound
term, which includes erroneous network behavior ranging
from performance degradation to complete service unavail-
ability. A specific characteristic of sleeping cell is that the
network performance is degraded but this degradation is not
easily visible to network operators and thus detection of this
problem with traditional alarming systems is a complicated
and slow process as described in [12]. There is no definition
of a certain network failure which would cause appearance
of a sleeping cell, as there can be several reasons. One type of
sleeping cell could be malfunction of eNB RF unit where the

eNB transmission and reception capabilities degrade slowly
to a point where transmission, reception, or both are not
working anymore. This results in an outage situation where
eNB cannot provide service for the UEs in the coverage area
of the sleeping cell. Indicators which could reveal sleeping
cells are degradation in handover activity, low call setup rates
and low cell loading. Different kinds of indicators are needed
to detect sleeping cells in live networks since networks consist
of several overlapping frequency layers and radio access
technologies. In [13], a sleeping cell is detected by using
statistical classification techniques for graphs constructed
from UE reported neighboring cell patterns. Changes in the
neighboring cell patterns are used as indicators of outage.
One of the main goals of the research into the minimiza-
tion of drive test is the development of algorithms which
make operation of the networks more robust and efficient,
so we developed a data-mining framework which detects
coverage problems, such as sleeping cells, by using the high-
dimensional MDT measurement databases. The data-mining
framework described in this paper relies on dimensionality
reduction which allows simplifying the anomaly detection
and data classification processes. Motivation of using the
dimensionality reduction is to make the framework robust
and easily extendable with new numerical KPIs. On the
other hand, the motivation of classifying MDT measurement
reports to periodical, handover, and outage categories is to
detect areas where periodical reports collected from certain
frequency layer starts to show assumptions of outage. It is
worth of noting that periodical MDT measurements can be
collected from intra- and interfrequency layers simultane-
ously [4]. Therefore, some measurements for classification
are available even if UE is connected on different frequency
layer than the sleeping cell. This can happen in live networks
where operators have deployed several overlapping frequency
layers for capacity and coverage. If UE starts to experience
outage on one frequency layer then it is handed over to
another frequency layer before radio link failure occurs.

3.1. Data Mining Framework. The data-mining framework
consists of learning and problem-detection phases. In the
learning phase, the MDT database is constructed by collect-
ing UE reported measurements from the network as depicted
in Figure 2.
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FIGURE 2: Data-mining learning phase description.

The first step during the learning phase is preprocessing
of the arriving MDT measurements which are labeled as peri-
odical, HO-triggered, or RLF-triggered. Labeling is necessary
because problem detection in step 4 relies on supervised
learning from the labeled training samples. Labeling could
be done at the eNB before the samples are sent to the TCE.
The second step is to check whether or not a proper training
database exists. In our case, the requirement is that a suffi-
cient amount of periodical measurements and HO-triggered
measurements are gathered from the network during its
normal operation. In addition, some RLF samples from
previous outage situations are gathered. A training database
is created from the preprocessed MDT measurements which
characterize normal network behavior without any outages.
When the training database is constructed, all new mea-
surement samples are put into the testing database. The
operator needs to validate the training database and make
sure it really resembles the needed network characteristics for
example, the network behavior during its normal operation.
The validation could be done by using anomaly detection
and unsupervised learning techniques as described in [12].

In the problem-detection phase, recently received MDT
measurements in the testing database are compared with the
training data to detect anomalous behavior in the system, as
depicted in Figure 3. The first step in the outage detection
process is to prepare the data in the training and the testing
set. Depending on the problem and the applied data mining
algorithms, this preprocessing phase may contain several
kinds of actions such as data cleaning, data integration, data
transformation and data scaling. In our framework, each
MDT measurement, as described in Table 1, is cleaned by
splitting a single measurement to the header part and the
data part. The header part contains information for post-
processing of the outage detection results, like visualization

Testing data
samples

Training data
samples

Outage detection

(1) Prepare incoming data to data mining

(2) Dimensionality reduction
of data samples

(3) Unknown data labeling

(4) Outage detection

F1GURE 3: Data-mining outage detection-phase description.

and location correlation, but it is not used by the data-
mining algorithm. The data part for ith measurement sample
is a vector x; consisting of 10 numerical features as follows:

Xi = {RSRP3, RSRPNl, ooy RSRPN3, RSRQS, RSRQNl, ooy

RSRQy3, WCQIL PHR},
(1)

where RSRPg and RSRQg are the serving cell measurements
and RSRPy; and RSRQy; are the jth strongest neighbor
cell measurements, j = {1,2,3}. WCQI is the serving cell
wideband CQI measurement and PHR is the serving cell
power headroom report. RSRP and RSRQ measurements
are given in a logarithmic scale as specified in [14]. Note
that in our studies the WCQI and PHR measurements
are not exactly the same as in 3GPP specifications. First
of all, the CQI represents the downlink wideband signal-
to-interference ratio and it is expressed using a dB scale.
Moreover, the PHR metric is scaled by the allocation size
resulting in a PHR per physical resource block metric as
proposed in [15] since it was seen to improve the detection
of uplink coverage problems and uplink power control
parameterization problems. Thus, the high-dimensional data
classifier consisted of 10 features. In addition, the perfor-
mance of the 10-feature classifier was compared to an 8-
feature classifier since the availability of the WCQI and PHR
measurements depends on the eNB implementation. The
8-feature classifier uses only UE reported RSRP and RSRQ
measurements.

3.2. Dimensionality Reduction. The next step in the outage
detection framework is the dimensionality reduction step.
The target of the dimensionality reduction is to represent



high-dimensional data sets in a lower dimensional space
making the data mining faster and less complicated. By
having the dimensionality reduction step employed to the
framework, the outage detection framework is more robust
and can be extended easier with new numerical KPIs. Dimen-
sionality reduction techniques, such as principal component
analysis (PCA) are widely used in machine learning.

In our framework, the testing and training data set
dimensionality is reduced by using a nonlinear diffusion
maps methodology [16-19]. The diffusion maps method
allows finding meaningful data patterns in the high-
dimensional space and represents them in the lower dimen-
sional space using diffusion coordinates and diffusion dis-
tances while preserving local structures in the data. The
diffusion coordinates parameterize the high-dimensional
data sets, and the diffusion distance provides a local pre-
serving distance metric for the data. In the following, we
shortly describe the used dimensionality reduction method
originally proposed in [19]:

(i) The data set X is used to construct a unidirectional
graph G, where the graph vertices are the data points
x and the edges between the data points are defined
by a kernel weight function w,.

(ii) The diffusion is created by doing a random walk
on the graph. The random walk is done from the
Markov transition matrix P which can be obtained by
normalizing kernel weight matrix W with a diagonal
matrix D.

(iii) Finally, if P exists then the Eigen decomposition of
the P can be used to derive the diffusion coordinates
W:(x;) in the embedded space and the diffusion-
distance metric D (x;, x;).

The kernel weight matrix W measures the pairwise similarity
of the data points in the graph and it must be symmetric,
positive, and fast decaying [19]. One common choice for the
kernel is:

o]

Wij = we (x,,x]) = exp( . ) (2)
If the weight we(x;,x;) between sample x; and x; is small
it means that points are similar. On the other hand, if the
weight is large then the points are different in nature. Variable
€ can be used to scale the kernel weight function which on
the other hand scales the size of the local neighborhood. In
principle, any weight function form of f(Ilx; — x;ll) fulfilling
the above-mentioned criteria could be used to estimate the
heat kernel and thus used with the diffusion process [19].
The Gaussian kernel in (2) is scalable and it decays fast,
that is, faster than plain Euclidean distance, and therefore it
was chosen. Next, the diagonal matrix D is derived from W
according to

D;; = Z‘iws(xi,x». (3)
=
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If a proper kernel is used, then the matrix W can be multi-
plied from left with matrix D! to get the normalized Markov
transition matrix P:

P = D'w. (4)

In the Markov matrix, the P;j, describes the probability to
move from sample x; to sample x; in the graph with one
step. The random walk in the graph is obtained by raising
the Markov transition matrix P to the tth power P’. This
gives the probability to move from sample x; to sample x;
in the graph with ¢ steps. Finally, the eigen decomposition of
P! provides tools to define the high-dimensional data set in
R" in the embedded space R¥ by constructing an estimate of
P’ by using only k largest eigenvectors:

k
P'= > Aivigl s (5)
-1

where the variables y; and ¢; are right and left eigenvectors,
and the variable A; is the eigenvalue of the Ith eigenvector.
Moreover, the diffusion distance D7 and diffusion coordi-
nates ¥, can be constructed by using the eigenvalues and the
right eigenvectors as proven in [19]:

k

D; (x,-,xj> = lezt(llfl(xi) -y (x,-))z, (6)

=1

where the diffusion distance D? is the Euclidean distance
between the measurement x; and x; in the embedded space
by using the diffusion coordinates. The diffusion coordinates
are constructed using k most significant right eigenvectors
and eigenvalues as given in [19]:

¥i(x) = [Myr (), Myo (), oAy |, (7)

where the diffusion coordinates W;(x;) for measurement x;
can be obtained from the m-by-k diffusion coordinate matrix
¥;. The column vectors of ¥, are the right eigenvectors
of P! multiplied by the corresponding eigenvalue term A;
as shown in (7). Moreover, the diffusion coordinates for
measurement x; are found in the ith row vector of the
diffusion coordinate matrix W;. As seen from (6) and (7), the
diffusion distance for samples in the high-dimensional space
corresponds to the Euclidean distance of the samples in the
embedded space.

3.3. Data Classification. The third step in our outage detec-
tion framework is data classification used to learn the
characteristics of the testing data. In our earlier paper, we
considered unsupervised learning techniques to detect sleep-
ing cells [12] by incorporating k means clustering without
taking into account the periodical MDT measurements. In
this paper, we are describing the application of the supervised
learning classification algorithm known as nearest neighbors
search (NNS). Difference between the supervised learning
and the unsupervised learning techniques is that in the
supervised learning we know labeling for the training data
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and based on the training data characteristics we try to
label unknown testing data samples. In our approach the
training data consists of samples which belong to one of
three class types, labeled as periodical, handover, or RLF
samples, and the target is to classify all unknown testing data
samples to those three known category types. Motivation of
classifying testing data to these three class types is to detect
periodical MDT measurements which have similarities with
samples belonging to the outage category. By doing the
classification, early outage detection can be done even in
cases that only insufficient amount of RLF reports are
available.

The fundamental idea of NNS is to find a set S; of nearest
neighbors from the training database for each unknown
sample x; in the testing database. One method of determining
S; is to calculate a distance from x; to all points in the
training database. Therefore, the complexity of the NSS
depends on the size of training and testing sets as well as the
dimensionality of the data samples. In our work, the nearest
neighbors search is done in embedded low dimensional space
based on the Euclidean distances. This is equally the same
as classifying samples in high dimensional space according
to the diffusion distances. The set S; is used to define the
labeling for all the unknown samples. There can be a wide
range of vendor specific algorithms to determine the label
for the unknown samples based on the S; but here a simple
algorithm was used and the class label is chosen based on the
largest class in terms of number of samples present in the set
Si.

3.4. Anomaly Detection. The final step of the outage detec-
tion framework is anomaly detection. By this stage, the
testing database is already labeled and this information is
used to detect possible outage or sleeping-cell problems in
the network. There are two different principles for detecting
anomalous base-station behavior. On one hand, anomalies
can be detected in time domain by comparing target base-
station behavior in time to the behavior observed earlier. This
requires long observation times and data-gathering periods
per base station for creating reliable time domain profiles.
On the other hand, anomalous base-station behavior can be
detected in base station domain by comparing target base-
station behavior to the neighboring base stations. In the latter
case, more data is gathered in a shorter time period but the
data can be biased if the neighboring base stations behave dif-
ferently, that is, due to the different parameterization. In our
framework, the common assumption for all base stations is
that during normal operation the amount of RLF samples is
small. Thus, the data classification should not result in many
periodical MDT samples which are considered to belong
to the RLF class. On the other hand, when the network is
in outage, many periodical MDT measurements should be
similar to the RLF samples. Since the anomaly detection
criterion that is, increase of the number of periodical MDT
measurements which have similar characteristics as the RLF
samples, assumes similar behavior of the base stations during
normal operation, the outage detection is based on the base-
station domain analysis.

In our framework, the anomaly detection is done by
counting the number MDT reports labeled as RLF samples
for each eNB and comparing this with the network normal
operation in time and base-station domain. The detection
is based on the well-known standard score metric which
describes how similar an observation of a particular eNB is
compared with the normal behavior of a set of neighboring
eNBs taking into account the normal deviation of the
observations. Standard score z, for eNB e is defined as,

z, = M’ (8)
Oy

where variable x, is the number of RLF-labeled samples
for eNB e and variables u, and o, are expected mean and
standard deviation of the number of RLF-labeled samples in
the eNBs local neighborhood. If z, is much larger than one,
then eNB e is probably an anomaly since the amount of RLF-
labeled observations do not fit within the normal deviation
of the RLF observations.

4. Simulation Results

4.1. Simulation Configuration. Our outage detection ap-
proach was verified with the dynamic LTE system simulator
which was used to collect a large MDT measurement
database. The simulator is capable to simulate E-UTRAN
LTE release 8 and beyond in downlink and uplink with
several radio resource management, scheduling, mobility,
handover, and traffic-modeling functionalities. The simula-
tion scenario consists of a regular hexagonal network layout
of 19 sites and 57 base stations with inter site distance of 1750
meters. The 7 center sites are normal cells where the UEs are
placed to gather MDT measurements and the outer tier of 12
sites are used only to generate interference. The users were
moving in the scenario with velocity of 3 km/h and handover
parameters were chosen in a way that the performance
during normal operation was assumed to be good. On the
other hand, the radio link monitoring values were chosen to
trigger the RLF slightly faster than normally to ensure that
some RLF samples are gathered during the normal operation
of the network. The simulation assumptions are based on
the 3GPP macro case 3 specifications [20] defining the used
bandwidth, center frequency, network topology, and radio
environment as listed in Table 4.

The simulation campaign consisted of a reference and
problem simulations. The reference simulation was used
to gather training data during the normal operation of
the network and the simulated MDT database consisted
of 148723 periodical measurement samples, 698 handover
samples, and 138 RLF samples. The periodicity of sending
MDT measurement reports was 0.5 seconds. In the problem
scenario, one eNB was attenuated completely since the target
was to model a sleeping cell where the uplink and the
downlink are malfunctioning. The outage was created by
adding 50dBi antenna attenuation to the eNB 8. Since
all sites were operating on the same band and overlaying
interfrequency layer didn’t exist, the eNB 8 was in outage.
This enlarged the dominance areas of the neighboring cells



as depicted in the Figure 4. The dominance area indicates the
area where a particular cell is the strongest serving cell. In the
left figure, the eNB 8 dominance area is shown with turquoise
color, and the size of the area is similar to the other cells. In
the right figure, the eNB 8 is sleeping and the area is served
by the neighboring cells. Note that the eNB 8 covers less than
5% of the overall area where the UEs are distributed during
the simulation.

The described dominance area problem is easy to under-
stand, and therefore, it is interesting to see how our approach
is able to detect the change in the dominance areas. The MDT
database gathered from the reference simulation provides the
basis of the training database which defines the statistical
structure and the characteristics of three classes. Since the
MDT database from the reference simulation was large only
a fraction of this data was used in the actual training data set.
The training data set was constructed from 3000 periodical
samples using random undersampling [21], all HO samples,
and all RLF samples. Moreover, the size of the RLF data set
was oversampled by a factor of 4 in order to have roughly the
same amount of HO and RLF samples in the training data
set. Even though oversampling leads to a certain degree of
overfitting, and consequently might lead to a degradation of
classification accuracy [22], it can also enhance the classifier
performance as shown in [11]. All MDT data gathered from
the problem simulation is used to construct the unknown
database, and each sample in this database is labeled as either
periodical, handover, or RLF class as earlier explained in
Section 3.

4.2. Simulation Data Mining Results. To be able to detect
the anomalous network behavior, all MDT measurement
samples in the unknown database was labeled by using the
training data set classifier. Labeling of unknown samples was
done based on 7 nearest neighbors since this was found
to perform reasonably well. The nearest neighbors in the
training set were always chosen based on the Euclidean
distance in the embedded space which is the same as
the diffusion distance in the original space. Classification
accuracy of the NNS algorithm applied to MDT data is
shown in Tables 2 and 3. The classification accuracy is
evaluated with confusion matrices showing the probability
of true-positive labeling and false-positive labeling. Different
confusion matrices are shown for 10-feature and 8-feature
classifiers. The 10-feature classifier uses all 10 features
including WCQI and PHR for the dimensionality reduction
as described in (1), whereas the 8-feature classifier uses only
UE reported RSRP and RSRQ values. Diagonal cells of the
confusion matrices show the true-positive probability indi-
cating the likelihood that a sample is correctly labeled to the
same class it belongs. The false-positive likelihood indicates
the probability for the samples to be labeled to a wrong class.
This kind of comparison is easy to do since we know the
real labels of the data. The number inside the parenthesis
of the real class column indicates the total amount of the
different sample types in simulations and confusion matrices
showing how these samples were labeled by the different
classifiers.
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Table 2 shows the reference simulation labeling accuracy
for all MDT samples. It can be seen that the true-positive-
labeling likelihood of the reference data is more than 80% for
all class types regardless of the used classifier. The 10-feature
classifier performs better but the performance of 8-feature
classifier is not much worse either. One should note that we
do not try to achieve 100% classification accuracy since it is
quite likely that some of the periodical, handover, and radio
link failure samples would have similar kind of characteristics
in any case. Periodical samples are collected in a periodical
manner, and therefore, the samples preceding a handover or
a radio link failure event are assumed to have similar kind of
characteristics. It is worth noting that handovers occur at the
cell edge, and depending on the handover parameters and the
slow fading conditions some handovers can have similarities
with radio link failures.

Classification quality of the MDT samples from the prob-
lem and reference simulation is approximately the same
as shown in Table 3. Classification accuracy of the 10-
feature classifier remains better in the problem scenario as
well. There is a small change of 0.8% in handover false-
positive labeling but that is negligible since the number
of handover samples is only 683 meaning 8 samples were
classified differently. A small change in periodical sample
false-positive-labeling probability is observed as well. In the
problem simulation, the 10-feature classifier labels 0.9% of
the periodical samples to radio link failures. This is almost
two times higher than in the reference simulation. However,
this small difference of 0.4% is significant since the number
of periodical samples in the problem simulation MDT
database is huge that is, 148693 samples. This means that
1338 additional RLF-like samples were found from the set
of periodical MDT samples indicating outage. This is 537%
more samples than the 210 true RLFs detected in the problem
scenario. If the 8-feature classifier is used the difference is
same. However, the classification accuracy is slightly lower,
and therefore the total number of RLF-labeled samples is
higher in the reference and the problem simulation. On the
other hand, the 8-feature classifier can be applied to the
interfrequency measurements directly, since it does not use
CQI or PHR measurements for the outage detection.

The final goal in the outage detection is to associate RLF-
labeled samples with base stations. Generally, MDT samples
with detailed location information are reported with latitude
and longitude values and rest of the samples can be located
based on the RF fingerprint of the MDT measurement. Recall
that if only GCI of the serving cell would be used, the
detected samples in the dominance area of malfunctioning
eNB would be associated with neighboring cells leading to
misjudgments. Our assumption is that majority of samples
can always be located at least with the accuracy of the dom-
inance area for example, an estimate of the strongest serving
cell is known for each sample based on the operators estimate
of the dominance areas. In urban network deployments,
the definition of dominance areas can become ambiguous
due to buildings, street layout, and slow fading. However,
since the MDT is used to enhance the network coverage
maps, it is assumed that dominance area estimates can be
improved in urban environment as well. Therefore, it is
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TaBLE 2: Reference simulation confusion matrices.

8 features (only RSRP and RSRQ)

10 features (with CQI and PHR)

Real class

Per. HO RLF Per. HO RLF
Periodical (148723) 96.4% 2.9% 0.7% 96.6% 2.9% 0.5%
Handover (698) 11.9% 82.1% 6.0% 11.8% 83.0% 5.2%
Radio link failure (138) 0.0% 0.0% 100% 0.0% 0.0% 100%
assumed that if the MDT measurements bear the detailed 10-feature classifier (CQI + PHR)
location, the correlation with the dominance areas is not an 2 004'2 B ! ! !
issue. However, if one of the cells is missing, the positioning Té* 04
and correlation with the RF fingerprint databases could be g 035 L
challenging and even lead to wrong conclusions. In this % 0.3
paper, the inaccurate RF fingerprint positioning is not taken S 025F
into account, and the results rely on the availability of the E 001'?)
MDT reports with detailed location information, that is, £ 6.1 -
latitude and longitude. In Figure 5, the normalized RLE- E 0.05 |
labeling results from the reference simulation are depicted
for all base stations. The RLF-labeled samples are associated 0 10 20 30 40 50
with the base stations according to the estimated dominance BSID

areas. Blue color refers to periodical samples, green color
refers to handover samples, and red color refers to RLF
samples which are labeled as radio link failures. The results
are normalized with the total number of RLF-labeled samples
in the reference scenario. There are a few radio link failures
occurring in the reference scenario and only 3% of all RLF-
like samples were detected to occur at the dominance area
of the eNB 8. These RLFs in the reference scenario are due
to the long intersite distances between the base stations and
slow-fading effect especially in eNBs 6, 18, and 43.

Based on all RLF-labeled samples, a standard score for
each base station is calculated by using (8). The standard
score can be used as a simple indicator to detect if eNB
behavior is normal or not since it takes into account the
statistical variability of the RLF-labeled samples per base
station during normal network operation. In Figure 6,
standard-score distributions in reference scenario are shown

B Periodical labeled as RLF
mmm Handover labeled as RLF
BN RLF labeled as RLF

FIGURe 5: RLF-labeled samples per base station in reference
simulation.

for 8-feature classifier with turquoise line and 10-feature
classifiers with black-dashed line. Distributions are similar
for both classifiers, and 95% of the eNBs have a standard
score smaller than two.

The RLF-labeling results in the problem simulation are
normalized in a same way as the reference simulation results.
After triggering the sleeping-cell problem, the increase in the
number of RLF-labeled samples is significant. Figure 7 shows
that almost 40% of all RLF-labeled samples were associated
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TaBLE 3: Problem-simulation confusion matrices.
Real class 8 features (only RSRP and RSRQ) 10 features (with CQI and PHR)
HO RLF Per. HO RLF
Periodical (148693) 96.0% 2.9% 1.1% 96.2% 2.9% 0.9%
Handover (683) 79.9% 6.8% 12.7% 81.4% 5.9%
Radio link failure (210) 0.5% 96.2% 1.0% 1.0% 98.0%
TaBLE 4: Simulator parameters.
Parameter Notes Value
3GPP macrocell scenario Regular cell layout 57 sectors/19 BSs
Intersite distance 1.75km
Distance-dependent path loss Macro cell model [20] 128.1 + 37.6logo(Rkm)
BS Tx power 46 dBm
Slow-fading standard deviation 8dB
Slow-fading correlation Site 0.5/Sector 1.0
Fast-fading profile Typical Urban
UE velocity 3 km/h
UE placement Uniformly distributed 7 centremost sites
RSRP measurement period 40 ms
RSRP/RSRQ Measurements L1 averaging window size 200 ms
L3 filter coefficient 4
MDT reporting Periodicity 500 ms
A3 event threshold 3
Handover parameters A3 event time to trigger 160 ms
Handover preparation time 50 ms
Qout threshold -8dB
Radio link failure monitoring Qin threshold -6dB
T310 timer 600 ms
Number of calls per simulation 4200
Base-stations loading Full loading in all cells 100% RBs loaded
](Dgl)ff usion parameter epsilon in Scales the size of local neighborhood 8
Embedded space dimension Number of right eigenvectors 6

with the eNB 8 dominance area whereas it was only 3% in the
reference scenario. Moreover, it was observed that the total
number of RLF-labeled samples is higher for the 8-feature
classifier since more periodical samples are labeled as RLFs
due to slightly worse classification accuracy. Only 36% of
the all RLF-labeled samples were associated with eNB 8 in
this case. This indicates that both classifiers detect periodical
measurements which are similar with the radio link failures.
Moreover, eNB 8 standard score is 26.2 for the 10-feature
classifier and 25.2 for the 8-feature classifier. This means
that both classifiers detect anomalous network behavior
since the standard score is much larger than two-indicating
outage. However, the 10-feature classifier is able to isolate
the problem from the reference simulation better since the
standard score is larger and more RLF-labeled samples were
associated with the malfunctioning eNB 8. This indicates
that by using CQI and PHR metrics in the classification the

outage detection can be improved. On the other hand, the
8-feature classifier can also detect the problem but since it
does not depend on the CQI and PHR it can be applied
to the interfrequency measurements as well. However, the
verification of the interfrequency layer outage is not done in
this paper.

Note that UEs in the problem scenario would not detect
the presence of the eNB 8. Hence, the existence of the
location information and correlation with the dominance
information helps to build a better understanding of the
root cause and location of the problem. The locations of
the RLF-labeled samples in the map grid are illustrated
in Figure 8. The simulation area was divided to 42 x 48
meters rectangular map grid points. The number of the
RLF-labeled samples were counted for each grid point,
and a heat map was used to visualize the likelihoods of
the RLF-labeled samples in the estimated dominance area
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Figure 7: RLF-labeled samples per base station in problem
simulation.

map. A gray color indicates areas in the heat map which
might have some outage for example, when approaching a
coverage hole, and a bright red color indicates areas where
outage is detected. Figure 8(a) shows the heat map for
the reference simulation together with estimated dominance
areas, and it can be seen that some outage regions at the
cell edges do exist due to the slow fading and large ISD
between the sites. Figure 8(b) shows the heat map for
problem simulation indicating clearly higher likelihood for
the outage on the eNB 8 area compared with the reference
simulation. It can be seen that the increased likelihood of
RLF-labeled samples indicates the change on the dominance
areas.
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4.3. Anomaly Detection Time. Since anomaly detection is
based on the increase in the number of periodical mea-
surements classified as RLF samples, the detection time was
analyzed by observing amount of reported samples instead
of actual detection time. The amount of reported samples
is a better metric, since time needed to gather a sufficient
amount of samples for detection depends on the number
of active users, user distribution, and MDT configuration,
for example, periodicity of the measurements. Average base-
station specific z-score metric before and after occurrence of
the problem in eNB 8 is depicted in Figure 9.

In Figure 9, the colored curves depict how z-score
metric behaves during system simulations in case 10-feature
classifier is used. The x-axis indicates the average number
of all received MDT reports per eNB, while the simulations
advance. The y-axis indicates the eNB z-score as in (8).
The z-score values were updated every five seconds but
mean and standard deviation values were kept constant
according to the reference simulation. Figure 9 indicates that
if the observation window is too short, then anomalous base
stations are not detected. In the reference simulation before
the problem, approximately 3000 MDT samples per eNB
are needed until some minor outage is detected. Solid green
curve and dotted red curve indicate some outage in eNB 6
and eNB 18. The detection time in this case would depend
on the average number of UEs per eNB, their movements in
the eNB dominance area, and the periodicity of the MDT
reports. For example, if 10 uniformly distributed UEs are
sending MDT reports with periodicity of 0.5 second, then
the detection for example, reception of 3000 samples, would
take 2.5 minutes. The problem triggers after 4500 MDT
reports per eNB are received. The eNB z-scores are cleared,
and detection is restarted as well. Shortly after triggering
the problem, eNB 8 starts to stand out from the statistics.
Blue curve indicates that the z-score for eNB 8 is already
more than 10 after reception of 1500 MDT reports per eNB.
Moreover, purple curve shows that eNB 43 z-score increases
from 2 to 3 due to the sleeping cell. This indicates that outage
increases slightly in the dominance area of eNB 43 due to the
problem in eNB 8. For the eNBs 6 and 18, the outage remains
similar.

5. Conclusion

This paper described a data-mining framework which is
capable of detecting network outage and sleeping cells in
a cellular network by using drive testing databases. The
framework is cognitive since it adapts to the deployed
network configuration and topology by learning the network
characteristics while gathering the training data for the prob-
lem classifier. In addition, the described outage detection
framework works in a self-organizing manner since it uses
the E-UTRAN minimization of drive testing functionality
to gather the training and testing databases. The essence
of the method is to label unknown data by finding similar
characteristics from the previously known network data. For
this purpose, diffusion maps dimensionality reduction and
nearest neighbors data classification methods were utilized.



12

Journal of Computer Networks and Communications

(a) Reference simulation

(b) Problem simulation

FiGure 8: RLF-labeled samples on the map grid.
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FIGURE 9: Average eNB z-score before and after problem triggering
in eNB 8.

The presented approach is robust since the same principle
utilized here can be used for a wide range of different network
problems where the problem data can be isolated and used
later as known problem classifiers.

In the case of the sleeping cell problem, the detection
is based on finding periodical measurements which have
similarities with the radio link failures. In the studied
verification case, the algorithm gains 537% in the number
of samples which can be used for the outage detection in
addition to the real radio link failure reports. This makes
detection more reliable and possibly faster compared with
the algorithms which are based purely on the reported
RLF events. Although our approach clearly helps to detect
the outage situations by taking into account the periodical
samples, there are still some drawbacks in this framework
which needs to be solved in the practical deployments.
First of all, our approach detects sleeping cells based on

the outage present in the dominance areas of the sleeping
cell. However, in denser networks, the outage might be
less severe and the neighboring base stations can serve
the users in the dominance area of sleeping base station
without a significant increase of the radio link failures.
Moreover, since the typical live networks consist of several
overlapping frequency layers, then radio link failures in
one layer can be avoided by handing UEs over to another
frequency layer. In such situations, the framework could
be extended to take into account additional features such
as loading level of the cells, the handover activity, or the
interfrequency layer measurements. These features together
with the change in dominance areas could eventually result in
a more comprehensive solution to the sleeping-cell problem.
However, one advantage of the presented framework is
indeed the robustness due to the dimensionality reduction
step. This is a stepping stone for future research allowing an
easy inclusion of new features in case of different anomaly
detection studies.
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