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This paper proposes a new replica placement algorithm that expands the exhaustive search limit with reasonable calculation time.
It combines a new type of parallel data-flow processor with an architecture tuned for fast calculation. The replica placement
problem is to find a replica-server set satisfying service constraints in a content delivery network (CDN). It is derived from the
set cover problem which is known to be NP-hard. It is impractical to use exhaustive search to obtain optimal replica placement in
large-scale networks, because calculation time increases with the number of combinations. To reduce calculation time, heuristic
algorithms have been proposed, but it is known that no heuristic algorithm is assured of finding the optimal solution. The proposed
algorithm suits parallel processing and pipeline execution and is implemented on DAPDNA-2, a dynamically reconfigurable
processor. Experiments show that the proposed algorithm expands the exhaustive search limit by the factor of 18.8 compared

to the conventional algorithm search limit running on a Neumann-type processor.

1. Introduction

Content delivery networks (CDNs) [1-3] are being devel-
oped to improve the user’s experience when downloading vo-
luminous files such as music and videos, a rapidly growing
component of the traffic on the Internet. A CDN consists
of two types of servers: origin server and replica server. The
original data is stored in the origin server and then copied
to the replica servers, which are geographically distributed.
A user requesting content is connected to a replica server
automatically selected by the network, which then sends the
content to the user. Replica selection is based on the distance
between the server and the user, and usually, the closest
server is selected [4].

One important issue in CDN performance is replica
placement [5]. The problem is in deciding which servers
are to hold which replicas. Replica servers cache the original
servers’ contents to prevent traffic congestion and to main-
tain user performance. They allow CDN providers to mini-
mize the capital expenditures (CapEx) and operational ex-

penditures (OpEx). Note that cache size is restricted; no
replica server can hold all of the contents held by the origin
server. For each content, we must pick those servers, not all,
that will hold the replica. In addition, in order to achieve
adequate user performance, each replica server must have a
limited delivery area. The delivery area is expressed as the
distance from the replica server. Each user must lie within
the delivery area of at least one replica server. For maximiz-
ing resource utilization, the number of replicas holding a
content should be minimized while satisfying the delivery
area constraint.

Selecting a combination that satisfies the constraint con-
ditions in all combinations for replica placement is called the
set cover problem. The replica placement problem is an ex-
tension of the set cover problem [6, 7], which is known to
be NP-hard [8]. Several greedy algorithms have been pro-
posed with the aim of decreasing the calculation time, since
it rapidly increases when the number of servers is large [5, 9—
12]. Greedy algorithms are widely used because of their
simplicity. However, it has been mathematically proved that



no greedy algorithm can guarantee the optimal solution. The
optimal solution is the minimum replica-server set that sat-
isfies the constraints, for example, quality of services. Our
simulations also show that over 90 percent of the solutions
output by the greedy algorithm are not optimal; we must
search the entire solution space to get the optimal solution.
There is a report to try exhaustive search [13] with liner pro-
gramming, but they define sever groups and fixes location
of servers and reduce the number of combinations. This re-
quires an impractically long time if the network is large, es-
pecially when the calculations are run on a Neumann-type
sequential processor.

In this paper, we propose a fast calculation method that
uses parallel processing for the replica placement problem.
Users’ demands for guarantees of the quality of services
trigger constraints such as the latency for content access and
download time. The demands of providers, on the other
hand, focus on maintaining the service level within mini-
mum replica placement. Since contents and user requests are
dynamically changing, it is necessary to rework replica place-
ment dynamically. Shorter computation time contributes to
satisfying the user and provider demands without delay.

The replica placement problem is to find the minimum
replica-server set that satisfies all constraints such as quality.
Our algorithm is not only for split Beeler’s algorithm into
parallel tasks. Our proposal is to expand the exhaustive
search limit within reasonable calculation time by extract
the maximum hardware performance with our architecture.
Our proposed algorithm divides all patterns of replica server
selection into groups. Each group is run in parallel using the
pipeline technique. We prove how many groups are optimal.
This algorithm suits the architectures of current dynamically
reconfigurable processors, most of which have many proces-
sor elements (PEs). While the time complexity of the con-
ventional method is O( ,Cy), that of the proposed algorithm
is O(y/,,Cx), where ,Cy is the combination number, # is the
number of servers in the network, and k is the number of
selected servers in that search. In addition, we implement
the proposed algorithm on DAPDNA-2, a commercial
dynamically reconfigurable processor developed by IPFlex
Inc. [14]. Experiments show that our proposed algorithm
reduces the execution time by a factor of 18.8 compared to
the conventional method on an Intel Pentium 4 2.8 GHz.

The rest of the paper is organized as follows. Section 2
describes the replica placement problem and related work.
Section 3 explains our proposed algorithm for fast solu-
tion of the replica placement problem. Section 4 describes
DAPDNA-2 implementation and performance evaluation
results of our experiments. Finally, Section 5 concludes the

paper.

2. Replica Placement Problem

Let G = (V,E) be an undirected graph, where V is the set of
servers and E is the set of links between any two servers. Link
(u,v) € E is associated with cost ¢(u, v), which denotes the
cost of the link between servers u and v. It is assumed that
the graph is connected so that any server can connect to any
other server via a path. The cost of a path is defined as the
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sum of the costs of the links along the path and the cost of
nodes between a user and a replica server. d(u, v) is the cost
of the shortest path between u and v.

The origin server, which at the start is the only server
holding the data, is expressed as r. A replica server is a server
that is assigned a replica. Each client is connected to a local
server and sends its request to this server. If the server has the
data requested, the request is processed locally. Otherwise,
the request is redirected to the closest server that has a replica
of the data requested. The client then obtains the data from
that replica server. Every server u has a distance constraint,
q(u), to guarantee users’ performance such as response time
and download speed. A request from a client associated with
server u must be serviced by a replica server within distance
constraint g(u). If the closest replica server lies outside gq(u),
the request cannot be resolved. Therefore, each server must
be connected to at least one replica server that can satisfy the
constraint condition.

The replica placement problem is to decide which servers
are to be selected as replica servers while satistying the
distance constraint, see (1), and minimizing the number of
replica servers. A binary bit pattern of server selection is
called a replication strategy and is expressed as a set of replica
servers, R € V — {r}. If a replication strategy meets the con-
straint requirement, it is called feasible

mind(u,v) < q(v) for Vve V. (1)

vERUY

Figures 1 and 2 illustrate examples of replica placement.
The numbers in the rings are the index number of the server;
they lie between 0 an n — 1, where n is the total number
of servers. The number on a link is the sum of the cost of
the link between nodes and both nodes. In both figures, the
origin server is server 0, and the distance constraint is 8, so
the replication strategies shown are feasible.

The replica placement problem is derived from the set
cover problem, which is known to be NP-hard. The def-
inition of the set cover problem is as follows.

Minimum Weight Set Cover Problem. Let U be the universal
set and S the family of U. The solution is subfamily S such
that the weight is minimized and Jgeg S = U is satisfied.
The replica placement problem is also NP-hard, since it
has been proved that the minimum weight set cover prob-
lem is NP-hard. The computational complexity of replica
placement is extremely high, especially when the number of
servers in the network is large. Some greedy algorithms have
been proposed [5, 9-12]. Johnson proposed a greedy algo-
rithm for the minimum weight set cover problem [15]. The
algorithm is a straightforward heuristic algorithm, requiring
time O(n). However, it has been mathematically proven that
no greedy algorithm can guarantee the optimal solution. For
example, Figure 1 shows replica placement with the greedy
algorithm that selects the server that has the largest cover
area. It is not the optimal solution, since the number of
replica servers is 2, as shown in Figure 2. In addition, our
simulation results show that about 90% of the replication
strategies output by the greedy algorithm are not optimal as
shown in Figure 3. In Figure 3, node degree represents the
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FiGUrk 1: Greedy algorithm cannot obtain the optimal solution,
where the distance constraint, q(u), is 8. The number of replica
servers is 3.
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FIGUre 2: The optimal solution, where the distance constraint
q(u) = 8. The number of replica servers is 2.

number of links connected to a neighbor node. Greedy algo-
rithms are realistic, since suboptimal solutions are obtained
within realistic time. However, many of the solutions deviate
from the optimal solution by over 100%. If we can obtain the
optimal solution within realistic time, we do not need to pay
the cost penalty of the suboptimal solutions.

In order to obtain the optimal solution, a fast exhaustive
search algorithm is required. This approach is unrealistic if
implemented on a Neumann-type sequential processor, since
the number of replication strategies is too large.

3. Proposed Method

3.1. Overview. In this paper, we propose a fast calculation
method to obtain the optimal solution for replica placement.
The proposed architecture is based on exhaustive search,
because only exhaustive search can obtain the optimal sol-
ution. Figure 4 overviews the procedures of our proposal.
It consists of two phases: generation phase and inspection
phase. In the generation phase, all replication strategies are
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Replica number of greedy algorithm/optimal solution

FIGURE 3: Probability of approximate ratio of the greedy algorithm,
where the number of nodes is 32, and the average node degree is 3,
the cost of a link is uniformly distributed between 1 and 15, and the
number of simulations are 5000.

Calculate the optimal division
number of combinations
Calculate the seed binary pattern Bit Pati?m
(replication strategy) of each grou generation
P 8y) group phase
Generate Generate
replication replication
strategies strategies
Cover
inspection
Check whether Check whether ghas o
the requirements the requirements
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FI1GURE 4: Overview of the proposed algorithm.

calculated. The inspection phase checks whether each repli-
cation strategy can cover all servers and satisfy the distance
constraint. Finally, the replication strategy with the mini-
mum number of replica servers is selected as the optimal sol-
ution.

In the generation phase, calculation of the optimal divi-
sion number of combinations and the seed replication strate-
gies are complicated and not repeatable, so software is suit-
able for implementation. Generation of replication strategy
with binary bit patterns (replication strategies) and inspec-
tion of cover area are simple and repeatable, so hardware
is suitable for implementation. Therefore, our proposed



architecture needs both hardware for software execution and
binary bit operation.

Candidate hardware for implementation is FPGA (field
programmable gate array) and a reconfigurable processor. It
is difficult to create software-execution function on FPGA,
because we need private compiler. So, we selected a reconfig-
urable processor. Though there are many reconfigurable pro-
cessors, we selected DAPDNA-2 because of that DAPDNA-2
combines high-performance RISC (reduced instruction set
computer) processor and high-capacity process elements,
and hardware configuration can be changed by one clock.
We implemented the proposed algorithm on DAPDNA-2
closely cooperated with hardware DAPDNA-2 and software
and drew out the maximum performance of it. DAPDNA-2 is
commercially available dynamically reconfigurable processor
developed by IPFlex Inc. [14, 16].

In order to employ parallel pipeline execution to speed
up exhaustive search, the replication strategies are divided
into several groups in the generation phase. The replication
strategies of each group are simultaneously generated using
Beeler’s algorithm [17, 18], which generates the next replica-
tion strategy from the previous replication strategy. Beeler’s
algorithm is a sequential algorithm, so it is not suitable to
obtain the mth replication strategy directly. To divide all re-
plication strategies into groups, we propose a new algorithm
that calculates the mth replication strategy directly. In
addition, determining the division number that minimizes
the calculation clock total is a problem to be solved. We
derive the optimal number of divisions theoretically in
Section 3.2.4.

3.2. Bit Pattern Generation Phase

3.2.1. Bit Pattern Notation. First, the replication strategy no-
tation is introduced. A replication strategy can be expressed
as an n-bit bit pattern, where the ith bit corresponds to the
server indexed as i and # is the total number of servers in
the network. 1 on the ith bit means server i is selected as a
replica server. By using this notation, when k (<n) servers are
picked from # servers, k-bits of the n-bit bit pattern are set to
1, where k is the number of original and replica servers. For
example, 010110 represents the replication strategy {1,2,4}
for 6 servers. These bit patterns allow us to sort replication
strategies in ascending order. Figure 5 shows the bit pattern
order when k = 3 servers are selected from n = 6 servers.
It seems that these values increase irregularly, since the dif-
ferences of neighboring values are not constant.

[Replication strategy {0, 1,5} covers all servers] [Replica-
tion strategy {0, 3,7} does not cover all servers].

3.2.2. Beeler’s Algorithm. Our proposed algorithm aims to
minimize the hardware operation clocks to minimize calcu-
lation time. A simple counter that generates ascending values
needs many clocks to find the combination binary patterns
because the “1” bit-combination patterns in ascending values
are random, and there is no regularity. On the other hand,
Beeler’s algorithm ensures regularity and needs fewer clocks
than a simple counter. Accordingly, we utilize Beeler’s algo-
rithm.
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FiGure 5: Example of replication strategy (ordering bit patterns),
where n = 6 and k = 3, and division yields 4 groups.

Beeler proposed an algorithm that generates all combi-
nations, where k outcomes are picked from n possibilities
in ascending order [17, 18]. These combinations can be ex-
pressed as n-digit binary sequences. For example, the binary
bit pattern “010101” represents replica server numbers (0,
2, 4) when n = 6, as shown at seed binary bit pattern of
group 2 in Figure 5. Combinations can be ordered in ascend-
ing order. Replica server numbers (0, 2, and 4) are smaller
than replica server numbers (1, 3, and 4), because the binary
bit pattern “010100” is smaller than the binary bit pattern
“011010” Beeler’s algorithm can generate all bit patterns
from “000111” to “111000” in order. The algorithm is ex-
plained as follows.

There are five steps to generate the next binary bit pat-
tern-Y from the original binary bit pattern-X.

Beeler’s Algorithm. There are five steps to generate the next
binary bit pattern-Y from the original binary bit pattern-X.

(1) Let Sy be given, as all bits are unset except for the least
significant bit 1 in binary pattern-X.
(2) Ry =X+S;.

(3) Let S, be given, as all bits are unset except for the least
significant bit 1 in binary pattern-R;.

(4) R, = (S2/S1) > 1 — 1 [> i:shift right i-bit].

(5) Y = R{|Ry, and Y is next to X.
Whenn = 6,k = 3,X = 001110, for example, Y is calculated
as follows:

(1) S; = 000010,

(2) Ry = X +S; = 010000,

(3) S, = 010000,

(4) Ry = (82/81) > 1—1=001000 > 1 —1 = 000100 —
1 = 000011,

(5) Y = R{|R, = 010011.
With Beeler’s algorithm, we can generate all bit patterns,

representing replication strategies, in ascending order. For
example, when k = 3, bits are selected from n = 6 bits; we
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start from 000111 as the first bit pattern, and from this, we
get the next bit pattern 001011. Consequently, by sequential
calculation, 19 iterations of Beeler’s algorithm produces all
bit patterns shown in Figure 5.

Parallel pipeline execution is a technique to speed up
exhaustive search. However, Beeler’s algorithm in itself is not
applicable to parallel pipeline execution, since it has data
dependency; we need the previous bit pattern to calculate
the next bit pattern. In parallel pipeline execution, we divide
all replication strategies into groups, and the bit patterns
of each group are simultaneously generated from the first
value of each group. The first replication strategy of a group
is called the group’s seed. Therefore, an algorithm that can
calculate the bit pattern of a seed directly is required for
parallel pipeline execution. Unfortunately, Beeler’s algorithm
is not suitable for this purpose, and no known algorithm is
useful either. We propose here an algorithm to calculate the
bit patterns of the seeds directly.

3.2.3. Direct Calculation of a Seed Bit Pattern. Our proposed
algorithm that generates any-order patterns in sequences that
are sorted in ascending order. More generally, a nonordered
pattern is generated by the following equation. We use the
characteristic of the following equation to calculate the bit
pattern representing the mth replication strategy. Here, ,,Cy
is the bit pattern number, the bit pattern representing the
mth replication strategy is called the mth pattern

an = Z iCk—l- (2)
To get the mth pattern, find the smallest x; that satisfies

> Crizm (k—1<x=n-1), (3)
i=k—1

x Ck—1 means the bit patterns whose most significant bit with
value “1” is the x;th bit; there are k — 1 “1”s between the
1st bit and the x; — 1th bit because there are k “1”s in total.
Hence, the x; th bit of the mth pattern is “1”. The mth pattern
corresponds to m — > 5" Gy -th in ,, Ci_. Replace m as
follows:

m—m-—>i=k—19"1,Cc. (4)

Next, find the smallest x, that satisfies

X2

D> Gz =m(x <x — 1), (5)
i=k-2

x, Ck—2» means the patterns whose most significant bit with
value “1” is the x,th bit; there are k — 2 “1”s between 1st
and (x, — 1)th bit. Hence, the x,th bit of the pattern is
“1” x1,%2,..., Xk can be obtained by repeating k times in a
similar way. Setting the corresponding bit to “1” yields the
mth pattern.

For example, the 6th pattern (m = 6) in ¢Cs can be ob-
tained as follows:

6C3 = 2C + 3G+ 4G+ 5C, =1+3+6+10. (6)

Apply (2) to 4C,, because 4C, includes the 6th pattern.
Hence, x; = 4, m — 2.

4C = 1C+ G+ 3G =1+2+3. (7)

Apply (2) to ,Cy, because ,C; includes the 2nd pattern.
Hence, x, =2, m — 1.

2Cr = 0Co+ 1Cp=1+1. (8)

The 1st pattern corresponds to (Cy. Hence, x3 = 0. Set the
corresponding bit to 1 which yields the 6th pattern, 010101.

After dividing all bit patterns, pick k-bits from n-bits,
into d groups, and then calculate the bit patterns of the seeds,
suchas1, ,Cy/d+1, 2- ,Cc/d+1, ..., (d—1)- ,Cx/d+1th
bit patterns using the above algorithm.

3.2.4. Optimal Number of Groups. Determining the number
of groups is a problem that must be solved prior to parallel
pipeline execution of exhaustive search. As the number of
groups increases, the calculation clocks needed to generate
the bit patterns of the seeds increases. The optimal number
of groups depends on the number of all replication strategies
and the calculation clocks of Beeler’s algorithm. In order to
solve this problem, we introduce here the theoretical optimal
number of groups.

Let a be the number of clocks needed to calculate the
bit pattern of a seed and b the number of clocks needed
to execute Beeler’s algorithm. b( ,,Cx —1) clocks are required
to generate all combinations created by picking k outcomes
from n possibilities. When we divide all replication strategies
into 2 groups, a+ b( ,Cx —1)/2+1 clocks are required. When
we divide them into 3 groups, 2a+b( ,Ci —1)/3+2 clocks are
required. More generally, when we divide them into x groups,
y clocks are required as follows:

y=(x—l)a+w+x—l
b(,C ©)
:7(”;‘_1)+(a+1)x—a—1.

According to the relationship between arithmetic mean and
geometric mean,

=W+(u+l)x—a—l

22\/b("cji<_1)(a+l)x—a—1 (10)

=2\b(,Cc—1)(a+1)—a-1

The equality is satisfied if and only if b(,,Cx —1)/x = (a+1)x.

Hence,
v [PGG=D (11)
a+1

This is the optimal division number.



3.3. Cover Inspection Phase. In the inspection phase, we
check whether each replication strategy is feasible or not.
The cover area of each replica server represents the distance
constraint, and it can be calculated using a shortest path
algorithm such as Dijkstra’s algorithm [19]. In this paper, it
is assumed that the data representing the cover areas for all
servers are calculated with Dijkstra’s algorithm before the
inspection phase. The data is expressed as a bit pattern as in
the replication strategies. In a network with #n servers, we use
an n-bit bit pattern to represent the cover areas. The n-bit of
the bit pattern corresponds to the cover area of one server.
The value of 1 on the ith bit means that the server indexed
as i is covered. For example, 010110 indicates that servers
{1,2,4} are covered.

Figure 6 shows the procedure of the cover phase when
the replication strategies are {0,1,5} and {0,3,7} in the
network shown in Figure 2. The data of the cover area of the
servers where the replicas are placed is looked up using the
bit pattern of a replication strategy. Next, all looked-up data
is subjected to Bit-wise OR operation. If all n-bits of the result
are 1, the replication strategy covers all servers. Otherwise, it
does not cover all servers.

4. DAPDNA-2 Implementation and Evaluation

4.1. DAPDNA-2 Implementation. DAPDNA-2 is a heteroge-
neous dual core processor. It consists of two cores: DAP (dig-
ital application processor), and DNA (distributed network
architecture). These processors have different architectures.
DAP is a 32-bit RISC core for controlling DNA; DNA is a re-
configurable parallel data-flow machine. Typically, the main
data processing of an algorithm is run on DNA. DNA con-
sists of 376 processor elements (PEs), each comprising com-
putation units, internal memory, synchronizers, and coun-
ters; the PEs are arranged in a grid pattern. We can design
the connections between PEs when implementing an algo-
rithm on DAPDNA-2 to yield a parallel data-flow machine.
Each structure is called a configuration. DNA can keep
three configurations in its own internal cache. These config-
urations can be switched within one clock. Thus, this chip
combines the advantages of the high-speed processing of
hardware and the flexibility of software. Details of its archi-
tecture are described in [16]. Let n be the number of nodes
and k (<n) the number of original and replica servers. In our
implementation, n < 32, since PE word size in DNA is 32-
bits long.

Figure 7 shows a block diagram of the DAPDNA-2
implementation design, and Figure 8 shows a block diagram
of the cover inspection unit as implemented on DNA; see
Figure 7. We must generate and check huge number of com-
binations to solve the replica placement problem. So, we
focus on reducing the calculation time for generation phase
and inspection phase with parallel and pipeline computation
and increasing the number of parallel computation. So, we
considered four major issues in implementation.

(1) We designed Beeler’s algorithm unit and inspection
unit in Figure 7 to operate with minimum clocks and
minimum PEs.
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(2) We set the depth of the pipeline operation for Beeler’s
algorithm unit in Figure 7 to 18. This means that we
can get the first output after 18 clocks and the next
outputs arrive one by one at each clock until the pipe-
line is empty.

(3) We implemented inspection unit in Figure 7 as four
divided cover-area-data tables with 8-bit indexing
to reduce the PE resources and operation clocks.
Because direct 32-bit indexing needs 4(32-bit) x 23
bytes of memory and operation clock is 1, the bit-
position-number search method, shown in Figure 6,
needs many clocks to find bit-position-number and
to index cover-area-data tables. Therefore, we pro-
duced the cover-area-data tables shown in Figure 8;
they need only four memory tables with 1(8-bit) x
256 byte memories and operation clock is 4.

(4) We could minimize the PE resources for Beeler’s algo-
rithm unit and inspection unit and create four blocks
for parallel calculation in DNA.

Calculation is executed in the following 8 steps.

Step 1: DAP calculates the seed binary bits patterns (repli-
cation strategies) using the algorithm described in
Section 3.2.

Step 2: DAP writes seed replication strategies into external
memory.

Step 3: DNA reads seeds replication strategies in external
memory.

Step 4: Beeler’s algorithm unit in DNA executes Beeler’s
algorithm by pipeline calculation. The depth of pipe-
line calculation in Beeler’s algorithm calculation unit
is 18; we can get the first output after 18 clocks, and
the next outputs arrive one by one at each clock until
the pipeline is empty. So, we divide all replication
strategies into 18 groups per calculation to minimize
the calculation time.

Step 5: Inspection unit in DNA checks the cover area, which
is the output of Beeler’s algorithm unit. The principle
of the inspection algorithm is described in Figure 8
shows the implementation of the inspection unit. The
bit pattern representing a replication strategy, which
is 32-bits long, was divided into 4 data blocks; each
block is 8-bits long, and the cover area is looked up
using the 8-bit data. The 4-bit patterns of the looked-
up cover area are then subjected to the bitwise OR
operation. Finally, the result of the OR operation is
compared to OxFFFFFFFE.

Step 6: Inspection unit in DNA writes the inspection results
to external memory.

Step 7: DAP reads the inspection results in external memory.

Step 8: DAP checks the inspection results and decides replica
placement.
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FIGURE 7: Block diagram of DAPDNA-2 implementation and execution steps.
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4.2. Evaluation. We conducted experiments to evaluate the
performance of our proposal; values of k were increased
until a solution was found, where k is the number of replica
and original servers. Three types of network models were
considered: grid network (n = 4 X w (=3,4,5,6,7,8)), ring
network (n = 4 X w (=3,4,5,6,7,8)), and nation-wide net-
work (n = 31). Figure 9(a) shows the nation-wide network
model. The distance constraint is expressed as the maximum
number of hops h. We compare the performances of our
proposed approach and the conventional approach. The
implementation mentioned above is used as the proposed
approach, and the conventional approach, sequential Beeler’s
algorithm, was executed on a Intel Pentium 4 3.6 GHz
processor. In the proposed approach, 4 pairs of Beeler’s
algorithm unit and the inspection unit were used as shown
in Figure 7. The conventional approach was implemented as
a C program and compiled with GNU C Compiler (GCC)
with “-O3” optimization option.

Figure 10 shows the execution time of the proposed and
the conventional algorithm approach for the ring, grid, and
nation-wide network models, where the distance constraint
h = 1. The grid and ring network model each have n = 32
nodes, while the nation-wide network model has n = 31
nodes. The result shows that the proposed algorithm has
much shorter execution times than the conventional algo-
rithm for all network models. It is over 16 times, 14 times,
and 12 times faster for the ring, grid, and nation-wide net-
work models, respectively. This is because the proposed
algorithm makes good use of the parallel and pipeline
calculation provided by DAPDNA-2. The conventional algo-
rithm is a strictly sequential algorithm, and a lot of replica-
tion strategies must be generated and searched. Note that
execution time is strongly dependent on topology. For ex-
ample, the proposed approach takes 363 milliseconds for the
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ring model but only 9.5 milliseconds for the nation-wide
network model. This is due to the difference in average node
degrees of the topologies. The average node degree of ring
network model is 2, grid network model is 3.25, and nation-
wide network model is 4.1. So, the cover area of a replica
server in the ring network model is smaller than that of in
the grid network model, and that of grid network model
is smaller than that of nation-wide network model. When
the cover area is small, an increased number of binary com-
bination patterns must be generated and inspected. There-
fore, the execution time increases.

Next, we investigate the characteristics of our proposed
algorithm. Figure 11 shows the execution time of the pro-
posed algorithm versus the node cost constraint. We evalu-
ated node cost, where link cost is constant and node cost is
variable by hops, h on the grid and ring networks, where h
is the number of hops; the number of nodes n = 32. As h
increases, the execution time decreases. This is because the
cover area of a replica server is large when h is large; in other
words, the latency constraint is relaxed. Larger cover areas
can reduce the execution time and reduce the number of rep-
lica servers.

Figure 12 shows the execution time of the proposed algo-
rithm versus the number of nodes on the ring and grid net-
works. The execution time increases as the number of nodes
and the number of replica servers increases. The execution
time is proportional to the number of combinations created
by the number of nodes and the number of replica servers,
because the generated combination binary patterns and in-
spection patterns increase. The calculation load greatly in-
creases with the number of nodes.

We can theoretically estimate the execution time when
the number of nodes. The experiment showed that the exe-
cution time per bit pattern of DAPDNA-2 and Pentium 4 was
1.5 nanoseconds and 28 nanoseconds, respectively. If the ex-
ecution time per combination binary patterns is expressed as
t, the total execution time T is given by

f
T=tx> ,Ck (12)
k=1

where f is the minimum number of replica servers for which
the replication strategy is feasible. To identify f, we assume
the grid network model as shown in Figure 9(b) with n =
p X g nodes. The ideal value of f when h = 1 is given by

fideal = [iL (13)

where daye is the average node degree of the network. In the
grid network, the average degree

Aowve = 2X4+3x (p—2) x2+3x(q—2) x2
+4x(p-2)x(g9-2))+ (pxq)

_22pxq-p-q) _ 11
- (pxq) _2(2 )

(14)
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(a) Ring network model (32 nodes)

(b) Grid network model (32 nodes:
p=4%44q=8)

(c) Nation-wide network model
(31 nodes)

FIGURE 9: Network model topology.
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FIGURE 10: Execution time of the proposed algorithm and the con-
ventional algorithm on ring, grid, and nation-wide server networks.

From (12), (13), and (14), and the execution time per binary
combination pattern of DAPDNA-2, and Pentium 4, we can
estimate the execution times even if the number of nodes n >
32.

Figure 13 show the execution time of the proposed
algorithm and of the conventional algorithm derived from
the above equations, where & = 1, p = 4, and g = from 2
to 32. The execution time of the proposed algorithm is 18.8
times faster than that of the conventional algorithm for all
cases examined.

5. Conclusion

This paper proposed a fast calculation method to solve the
replica server placement problem; exhaustive search is imple-
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FiGure 11: Execution time of the proposed algorithm versus the
number of hops on the ring and grid network model.

mented in parallel form to discover the optimum solution in
practical time. To achieve fast exhaustive search, we employ
parallel pipeline execution. Exhaustive search consists of two
phases: the generation phase and inspection phase. In order
to be able to use parallel pipeline execution, we have intro-
duced the following two points:

(1) calculation method that directly determines the mth
replication strategy expressed as a bit pattern,

(2) theoretical proof of the optimal number of groups.

In addition, we implemented our proposed method on
DAPDNA-2, a dynamically reconfigurable processor. The
results of experiments on ring, grid, and nation-wide net-
works showed that our proposed method is 18.8 times faster
than the conventional method on an Intel Pentium 4. This is
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FIGURE 12: Execution time of the proposed algorithm versus the
number of nodes on the grid and ring network model.
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FiGure 13: Execution time versus the number of nodes on the grid
network model (theoretical estimation).

because the proposed method can realize close cooperation
between hardware (DAPDNA-2) and software, and thus fully
utilize the performance of DAPDNA-2. Therefore, the pro-
posed algorithm expands the exhaustive search limit by a
factor of 18.8 compared to the conventional algorithm limit
running on a Neumann-type processor.
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