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Grayware encyclopedias collect known species to provide information for incident analysis, however, the lack of categorization and
generalization capability renders them ineffective in the development of defense strategies against clustered strains. A grayware
categorization framework is therefore proposed here to not only classify grayware according to diverse taxonomic features but
also facilitate evaluations on grayware risk to cyberspace. Armed with Support Vector Machines, the framework builds learning
models based on training data extracted automatically from grayware encyclopedias and visualizes categorization results with Self-
Organizing Maps. The features used in learning models are selected with information gain and the high dimensionality of feature
space is reduced by word stemming and stopword removal process. The grayware categorizations on diversified features reveal that
grayware typically attempts to improve its penetration rate by resorting to multiple installation mechanisms and reduced code
footprints. The framework also shows that grayware evades detection by attacking victims’ security applications and resists being
removed by enhancing its clotting capability with infected hosts. Our analysis further points out that species in categories Spyware
and Adware continue to dominate the grayware landscape and impose extremely critical threats to the Internet ecosystem.

1. Introduction

Grayware, an umbrella term for software with unwanted
or undesirable features and functionalities, imposes serious
security threats to Internet activities as it is mainly designed
to profile users’ computing habits, capture sensitive data, and
steal business secrets [1, 2]. The information collected by
grayware could be used to obtain financial assets, commit
organized crimes, or trade for profits [3]. For instance, the
world’s largest attempted robbery against London offices
of a Japanese bank is conducted via a spyware [4], while
the keylogger surreptitiously implanted at some Kinko’s
stores exposes banking accounts and their passwords to
attackers [5]. With its grayware products that track users’
surfing behavior, a grayware company has established the
seventh largest decision-support database in the world [6].
Motivated by financial gains, grayware typically attempts to
infect as many hosts as possible through diversified pene-
tration mechanisms such as drive-by download, deceptive
installations, or vulnerability exploitations [7]. To generate

a continuous revenue, grayware usually resides permanently
on affected machines and deeply permeates into victim
systems by all means including modification of autostart
configurations or registry databases, so that it can survive
system reboots and crashes [8]. To elude detection, grayware
routinely uses obfuscation techniques, lowers security levels
of infected systems or even terminates security services such
as antivirus, firewall, and antispyware products [9, 10]. By
attaching itself to a variety of legitimate processes, grayware
significantly increases its clotting capability within affected
hosts making it extremely difficult to be completely removed
and essentially expanding its life span [8].

The incentive for profits has propelled grayware into its
drastic proliferation as demonstrated by the rapid expansion
of species collected in the Trend Micro grayware encyclo-
pedia [11]. Starting from only 335 strains in 2004, the
encyclopedia added 14,437 new species in 2005 and another
49,310 in 2006; upto the first half of 2008, it has 86,834
specimens in its repertoire. It has been established that
more than 90% of Internet-connected hosts are infected



with grayware and each victim machine accommodates
28 species on average [12]. In addition, the devastating
impact on confidentiality, integrity, and availability (CIA)
has rendered grayware the second most critical threat to
the Internet ecosystem and continue to be the primary
risk to cyberspace [13]. The incompatibility of different
grayware strains residing on the same victim hosts also
significantly affects system stability and productivity. In this
regard, more than 12% technical supports in Dell service
center are due to grayware; while the grayware-inflicted
computer crashes reported to Microsoft cost billions to repair
[5]. Moreover, the rampant growth of grayware inevitably
hinders the prosperity of e-commerce as 44% of network
users have dramatically reduced their Internet activities to
avoid identity thefts [14]. The projected worldwide business
expenditure on grayware defense will increase from $214
million in 2006 to $1.4 billion by 2010, further indicating the
formidable and costly fight against grayware [15].

Falling into the “gray area” between legitimate applica-
tions and malicious software (i.e., malware) such as virus and
worm, grayware is usually distributed by bundling with other
legal software packages including freeware and shareware,
which obtain users” consent for installation via an End User
License Agreement (EULA) [4]. Unfortunately, the lengthy
EULAs presented by such packages are typically vague and
deceptive on functionality descriptions. For example, the
9,400-word EULA from the package consisting of C2 Media,
Adlntelligence, and Alset could take hours even for the fastest
readers to go through without taking into consideration its
narrow display window and small font sizes [16]. It is also
quite common for grayware EULAs to provide incomplete
disclosures on bundled components as manifested by the
Peer-to-Peer (P2P) application Grokster: its installation fur-
ther invites another 14 species including BullGuard, Cydoor,
and IGetNet, all of which are not disclosed in the EULA [17].
Compared to its malware counterpart that is usually created
in an underground fashion, grayware is mainly developed by
commercial companies, rendering the vulnerability of anti-
grayware producers to lawsuits [18]. In this context, Zone
Labs is sued by grayware 180Solutions in the pretext of trade
libel and unfair practices, simply because products from
the latter are labeled as grayware owing to their deceptive
installation avenues [19]. Similarly, Symantec is caught into
a fierce lawsuit by classifying Hotbar, a product from Claria,
as grayware and removing it from infected systems [18].

Without doubt, the growing number of lawsuits between
grayware and anti-grayware camps stems from the existence
of the “gray area” and the lack of a well-formed grayware
definition [20]. The complexity of grayware identification
and categorization is further exacerbated when business
partnership is established between grayware and anti-
grayware vendors [21]. By admitting adware companies
to be its members, the collapse of the Consortium of
Antispyware Technology is unavoidable due to its loss of
credibility [21]. It is natural that products from adware
producer WhenU are legitimized thanks to its partnership
with antispyware company Aluria. Evidently, the business
cooperations between grayware and anti-grayware further
blur the boundary between legal applications and grayware.
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Moreover, the widespread of grayware is also driven by
the ever-increasing investments from merchants and affiliate
networks. To this end, the adware WhenU obtains a large
amount of fund directly from its largest customers such
as Priceline and J. P. Morgan Chase by displaying their
advertisements via adware products [22]. Similarly, Google
actually helps grayware purveyors such as 180 Solutions and
Ask Jeeves by paying them to advertise through grayware
[23, 24]. Clearly, the complication of grayware classification
renders it not only a technical challenge, but also a serious
issue involving legal, social, economic, and human factors
[2].

The explosive population of grayware and its disastrous
effects on infected systems make it vitally important to
characterize the behavior of grayware and analyze its risks
so that effective detection and defense strategies can be
developed [25]. We therefore propose a grayware catego-
rization framework termed Grayware Assessor that defines
taxonomic features for the entire grayware life cycle, classifies
species with respect to a variety of characteristics, and eval-
uates their threats to the Internet ecosystem. The proposed
framework treats grayware categorization as a supervised
learning problem and constructs a learning model for each
taxonomic feature with the help of support vector machines
(SVMs) [26]. Taxonomic features as well as their training
data are automatically extracted from the Trend Micro
grayware encyclopedia to avoid time-consuming manual
operations. The training data can be further expanded with
grayware entries that match telltale patterns unique to the
taxonomic feature in question. We design word stemming
and stopword removal process to reduce the dimensionality
of the feature space formed by grayware feature vectors. To
further decrease the dimensions of the feature space, we
select features based on their potential information gain [27].
The categorization results are visualized with the help of self-
organizing maps (SOMs) [28].

The large number of grayware entries in the Trend
Micro grayware encyclopedia and their respective very short
descriptions inevitably lead to a high-dimensional feature
space as well as sparse feature vectors. Thus, we employ SVM
techniques, superb for learning tasks with dense concepts
and sparse feature vectors [29], to build learning models for
taxonomic features. The proposed framework defines two
types of taxonomic features, single-label and multilabel; in
the former, only one label can be attached to each grayware
entry while in the latter, a single grayware can simultaneously
belong to multiple categories. For a multilabel feature, the
framework reduces the modeling problem into a set of tasks,
each of which differentiates a category of the feature from the
rest, and trains an SVM binary classifier for each task. For a
single-label feature, the Grayware Assessor constructs binary
classifiers as well as a single multiclass SVM categorizer in
order to attain better classification accuracy.

With the SVM learning models in place, the pro-
posed framework systematically organizes grayware species
according to various taxonomic features. For instance, it
can yield a grayware hierarchy by initially clustering all
strains on feature Grayware Type that includes categories
such as Spyware and Adware, and then classifying each
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category with respect to feature Risk Level; the latter
contains five classes: Extreme, High, Medium, Mild, and
Slight. The resulting hierarchy facilitates the identification
of spyware specimens that impose extremely critical threats
to the Internet. More importantly, the proposed grayware
categorization framework can automatically classify to-be-
discovered grayware breeds with the established learning
models and help evaluate the grayware evolution and its
risks. Using the grayware categorization derived from the
proposed framework, we ascertain that grayware typically
employ multiple attack avenues to improve its penetration
rate and carry a variety of payloads to maximize its exploits
on victim systems. It is also revealed by the framework that
grayware evades detection by reducing its code footprint
and enhancing its clotting capability with victim systems.
The grayware trend analysis conducted with the proposed
framework indicates that Spyware, Adware, and Cracking
Application are the most serious threats to the Internet.

The rest of our presentation is organized as follows.
Section 2 presents related work on grayware as well as its
taxonomic features and classifications. Section 3 outlines the
proposed framework that automates training data generation
and learning model construction for grayware categoriza-
tions. The classifications based on taxonomic features asso-
ciated with various stages of grayware life cycle are discussed
in Sections 4, 5, and 6. Section 7 evaluates grayware evolution
and analyzes its threats to the Internet. Our main conclusions
and future work can be found in Section 8.

2. Related Work

The complexity of grayware characteristics and its ever
evolving behavior renders that a widely accepted definition
for grayware has not yet been established [2]. In this
regard, some definitions consider a program as grayware
if it establishes surreptitious communication channels and
has negative consequences on end systems [9, 17, 30], while
others concentrate on surveillance and information gather-
ing capability of a program and distinguish grayware from
legal software mainly based on users consent or permission
for its installation [4, 20]. However, the fact that grayware
often live in the gray area around the demarcation line
between legitimate and malicious software makes it difficult
to quantitatively measure the stealthiness of a program as
well as the truthful disclosure of its purpose via EULAs or
terms of service (TOS) [2]. It has been shown that most users
regret and reverse their decision after they are clearly notified
the functionalities of installed grayware [31]. The lack of a
well-formed grayware definition surely affects the boundary
of its universe and categorization schemes of its species.
To this end, only 26,517 grayware strains are gathered in
the Computer Associates encyclopedia [32], a much smaller
population compared with that collected in Trend Micro
which has 86,834 species. Along the same line, grayware
categorization schemes diversify significantly in different
grayware advisories, for instance, Backdoor, Denial of Service
(DoS), and Trojan are considered as grayware genre in [32]

but treated as malware in [11] and therefore excluded from
its grayware repertoire.

Grayware categorization and generalization necessitates
the development of taxonomies so that the universe of
grayware can be organized systematically and its species can
be easily identified [13, 33]. To be of value, a grayware
taxonomy should demonstrate the properties of objectivity,
operability, and repeatability, and its classification scheme
should be deterministic and specific [34]. Determinism calls
for intrinsic features to specimens under study so that their
extraction can be automated independent of observers while
specificity ensures both the uniqueness and unambiguity of
taxonomic features. Unfortunately, the sophisticated nature
of grayware makes it difficult to define unambiguous features
that can be applied to entire grayware universe. For instance,
taxonomic feature User Consent plays a critical role in
grayware characterization schemes of [4, 20]; however, it is
rather subjective and may cause a data-gleaning program
to be categorized as Safe Data Collection or Data Theft
by different observers. In the same manner, the feature
Attacker Intent is used to differentiate Nuisance Spyware from
Malicious Spyware in [11]; clearly, the intent of attackers
is difficult to evaluate and measure. The fact that grayware
encyclopedias such as Trend Micro and Computer Associates
are created manually by domain experts typically lead to
incomplete information collection and analysis for many
strains. To this end, only 38 out of 86,834 species in the Trend
Micro grayware encyclopedia [11] provide information for
the feature In The Wild, making any generalization attempt
statistically insignificant.

The lack of determinism and specificity definitely affects
the usability of grayware classification schemes; however, the
main barrier for their applications in real-world environ-
ments is their inability to classify newly discovered species
without human intervention. Should significant manual
intervention be required, for instance, in categorizing all
entries in the Trend Micro grayware encyclopedia with
respect to a variety of taxonomic features, it is impossible
to keep pace with the ever-growing grayware population.
Therefore, machine learning and data mining techniques
have been applied in an effort to diminish the depen-
dency on domain experts as far as grayware and malware
categorization is concerned [35, 36]. The behavior-based
malware/spyware classification method built on case-based
reasoning techniques stores known malware/spyware in a
database and finds the sample from the database with the
minimum distance from the program under study, and
declares it as malicious, should the distance be within the
specified range [37]. With the help of a self-organizing map
(SOM), the proposal of [38] automatically groups vulner-
abilities into four categories—denial of service, deception,
reconnaissance, and unauthorized access—by clustering vul-
nerability textual descriptions into a two-dimensional array
of nodes [28]. Similarly, SOM techniques are also used
to automatically discover patterns hidden in vulnerability
descriptions by first organizing vulnerabilities into a self-
organizing map consisting of multiple nodes, and then
labeling each node with categories such as denial-of-service,
worm, and buffer overflow [39].



To automate the grayware classification process and offer
grayware categorization and generalization capability, we
treat grayware classification as a supervised learning problem
and employ Support Vector Machines (SVMs) [26] to create
learning models for taxonomic features. Derived from the
Structural Risk Minimization (SRM) principle of the com-
putational learning theory, SVMs seek learning functions
that minimize classification errors on selected examples [26,
40] and have been successfully used in text classification,
pattern recognition, and natural language processing [40,
41]. SVM binary classifiers have been proposed for the
process of voluminous data with high-dimensional and
sparse feature vectors commonly encountered in the real-
world applications [42, 43]. For instance, in the context of the
sequential minimal optimization (SMO) method [44], the
large quadratic programming (QP) optimization problem
of an SVM binary classifier is decomposed into a series of
tasks that can be solved analytically. Similarly, in SVM-Light
[42] and SVM-Torch [43], the model training process is
accelerated with the use of working set and data caching.
The SVM modeling complexity can be further reduced with
the help of heuristics and domain-specific optimizations
[45]. Compared with alternative machine learning methods
including Naive Bayes, neural networks, and Decision Tree;
SVMs achieve significantly better performance in terms of
generalization [41].

When a taxonomic feature contains more than two
categories, the learning task should differentiate multiple
classes calling for a multiclass learning model [46]. The
multiclass problem at hand can be decomposed through a
multiclass-to-binary reduction method into a set of binary
classification tasks, each of which distinguishes a single
class from the rest [47]. Similarly, the multiclass learning
problem can also be solved by partitioning categories
into opposing subsets using error-correcting codes such as
Hamming encoding so that binary classifiers can be trained
based on subsets instead of individual classes [48, 49]. By
treating the multiclass learning problem as a monolithic
constrained optimization task with a complex quadratic
objective function [50], a single multiclass categorizer can
also be built with the multiclass-optimization method. In
this regard, the constrained optimization performed by the
multiclass categorizer is decomposed into a series of small
steps so that each step involves only a subset of training data
or constraints and can therefore be solved analytically [51].
In the proposed framework, we build SVM learning models
with both multiclass-to-binary reduction and multiclass-
optimization methods.

3. The Proposed Grayware
Categorization Framework

Threat advisories such as the Trend Micro grayware ency-
clopedia could play a much valuable role in grayware risk
management should they provide the functionalities of cate-
gorization and generalization. For instance, prompt incident
response demands that predominant grayware penetration
mechanism be quickly determined; similarly, it is equally
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desirable to derive the grayware distribution with respect
to specific taxonomic features such as Carried Payload or
Risk Level. Unfortunately, such functionalities are unavail-
able in current security advisories. Resorting to machine-
learning and data-mining techniques, the proposed gray-
ware categorization framework empowers the Trend Micro
grayware encyclopedia with the capabilities of categorization
and summarization. Considering grayware classification as
a supervised learning problem, the designed framework
collects training data automatically for taxonomic features
and builds learning models with support vector machines.
The dimensionality of grayware feature space formed by
attributes selected according to their information gain is
reduced with the help of word stemming and stopword elim-
ination techniques; while classification results are visualized
via self-organizing maps.

3.1. The Lifecycle of Grayware. Along with the dramatic
explosion of the grayware universe, variants in each individ-
ual grayware family also expand at an increasingly fast rate.
Sharing similar characteristics and behavior, members of the
same grayware family are treated differently by various gray-
ware encyclopedias: the entire grayware family is represented
with a single entry as in the Symantec threat advisory or
each variant has its own independent entry manifested by the
Trend Micro grayware encyclopedia. It is therefore inevitable
that boundaries of grayware universe defined in different
collections may not coincide. In this regard, Symantec and
Trend Micro grayware encyclopedias gather 6,767 and 86,834
species, respectively [11, 52]. The ever-increasing grayware
population also renders it extremely difficult for a grayware
encyclopedia to thoroughly analyze each specimen. To
overcome this issue, grayware encyclopedias typically cross-
reference each other to share and correlate information. For
instance, Mcafee security advisory usually references to other
resources including Trend Micro grayware encyclopedia in
addition to its own grayware descriptions.

As demonstrated in Table 1, the Trend Micro grayware
encyclopedia not only provides adequate information on
species, but also organizes entries with a relatively stable
structure making it possible to automatically process the col-
lected data. The descriptions on spyware TSPY_LINEAGE.GL
and adware ADW_ALEXA.AK outlined in Table1 clearly
follow a well-defined template consisting of three parts:
General, Description, and Detail. Each part comprises a
series of fields that are used to characterize the grayware
specimen in question. For example, feature System Impact
in part General attempts to measure strain’s effect on
system integrity; while Compression Type of part Detail
describes the specimen’s behavior on packing its files to
reduce storage footprints and defeat detection. Compared
with other security advisories, the Trend Micro grayware
encyclopedia defines a much rich set of features to describe
grayware species and is frequently referenced by other secu-
rity databases. Therefore, we select Trend Micro grayware
encyclopedia as the testbed for the proposed framework and
transform it into a grayware classifier with the capability of
categorization and generalization.
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TABLE 1: TSPY_LINEAGE.GL and ADW_ALEXA.AK in Trend Micro grayware encyclopedia.

TSPY_LINEAGE.GL

ADW_ALEXA.AK

General

Type: Spyware; In the wild: No; Destructive: Yes; Systems Affected:
Windows 95, 98, ME, NT, 2000, XP, Server 2003; Encrypted: No;
Language: English; System Impact: High; Information Exposure:
High;

Type: Adware; In The Wild: No; Destructive: No; Systems Affected:
Windows 98, ME, NT, 2000, XP, Server 2003; Encrypted: No;
Language: English; System Impact: Medium; Information
Exposure: Medium;

Description

Installation and Autostart Technique: On Windows NT, 2000, XP,
and Server 2003, this spyware drops a copy of itself in the Program
Files folder as SVHOST32.EXE. It then modifies the following
registry entry to ensure its automatic execution at every system
startup: ... On Windows 95 and 98, it copies itself as
RUNDLL32.EXE in the Windows folder and INTERNAT.EXE in
the... Information Theft: This spyware steals and logs sensitive
information from an affected system and the game ... Process
Termination: This spyware also terminates ...

Installation and Autostart Technique: This adware may arrive on a
system as a file downloaded by unsuspecting users while visiting
Web sites. It may also be dropped by other grayware. Upon
execution, it creates the folder Alexa Toolbar in the Program Files
folder, then drops the following files ... It then installs the
dropped.DLL files on the infected system. As a result, the routines
of ADW_ALEXA.AP are exhibited on the system. It creates the
following registry keys: ... Other Details: This adware registers
itself as a Browser Helper Object (BHO) and adds additional
search

Detail

Initial Samples Received on: Sep 7, 2005; File Type: PE; Memory
Resident: Yes; Compression Type: UPX; File Size: Varies; Payload 1:
Moves system files to other folders; Payload 2: Terminates
processes; Payload 3: Steals information;

Initial Samples Received on: Nov 2, 2006; File Type: PE; Memory
Resident: Yes; Compression Type: Noj; File Size: 494,672 Bytes;
Payload 1: Creates search functionalities on Internet browser;
Payload 2: Redirects search queries

Every grayware specimen shares a similar life cycle:
after being created, it first penetrates as many machines
as possible, then transports malicious code termed payload
into infected systems and conducts stealthy activities until
it is eventually discovered and eradicated. More specifically,
grayware life cycle can be divided into the following stages.
(a) Creation. Grayware may be developed by script kiddies
or commercial companies motivated by profits. Some species
are bred in large scale with the help of investments from
advertisers, merchants, and affiliate networks. (b) Penetra-
tion. Newly born grayware attempts to creep into victim
systems with arsenal such as freeware/shareware, email
attachments, and security vulnerability exploitation. (c)
Activation. Payloads, the workhorse for continuous revenues,
are shipped into infected systems. (d) Discovery. Grayware
may be eventually identified due to its pernicious activities.
(e) Eradication. Grayware is contained and removed from
infected systems upon detection.

Although undergoing similar life cycle, grayware strains
indeed manifest diversified behavior in various stages of their
life time ranging from sheerly annoying to extremely mali-
cious. Mainly based on functionality and behavior, species
in the Trend Micro grayware encyclopedia are categorized
into groups listed in Table 2. Comprising 59.97% of the
entire repertoire, category Spyware is the largest class and its
members are designed to profile users-computing/browsing
habits, steal sensitive information, and capture screenshots
or event logs. The next two most populated categories
Dialer and Adware contribute 17.50% and 16.27% to the
total grayware population, respectively; the former creates
revenue for its owners by redirecting phone connections,
while the latter generates financial gains through displaying
advertisements. In comparison, categories Toolbar, Keylogger,

and Hijacker are only sparsely populated, rendering them the
minority of the grayware universe.

3.2. Design Rationale for the Proposed Framework. As
demonstrated by spyware TSPY_LINEAGE.GL and adware
ADW_ALEXA.AK of Table 1, each entry in the Trend Micro
grayware encyclopedia is constructed with a template mainly
consisting of three parts: General, Description, and Detail.
In part General, the entry is characterized by a series of
taxonomic features including Type, Systems Affected, and
Information Exposure. Part Description presents an overview
of the specimen in the entry and usually covers installation
mechanisms, activities conducted, and symptoms of infected
systems. Information in part Detail outlines techniques
employed by grayware in question with respect to file
compression methods, payload peculiarity, and message
obfuscation. Although the Trend Micro grayware encyclo-
pedia devises a dozen of taxonomic features to characterize
grayware species, only a small portion of entries actually
provide information on defined features due to the time-
consuming and labor-intensive tagging process. For instance,
only 8,301 out of 86,834 strains in the Trend Micro repertoire
have information for feature Information Exposure; while
less than 9.57% entries are labeled with respect to feature
System Impact. Moreover, no taxonomic feature is designed
in the Trend Micro grayware encyclopedia to characterize
grayware behavior on attack avenues, which is highly impor-
tant for grayware evaluation.

Grayware classification with respect to taxonomic fea-
tures helps develop defense policies targeting clustered
breeds with similar behavior instead of individual strain.
Furthermore, organizing grayware species systematically
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TABLE 2: Categories of species in the Trend Micro grayware encyclopedia.

ID Name Description Num Pct
1 Spyware Install on user systems to track activities and collect data 52075 59.97
2 Dialer Redirect calls to premium 900 numbers for financial purpose 15196 17.50
3 Adware Display pop-ups/pop-unders and may be active after hosts terminate 14124 16.27
4 Hacking Tool Various toolkits for malicious purposes 3672 4.23
5 Browser Helper Object Plugins to browsers and track surfing habits and gather information 691 0.80
6 Cracking Application Recover passwords from encrypted forms by brute-force/algorithms 624 0.72
7 Trojan Spyware Stealthy programs to conduct harmful activities 608 0.70
8 Toolbar Perform searching or file downloading and modify search results 394 0.45
9 Trackware Track Web browsing activities for targeting ads or malicious purposes 116 0.13
10 Keylogger Records keystrokes and send to attackers 85 0.10
11 Remote Access Trojan Abuse for system administration or info theft 75 0.09
12 Hijacker Manipulate system settings to reroute traffic 45 0.05
13 Dropper Program that can retrieve and install other malware or grayware 82 0.09
14 Freeloader Retrieve, install, and execute other software in background 49 0.06
15 Joke Program Annoy users but do not infect files 425 0.49

according to their characteristics could automate the clas-
sification of newly discovered grayware and shed light
on the evolution of the grayware universe. However, the
large population in the Trend Micro grayware encyclopedia
essentially renders it inefficient and impractical to manually
categorize species based on a variety of taxonomic features.
We therefore propose a grayware categorization framework
termed Grayware Assessor that automates the grayware
categorization and generalization. The Grayware Assessor
not only automatically extracts features from Trend Micro
grayware encyclopedia, but also designs new taxonomic
features to cover the entire grayware life cycle. For instance,
features Attack Avenue and Registry Key are defined to por-
tray grayware characteristics in Penetration and Eradication
stages of its life span.

Each taxonomic feature has its dimensionality—the
number of categories, in this context, features Attack Avenue
and System Impact contain ten and three classes, respectively,
the former includes categories Dropped by Malware, Drive-
by Download, and Network File Shares, while the latter holds
classes Low, Medium, and High. A taxonomic feature is
multilabel if a grayware specimen can be simultaneously
assigned to multiple categories, and single-label otherwise. In
the proposed framework, feature Attack Avenue is multilabel
as a grayware specimen could resort to multiple penetra-
tion mechanisms at the same time; for instance, adware
ADW_ALEXA.AK successfully infects victim machines by
both Drive-by Download and Dropped by Malware methods.
On the other hand, feature System Impact is single-label,
thus spyware TSPY_LINEAGE.GL of Table 1 is only put into
category High while adware ADW_ALEXA.AK is considered
to impose less serious impact on affected systems compared
to TSPY_LINEAGE.GL and is therefore assigned to class
Medium.

The framework carries out grayware categorization on a
taxonomic feature in three stages: grayware representation,

learning model construction, and unlabeled-sample classifi-
cation. In the first stage, the description text for a specimen
in the Trend Micro grayware encyclopedia is converted into
a format feasible for machine learning. More specifically,
each entry in the Trend Micro repertoire is considered as a
bag of words by ignoring word positions in the text, then
it is further represented with a feature vector by treating
each word in the bag as a feature (or attribute) and word
occurrences in the corresponding entry as its value. To reduce
the dimensionality—number of attributes—of the feature
space formed by all grayware feature vectors, the framework
conflates words into their common roots by a stemming
process. The feature space is further decreased by filtering
out stopwords that have only grammatical functions and are
typically articles and common prepositions. Moreover, the
set of attributes is trimmed according to their information
gains and only those features with most significant gains are
kept in the set. The bias resulting from difference in sizes of
grayware entries is eliminated by normalizing feature vectors
to have unit length. To improve classification accuracy, the
proposed framework scales each attribute of a feature vector
with its inverse document frequency (IDF) [53] defined as
the ratio between the grayware population and the number
of entries containing the attribute (i.e., word) in question.

In the stage of learning model construction, the proposed
framework first automatically collects training data for
each taxonomic feature from the Trend Micro grayware
encyclopedia and builds an SVM learning model. The fact
that categorization information on taxonomic features in the
Trend Micro grayware encyclopedia is manually created by
domain experts usually leads to a very small set of training
data being generated. Therefore, the framework expands
the training data by identifying entries that match telltale
patterns unique to taxonomic features. The sparse grayware
feature vectors due to the extremely short description for
each grayware entry motivates us to employ SVMs in the
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proposed framework which are superb for learning tasks
with dense concepts and sparse feature vectors [29]. Little
noisy or redundant information in grayware texts generated
by domain experts also justifies the application of SVMs
in the proposed framework as it mitigates the burden on
feature selection that affects the performance of learning
models. The classification performance of learning models
is evaluated through the n-fold cross-validation procedure.

With the constructed learning models at hand, the pro-
posed framework categorizes unlabeled grayware that is not
part of the training data. For a multilabel feature, the learning
model consists of multiple SVM binary classifiers, each of
which discriminates one category from the rest, while for a
single-label feature, a single multiclass categorizer is usually
built. Grayware entries can be organized systematically
according to a variety of taxonomic features with the help
of the learning models. For instance, a grayware hierarchy
can be constructed if we classify species with respect to a
series of taxonomic features such as Grayware Type, System
Impact, and Discovery Date. Clearly, the resulting hierarchy
makes it straightforward to identify 2008-born spyware
that seriously affects system integrity. Moreover, learning
models built in the designed framework can also be used
to categorize grayware strains that may be discovered in
the future and assign them into the established hierarchical
structure. Finally, categorization results are visualized with
self-organizing maps (SOMs).

3.3. Grayware Feature Vectors. To transform a grayware
entry into a structured representation suitable for automatic
process by machine learning algorithms such as SVMs and
SOM:s, the proposed framework first treats the text of each
grayware in its part Description as a sequence of tokens and
represents it as a bag of words by ignoring token positions
in the text. A feature vector for the grayware in question is
then formed with each distinct token as an attribute and its
occurrence frequency as value. The grayware feature space
is the assembly of feature vectors for all species and its
dimensionality is the key determinant for the computational
complexity of the learning task. To reduce the dimensions
of feature space, the proposed framework resorts to the
Porter Stemming algorithm frequently used in Information
Retrieval (IR) [54], so that tokens are conflated into their
common stem roots by stripping plurals, past participles, and
other suffixes. The resulting word stems are further converted
to their lower-case counterparts to condense the feature
space. For instance, after the stemming process, tokens
install, technique, and automatic of TSPY_LINEAGE.GL in
Table 1 are converted to their stems instal, techniqu, and
automat, respectively, before they are put into the feature
vector. The stemming results for entries TSPY_LINEAGE.GL
and ADW_ALEXA.AK are presented in Row “Word Count” of
Table 3.

The proposed framework devises a stopword-elimination
process to further decrease the feature space dimensions. A
token is considered as a stopword if it has only grammatical
function without adding new meaning to sentences it
involves. Stopwords in the proposed framework are typically

articles, case particles, and conjunctions [55]. With the
stopword-elimination process, tokens this, in, and on of entry
TSPY_LINEAGE.GL are excluded from its feature vector;
in the same manner, words may, by, and then of entry
ADW_ALEXA.AK are also part of the stopword list and
removed from the feature vector. The proposed framework
also treats a token as a feature candidate only if it appears at
least a specified number of times in the grayware repertoire
(3 by default). To mitigate the impact by difference in sizes of
grayware entries, the proposed framework normalizes every
feature vector to unit length. We also improve classification
performance by scaling each attribute of a feature vector
with its inverse document frequency. With the aforemen-
tioned word stemming and stopword elimination process,
the dimensionality of the feature space is reduced from
5,881 to 4,910. Row “Feature Vector” in Table 3 depicts
the feature vectors for entries TSPY_LINEAGE.GL and
ADW_ALEXA.AK. The nonzero attributes in feature vectors
of TSPY_LINEAGE.GL and ADW_ALEXA.AK are 61 and 72,
respectively, making them extremely sparse compared to the
4,910 dimensions of the feature space.

3.4. Grayware Classifications with SVM and SOM. For a
given set of training data T = {X;yi}, (i = 1,...,m),
each data point (or example) x; € R? with d features and
a true label y; € Y = {l},... I}, a supervised learning
task is to construct a model that attempts to balance the
classification accuracy on T and its generalization capability
on unseen examples. A classification error occurs when the
label of an example assigned by the model contradicts its true
label. Support vector machines (SVMs) attempt to construct
models that minimize the classification errors on randomly
selected examples [26]. When the label set is Y = {I; =
-1, , = +1}, the learning model—a binary classifier—
distinguishes data points in positive (+1) category from its
negative (—1) counterparts with a separating hyperplane
that maximizes the summation of its shortest distances to
the closest positive and negative examples. The separating
hyperplane can be expressed as w - x + b = 0, here the weight
vector w € R? is normal to the hyperplane, operator (-)
computes the inner product of vectors w and X, and b is the
bias. The objective function of an SVM binary classifier can
be expressed to minimize || wl?/2+ G, > " & with parameter
Cp a penalty to classification errors, and & (§ > 0, i =
1,...,m) a nonnegative slack variable for the ith example in
T so that w - X; + b > +1 — & for positive examples and
WX +b < —1+ & for negative examples. Clearly, the
parameter C, controls the trade-off between training errors
and classification accuracy.

In practice, the objective function of a binary model is
transformed into its Wolfe dual form to maximize >|" a; —
(1/2) Z:”] a;iajy;yixi - Xj, subjected to 0 < o < Cp (i =
1,...,m) and >"a;y; = 0. Parameter o; (i = 1,...,m)
is a nonnegative multiplier for each constraint. Obviously,
the objective function in the Wolfe form is convex and the
constraints also form a convex set, rendering it a convex
quadratic programming (QP) problem [41]. The solution
to the Wolfe dual problem is given by w = > a;y:%; and
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TABLE 3: Feature vectors for spyware TSPY_LINEAGE.GL and adware ADW_ALEXA.AK.

Part TSPY_LINEAGE.GL

ADW_ALEXA.AK

instal: 1 autostart: 1 techniqu: 1 window: 7 nt: 3 2000: 2 xp: 2
server: 2 2003: 2 spywar: 4 drop: 2 copi: 5 program: 1 file: 4

instal: 2 autostart: 1 techniqu: 1 adwar: 2 arriv: 1 system: 6
file: 9 download: 2 unsuspect: 1 user: 1 visit: 1 web: 2 site: 1

Word  folder: 7 modifi: 1 follow: 2 registri: 2 entri: 2 ensur: 1 automat:  drop: 3 graywar: 1 execut: 1 creat: 2 folder: 4 alexa: 2 toolbar: 4
count 1 execut: 1 system: 5 startup: 1 95: 2 98: 2 rundll32.ex: 1 program: 2 file: 9 follow: 2.dll: 1 infect: 3 result: 1 routin: 1 adw:
internat.ex: 2 inform: 2 theft: 1 steal: 1 log: 1 sensit: 1 affect: 4 exhibit: 1 registri: 1 kei: 1 detail: 1 regist: 1 browser: 2 helper:
2 game: 1 lineag: 1 1 object: 1
instal: 0.0010 autostart: 0.0106 techniqu: 0.0101 window: instal: 0.00138 autostart: 0.0076 techniqu: 0.0072 adwar: 0.0077
0.0485 nt: 0.0216 2000: 0.0144 xp: 0.0144 server: 0.0149 2003:  arriv: 0.0060 system: 0.0029 file: 0.0450 download: 0.0116
0.0151 spywar: 0.0036 drop: 0.0147 copi: 0.0456 program: unsuspect: 0.0091 user: 0.0002 visit: 0.0070 web: 0.0014 site:
Feature 0.0003 file: 0.0281 folder: 0.0553 modifi: 0.0127 follow: 0.0146 0.0031 drop: 0.0157 graywar: 0.0100 execut: 0.0054 creat:
vector  registri: 0.0156 entri: 0.0163 ensur: 0.0097 automat: 0.0085 0.0066 folder: 0.0225 alexa: 0.0430 toolbar: 0.0488 program:

execut: 0.0076 system: 0.0034 startup: 0.0085 95: 0.0286 98:
0.0146 rundll32.ex: 0.0163 internat.ex: 0.0344 inform: 0.0032

0.0004 file: 0.0450 follow: 0.0104.dll: 0.0075 infect: 0.0288
result: 0.0120 routin: 0.0062 adw: 0.0462 exhibit: 0.0117

theft: 0.0104 steal: 0.0075 log: 0.0105 sensit: 0.0138

registri: 0.0056 kei: 0.0076 detail: 0.0086 regist: 0.0098

parameter b can be obtained with equation o;(y;(w - X; +b) —
1) = 0 for any «; # 0. Data points with their corresponding
a; > 0 form the set of support vectors S = {sy, s5,...}. An
unseen example X is assigned label +1 if formula Zl‘-ill @i yis; -
X + b is positive, and label —1 otherwise.

In case that the label set Y = {I; = 1,..., Ik = k}
and k > 2, a multiclass SVM learning model is built with
two approaches in the proposed framework: multiclass-to-
binary reduction and multiclass-optimization methods. In
the multiclass-to-binary reduction method, the learning
problem in question is reduced to a set of binary classification
tasks and a binary classifier is built independently for
each label I, with the one-against-rest training technique
[47]. More specifically, in constructing training data for the
classifier designated to label I, data points with label I
are considered as positive while the remaining examples are
treated as negative, then an SVM binary learner is built.
Therefore, the resulting learning model by the multiclass-
to-binary reduction method consists of k binary classifiers.
In comparison, the multiclass-optimization method defines
a monolithic objective function with complex constraints
covering all classes so that a single multiclass categorizer
is constructed. Similar to an SVM binary classifier, the
objective function for a multiclass categorizer is to minimize
IWI?/2 + C, S, & subject to W, X+, — W, X =
1 — & (for all i,r). Here, W is a matrix of weights with
size k X n, W, is the rth row of W, 0 is a loss function
that generates an output of 1 if i = j and 0 otherwise,
and parameter C, controls the balance between training
errors and classification accuracy. Similar to the multiclass-
to-binary reduction method, the objective function of the
multiclass categorizer is also converted to its Wolfe dual
problem for the derivation of its solution [51]. As the
multiclass optimization method treats classes to be mutually
exclusive, it is therefore mainly used to build learning models
for single-label features. In comparison, the multiclass-to-
binary reduction method can be used for both multilabel and
single-label taxonomic features.

From the Wolfe dual form of the objective function and
its solution for an SVM classifier, we can observe that data
points appear only with the form of inner product (i.e.,
x; * x;). By specifying a mapping function ® : R? — H, we
can transform feature vectors of training data from R? into
a space H with higher or even infinite dimensions so that
the model constructed in H only depends on data points
through functions of the form ®(x;)®(x;). With a kernel
function K(x;,x;) = ®(x;)®@(x;), we can replace x; - x; by
K(xi,xj) in objective functions and their constraints, and
build the learning model in space H by using K without
explicit computation of ®@. In the same manner, the label
of an unseen example can be obtained by computing inner
products of its feature vector and parameter w (or W) via
function K instead of ®. The kernels used in the designed
framework can be polynomial, radial basis functions (RBFs),
or sigmoid functions [26].

Compared to SVM-supervised learning techniques, self-
organizing maps (SOMs) can be considered as unsupervised
learning methods that transfer data points from a high-
dimensional space into its low-dimensional counterpart so
that instances with similar features in the former are spatially
clustered together in the latter. Consisting of multiple com-
ponents called neurons that are arranged into a hexagonal
or rectangular grid, a SOM map associates each neuron
with a weight vector having the same dimensionality d as
the feature vectors of input data. The neurons in the map
are trained in such a way that different parts of the map
are activated by distinct input patterns; meanwhile, adjacent
nodes of the map respond similarly to the same stimulus.
The SOM training is conducted with competitive learning
methods that compute the Euclidean distances between each
input and the weight vectors of all neurons in the map and
designates the cell with the smallest distance as the best
matching unit (BMU). The weights of the BMU and its
neighboring neurons in the SOM lattice are then adjusted so
that they resemble the input vector and become the winner
with high probability when encountering similar instances in
the future.
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The magnitude adjustment of a weight vector w; for
node i decreases along with time as well as its distance
from the BMU according to formula w;(t + 1) = w;(t) +
hic(t)a(t){x(t) — wi(t)}, where t is the training epoch, x(¢)
is the input vector, h;(t) is the neighborhood function
with ¢ the BMU, and « is the learning rate monotonically
decreasing with t. The neighborhood function h;.(t) depends
on the lattice distance between node i and the BMU c.
In its simplest form termed bubble, a neighborhood set
N.(t) is defined for each node ¢ and h;;, = 1 if node i €
N(t) or hi = 0 otherwise. Another neighborhood kernel
used in the proposed framework is the gaussian function
expressed as h;.(t) = exp(—(llr. — ril1?/262(t))) with r. and
ri the radius vectors of nodes ¢ and i, respectively. Evidently,
the neighborhood for a neuron diminishes over time and
vanishes completely at the end of the training process. The
fact that the SOM not only adjusts the winner but also
its neighboring cells during the training process leads to a
spatial clustering of instances in adjacent parts of the map,
rendering its topology preservation capability. By calibrating
the SOM lattice with labeled input data so that the BMU
for an input sample inherits the label of its corresponding
input, the map can act as a classifier that tags each unknown
data point with the label of its BMU. Furthermore, the
calibrated map is also an excellent visualization utility due
to its clustering ability and topology preservation property.

3.5. Construction of Training Data and Learning Models.
The learning model construction by a supervised learning
method requires the availability of training data expressed
as T = {X;,yi}, (i = 1,...,m), here x; € R4 is the feature
vector for the ith data point and y; € Y = {I;,..., [k} is
its true label. The construction of T is labor intensive and
time consuming should it be prepared and labeled manually.
The proposed framework therefore automates the training
data collection by taking advantage of taxonomic features
defined in the Trend Micro grayware encyclopedia as shown
in parts General and Detail of spyware TSPY_LINEAGE.GL
and adware ADW_ALEXA.AK of Table 1. The fact that only
a small portion of entries provide information on taxonomic
features in the Trend Micro grayware encyclopedia renders
that the resulting training data may not be sufficient to
build a reliable learning model. To overcome this issue, the
proposed framework can be configured to enlarge the set of
training data with entries that match keywords unique to the
taxonomic feature in question. Keywords for a taxonomic
feature are presented with regular expressions in the designed
framework and pattern matching process is only performed
on entries that are not yet in the training data.

With the training data for a taxonomic feature at hand,
a learning model can be built with the help of SVMs.
When the size of the label set Y for the taxonomic feature
is two, a binary learning model is materialized. For a
taxonomic feature with |Y| > 2, the learning problem is
decomposed into |Y| binary classification tasks with the
multiclass-to-binary reduction method, and subsequently
|Y| binary classifiers are built with the one-against-rest
training method. For instance, in constructing training data

for class High of the taxonomic feature System Impact that
consists of three categories Low, Medium, and High, spyware
TSPY_LINEAGE.GL is treated as a positive sample but adware
ADW_ALEXA.AK as a negative sample even though the latter
has a true label Medium. For a single-label taxonomic feature,
the proposed framework also creates a multiclass categorizer
with the multiclass-optimization training method.

The training data for a taxonomic feature may not
cover all entries in the Trend Micro grayware encyclopedia,
leaving some grayware unlabeled. In addition, the rapid
expansion in the grayware population also renders that most
newly discovered species wait for being categorized. The
proposed framework saves the learning models built for
all taxonomic features and uses them to classify unlabeled
grayware entries or newly identified species. For a multilabel
taxonomic feature, an unlabeled grayware could be assigned
to multiple categories as long as their corresponding binary
classifiers output positive values for the grayware in question.
In comparison, for a single-label taxonomic feature, the
Grayware Assessor simply puts a grayware into the category
with the largest output if the model is composed of multiple
binary classifiers or the class with the highest confidence
when a multiclass model is used.

The proposed framework employs an n-fold cross-
validation method to evaluate the performance of a learning
model in terms of classification accuracy, precision, recall,
and Fg measure. The set of training data T for a taxonomic
feature is first partitioned into # equally sized groups {T;, i =
1,...,n}, and each group assumes the grayware distribution
that is similar to T so that each partition contains examples
from all possible classes. Then the cross-validation process
carries out the following steps in the ith of its n iterations: (a)
training phase: partition T; is held out to act as the validation
set while the remaining (n — 1) partitions are combined
together to form a new training set A; = U; ,.; Tj. A learning
model L; is built with training data set A;; (b) labeling
phase: data points in validation set T; are labeled with the
learning model L;; an example in Tj is classified correctly if its
assigned label by L; is the same as its true label; (c) measuring
phase: performance metrics such as classification accuracy,
precision, and recall for learning model L; are computed.

In addition to the classification accuracy that is defined
as the ratio of the number of correctly classified examples
over the size of the validation set, the proposed framework
also resorts to the Fg-measure that computes the weighted
harmonic mean of precision P and recall R with the formula
Fg = (1+ *)PR/(B*P + R); here, the precision P for a class is
defined as the ratio between the number of correctly labeled
samples and the total number of samples that are assigned
to the class; on the other hand, the recall R is the ratio of
correctly labeled samples over the total number of samples
that actually belong to the class. By setting § = 1 so that
the precision P and the recall R are considered to be equally
important, we obtain the F;-measure as F; = 2PR/(P + R).
The performance metrics such as classification accuracy and
precision attained by a learning model are the average of
measures obtained in the # iterations of the above-described
cross-validation process.
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4. Penetration Mechanisms
Utilized by Grayware

The first step for grayware to transform a victim host into
a profit resource is to find its entry point to the latter. The
motivation for financial gains drives grayware to infect as
many machines as possible by trying out every conceivable
means including social engineering, file sharing, and security
loophole exploitation. Successful system penetration heavily
depends on the compatibility between grayware code and
computing platforms on target machines. It is equally vital
for grayware to ensure the operability of its executables on
target environments. In this section, we define taxonomic
features to categorize the behavior manifested by grayware
in the stage Penetration of its life cycle.

4.1. Computational Platforms Targeted by Grayware. A com-
puting platform defines the architecture for a computer
system which mainly consists of hardware, operating system
(OS), and runtime libraries. Acting as the mainstay of
a computing platform, an OS manages and coordinates
computer resources by providing a pool of services accessed
via system calls or application programming interfaces
(APIs). Like legitimate applications, grayware typically
materializes its functionalities via OS services. Moreover,
the homogeneity demonstrated by OSs derived from the
same code base renders that grayware could successfully
penetrate virtually all variants of an OS family. For instance,
spyware TSPY_LINEAGE.GL is capable of compromising
seven members of the Windows family including Windows
95 and Server 2003. To improve penetration rate, grayware
attempts to adjust its attack strategy and tailor its installation
mechanisms according to OS types on target hosts, leading
to divergent behavior across different platforms. In this
regard, spyware TSPY_LINEAGE.GL masquerades itself as
SVHOST32.EXE when attacking Windows NT but imperson-
ates as RUNDLL32.EXE for Windows 95 platform.

Taxonomic feature Affected Platform defined in the
framework characterizes OSs attacked by grayware. Gray-
ware usually targets computing platforms with large user
base or rich applications. For example, Linux is only
attacked by a few grayware species including hacking tool
HKTL_CALLBACK variants. In contrast, a vast majority
of grayware species target Windows 95, 98, ME, NT, XP,
2000, and 2003. Thus, we mainly focus on the above seven
Windows members and designate them as the categories of
the feature Affected Platform; for convenience, we also assign
them identifiers 1 to 7 in the given order. As demonstrated
by spyware TSPY_LINEAGE.GL of Table 1, grayware can
successfully penetrate multiple OSs at the same time, we
therefore treat Affected Platform as a multilabeled feature.
The training data are constructed automatically by extracting
entries from the Trend Micro grayware encyclopedia which
have information on the field System Affected.

With the training data in place, we build a learning
model termed Stemming by using the multiclass-to-binary
reduction method and enabling stemming and stopword
removal processes. The grayware distribution generated by
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model Stemming is described in Figure 1, and it clearly
indicates that the majority of grayware attack Windows 98,
ME, NT, XPB, 2000, and 2003; on the contrary, only a few
species intrude Windows 95 mainly because it is a legacy
and out-of-fashion OS. Compared to the size 86,834 of
the grayware repertoire, categories Windows 98, ME, NT,
XP, and 2000 have nearly the same grayware population,
indicating that they usually are attacked simultaneously and
vulnerable to almost all grayware species. The categorization
performance by the seven binary classifiers is presented
in Figure2. All binary learning models achieve similar
categorization accuracies with the highest 99.80% attained
by the classifier for Windows XP and the lowest 97.48% by the
learner for Windows ME. On the other hand, the precision,
recall, and F,-measures delivered by the categorizer for
Windows 95 are much lower than those for other classes. The
average classification accuracy attained by the seven binary
classifiers is 98.34%, meanwhile, average precision, recall,
and F;-measure are 97.50%, 98.72%, and 0.981, respectively.

To investigate the impact on classification accuracy by
word-stemming and stopword-elimination operations, we
build another two learning models, No-Stemming and No-
Stemming-Stopword, the former is obtained by skipping
the word stemming process, while the latter is created by
further leaving out the stopword-elimination procedure.
Figure 3 outlines classification accuracies attained by the
three models. Obviously, most binary classifiers in model No-
Stemming outperform their counterparts in model Stemming
with respect to categorization accuracy. In addition, average
classification accuracy can be derived as 98.34%, 98.48%), and
98.46%, respectively, for models Stemming, No-Stemming,
and No-Stemming-Stopword, further indicating model No-
Stemming the best performer. The fact that models No-
Stemming and No-Stemming-Stopword achieve better classi-
fication accuracies than Stemming clearly reveals the negative
effect of the stemming process. In the same manner, the
slight deterioration in the categorization accuracy by model
No-Stemming-Stopword compared to model No-Stemming
manifests the harmful impact by stopwords. However, with-
out the stemming process, model No-Stemming generates
a 5,719-dimensional feature space, much larger than 4,910
for model Stemming; while model No-Stemming-Stopword
further enlarges its feature space to contain 5,881 attributes
by treating stopwords as features. A large feature space
obviously increases the model training time, the proposed
framework carries out word stemming and stopword elim-
ination by default.

4.2. Types of Files Smuggled by Grayware. To successfully
penetrate infected systems and effectively execute on victim
machines afterwards, grayware should pack itself in file
formats compatible with target environments. It is typical
that OSs define their own file formats and refuse to process
files in incompatible forms. In this regard, the executable
and link format (ELF) is mainly recognized by Linux, while
the dynamic linked library (DLL) objects are unique to the
Windows family. The proposed framework introduces taxo-
nomic feature File Type to identify the file formats utilized
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by grayware to transport its code into target hosts. Based on
file type popularity and information provided by the Trend
Micro grayware encyclopedia, we designate four classes to the
feature File Type: EXE, DLL, PE, and Other, and assign them
identifiers 1-4, respectively. The PE file format defines a basic
data structure to encapsulate information for OS loader so
that the wrapped code can be executed in environments with
different software architectures. Recognizable to Windows 95,
NT, and other new versions, the PE file format is frequently
used to represent object code and API import/export tables.
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FIGURE 3: Accuracy on Affected Platform with/without stemming
and stopword elimination.

The Dynamic Link Library (DLL) format describes shared
libraries, ActiveX controls, or system drivers that are used
by Windows and OS/2. Files in the Executable (EXE) format
can be executed in Windows and OS/2 families; in addition,
objects such as bitmaps and icons associated with executables
can also be represented in EXE files.

We collect training data for feature File Type by retrieving
entries from the Trend Micro grayware encyclopedia. With
the training data at hand, we construct a self-organizing
map (SOM) that comprises a 10 X 10 grid of neurons, each
of which is in hexagonal shape by employing the following
procedure: (a) initialization: weight vectors of neurons,
which have the same dimensions as feature vectors of input
samples in training data, are initialized with random values;
(b) training: weight vectors are updated with competitive
learning techniques described in Section 3.5. Neighborhood
function bubble and learning rate « = 0.05 are utilized to
identify adjacent cells for each node; (c) refinement: the map
is further refined with a fine-granular learning rate a = 0.02;
(d) calibration: the best matched unit (BMU) for each input
sample is identified and the BMU inherits the sample’s label.
The ultimate label of a neuron is determined with the simple
majority vote mechanism.

The U-matrix of the SOM termed SOM-Hexa con-
structed according to the above procedure is obtained by
representing each node with its average distance to its closest
neighbors. Figure 4 depicts the U-matrix of the SOM-Hexa
model for feature File Type, here, the origin of the map is
at the upper-left corner, and each value of the matrix (i.e.,
distance) is converted into a gray level in [0, 100] with the
darkest 0 gray scale denoting the largest distance. Figure 4
clearly demonstrates that SOM tends to cluster together
samples with the same labels so that they reside at adjacent
neurons. For instance, the six consecutive nodes locating at
the left portion of the 8th row are occupied by category EXE;
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similarly, neighbors of a cell with label PE are highly likely
to share the cell’s label. Moreover, the darker color at the
left part of the map signifies that neurons at the right half
of the SOM are much closer to each other. The fact that the
majority of the map estate is occupied by category PE points
out that feature vectors for classes DLL and EXE are much
homogeneous.

By changing the neuron lattice from hexagonal to rectan-
gular shape, we obtain another SOM map termed SOM-Rect.
In addition, based on the same training data, we also build an
SVM learning model with the help of the multiclass-to-binary
reduction method. By using the cross-validation process, we
evaluate the categorization accuracies of the three models,
SOM-Hexa, SOM-Rect, and SVM, and present the results
in Figure 5. Clearly, model SOM-Hexa outperforms SOM-
Rect on categories DLL and PE, while SOM-Rect achieves a
better classification accuracy on category EXE. By averaging
the categorization accuracies of the three categories for each
model, we obtain that SOM-Hexa, SOM-Rect, and SVM
models offer classification accuracies of 80.78%, 79.56%, and
88.03%, respectively. It is evident that SVM model performs
significantly better than its SOM counterparts. Nevertheless,
the visualization capability of SOMs is also valuable to
the grayware characteristics evaluation. According to the
grayware classification on feature File Type by the SVM
model, 53.36% grayware are transported in DLL format,
while 25.80% and 20.84% ship as PE and EXE, respectively.

4.3. Attack Avenues Utilized by Grayware. Grayware transfers
itself to victim machines via diverse attack avenues existing
in various services and applications. The widespread of file-
sharing applications including instant messaging (IM) and
peer-to-peer (P2P) not only offers convenient installation
channels for grayware due to their superb anonymity, but
also provides a large infectable user base attributed to
their ubiquity. The enormous amount of security loopholes
harbored in networks and systems facilitates the automatic
delivery of malicious code, while the flexibility of macro-
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and scripting languages further accelerates grayware dis-
semination. Similar to worm and malware, grayware also
frequently employs social engineering as an effective mech-
anism tricking users to open grayware-carrying documents
or visit malicious web sites. In the proposed framework, we
define the taxonomic feature Attack Avenue that consists of
grayware installation mechanisms outlined in Table 4.

With the help of pattern matching techniques, we form
the set of training data for the feature Attack Avenue by
retrieving entries in the Trend Micro grayware encyclopedia
that match any patterns specified in Column Sample Pat-
terns of Table 4. For example, according to the description
of ADW_ALEXA.AK in Table 1, the strain in question is
dropped into a target system by malware or installed man-
ually by unsuspecting users. The pattern matching process
performed by Grayware Assessor results in the categorization
of ADW_ALEXA.AK into class Dropped by Malware due to
the existence of keyword dropped by in its description. We
then build an SVM learning model for the feature with the
multiclass-to-binary reduction method and use it to classify
the entire grayware repertoire. The grayware distribution
generated by the model reveals that 58.56% species can
piggyback in malicious software such as worm and virus,
rendering Dropped by Malware the most favorite grayware
installation mechanism. The next two frequently used attack
avenues are Components of Software and Bundle with Soft-
ware, the former packs grayware as components of other
legitimate software, while the latter treats grayware as an
independent program in packages. The drive-by download
is also employed by many grayware species including both
TSPY_LINEAGE.GL and ADW_ALEXA.AK of Table1. In
contrast, attack channels such as Vulnerability Exploit, IM,
and Network File Share are only utilized occasionally by

grayware.
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TaBLE 4: Installation mechanisms employed by grayware species.

ID Channel Description Sample patterns

1 Bundle with software Independent utilities distributed with other software Bundled with

2 Components of software Implemented as components of other legitimate software Component of, as part of
3 Drive-by download Visit web sites or download pages containing grayware Drive by

4 Dropped by malware Spread by other grayware such as downloaders Dropped by

5 Vulnerability exploits Exploits vulnerabilities such as buffer overflow Vulnerability, loophole
6 Instant messengers Install via Instant messengers (IM) such as AOL and MSN Instant messaging

7 Email and attachments Embedded in emails and attachments to trick recipients Email

8 Manually installation Directly download from web sites or through FTP services Manually install

9 Peer-to-peer Transport in P2P applications such as Gnutella and KaZaA Peer-to-peer, p2p

10 Network file shares Trusted network share folders as propagation channels Network share

To evaluate the impact on categorization performance
by parameter C, that is used to train learning models, we
construct a series of classifiers by varying parameter Cj, in the
range of [0, 300] and compute their classification accuracy,
precision, recall, as well as F;-measure. By controlling
the balance between training errors and the margin of
the separating hyperplane, parameter C, eventually affects
the classification performance as demonstrated in Figure 6.
Apparently, the classification recall improves monotonically
along with increasing parameter Cp, and the enhancement
is significant when C, changes in the range [1, 100]. In
the same manner, the Fj-measure, which is the weighted
harmonic mean of the precision and recall, mainly follows
the trend of the recall and therefore witnesses noticeable
improvement as well when C, falls in the range of [1,
100]. As expected, a larger C, imposes heavier penalty
on any training error committed by models and forces
the latter to make less categorization mistakes in order to
minimize the objective function, consequently delivering
better classification performance but at the cost of a smaller
margin of separating hyperplane.

5. Grayware Payloads and Their Effects

The deleterious grayware activities are instantiated by the
code transported into victim machines after the latter are
successfully penetrated. As the behavior of the grayware code
can only be constrained by the imaginations of its creators,
the proposed framework makes no attempt to enumerate
all possible grayware payloads, instead, it mainly focuses on
grayware impact on confidentiality, integrity, and availability
(CIA) of infected systems. The confidentiality of affected
hosts is inevitably jeopardized by the grayware-committed
information theft; while its integrity is destroyed when its
security applications are incapacitated, and its availability
is compromised after its resources such as CPU cycles
and network bandwidths are usurped by intruders. In this
Section, we define taxonomic features to delineate grayware
characteristics manifested in Activation stage of its life cycle.

5.1. Information Exposure. Confidential information such as
passwords, financial documents, or sensitive data stored on
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user systems is the source for grayware to generate profits.
The proposed framework uses the taxonomic feature Infor-
mation Exposure to describe grayware impact on informa-
tion confidentiality. The feature consists of three categories:
Low, Medium, and High, and is treated as single-label so that
each grayware strain has only one label. The training data for
the feature in question are constructed with the help of the
Trend Micro grayware encyclopedia. For instance, spyware
TSPY_LINEAGE.GL and adware ADW_ALEXA.AK depicted
in Table1 are assigned to categories High and Medium,
respectively. The collected training data help us build a SOM
with 10 x 10 hexagonal lattice, and the U-matrix of the
resulting map is presented in Figure 7. It is evident that the
map has strong clustering capability. In this regard, neurons
with label Medium mainly locate at the middle-left of the
map; while nodes of category Low occupy the upper- and
lower-left corners, and the remaining cells are the territory
of class High.

In the Trend Micro grayware encyclopedia, the adware
family ALEXA has 158 members, each of which has its
own unique name consisting of three parts: grayware type,
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on Information Exposure.

family name, and suffix. The grayware type is typically an
acronym for the genre described in Column name of Table 2.
For instance, the identifier ADW is designated to adware,
while TSPY is assigned to Trojan spyware. The family name
identifies a group of grayware specimens that share the same
code base and, therefore, have similar behavior. Members
in the same family are differentiated by suffixes that are
assigned in alphabetical or numerical order according to
their discovery date. For example, supposed that adware
family ALEXA has an instance ADW_ALEXA.AA, its two
immediate descendants are then named as ADW_ALEXA.AB
and ADW_ALEXA.AC, respectively. Obviously, the ages of
grayware strains in the same family have close relationship
with their names, and their chronological arrangement can
be obtained by sorting their names in ascending alphabetical
order. In this regard, the specimen ADW_ALEXA.GS is
a descendant of ADW_ALEXA.AK shown in Table 1. By
identifying best matching units (BMUs) in a SOM map
for members of a specific grayware family and connecting
them with lines according to their chronological orders,
we obtain a curve termed genealogical trajectory, which
describes the evolution of the grayware family in question
with respect to feature Information Exposure. Figure 8
outlines the genealogical trajectory for family ADW_ALEXA.

It can be observed from Figure 8 that 158 ALEXA family
members only occupy 14 out of 100 neurons in the map,
indicating that many strains share the same BMUs. To this
end, 145 ALEXA members select node (0, 3) as their BMU,
while the remaining 13 specimens have their own unique
cells. The fact that neuron (0, 3) bears label Medium for the
feature Information Exposure clearly points out that most
ALEXA family members impose medium threat on informa-
tion confidentiality. In comparison, only 4 ALEXA strains
including ADW_ALEXA.BI hit neurons with label Low and
another 4 family members such as ADW_ALEXA.A reside on
territory belonging to category High. Interestingly, ALEXA
members labeled High are ancestors of ADW_ALEXA.AK
while those with tag Low its descendants, implying its
declining impact on information confidentiality. On the
contrary, the genealogical trajectory for TSPY_LINEAGE
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family reveals that most of its members land on the area
occupied by category High of feature Information Exposure,
therefore imposing serious threat on the Internet ecosystems.

Each neuron in SOM has a weight vector with the same
dimensionality as feature vectors of input data. In the SOM
construction process, weight vectors of neurons are adjusted
according to input samples so that characteristics of the latter
could be preserved in certain cells of the map. It is therefore
reasonable to expect that a dominant attribute in the feature
space should still remain its significance in the SOM lattice
with high probability. We define the plane map for the SOM’s
ith attribute, which is a token appeared in the Trend Micro
repertoire, as the lattice formed by the ith component in the
weight vector of every neuron. Figure 9 presents the plane
map associated with token steal, here, the attribute value is
converted into a gray scale of [0, 1]: the brighter the gray-
scale is, the larger value the attribute assumes. Obviously,
the brightest neuron locating at (8, 9) has gray scale 0.950,
and it happens to be in category High. Similarly, its two
neighbors at (9, 9) and (9, 8) also belong to class High and
have gray scales 0.946 and 0.776, respectively. Furthermore,
neurons with significant values for token steal form a tight
community, an indicator for the SOM’s clustering capability.
Figure 9 clearly manifests that large values for token steal
only associate with neurons with label High, rendering the
attribute in question a unique differentiator for category
High. In this context, spyware TSPY_LINEAGE.GL outlined
in Table 1 can be considered with high confidence to put high
risk on information confidentiality as its description contains
token steal. On the contrary, plane maps for tokens export
and system disqualify them to be dominant features as they
appear in neurons with labels Low and High simultaneously.
Clearly, the characteristics of attributes’ plane maps, such
as mean and variance, are helpful to feature selection. Our
experiments show that the performance of model based on
top-70% attributes with highest gray-scale variance is similar
to that of model with full set of features. Therefore, top-70%
tokens with highest gray-scale variance are the significant
contributors to classification performance.
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5.2. Grayware Impact on Integrity. The feature Integrity
Impact is designed to characterize the grayware effect on
the integrity of infected systems. To hide its malicious
activities from users, grayware typically alters configurations
and lowers security settings on infected systems in an
unauthorized manner, compromising the integrity of the
latter. Some grayware species even aggressively disable or
terminate security applications installed on end systems,
essentially making grayware attacks undetected. Grayware
is classified with respect to feature Integrity Impact into
three categories, Low, Medium, and High. We gather training
data from entries of the Trend Micro grayware encyclopedia
having information on field System Impact and build an SVM
learning model with the multiclass optimization method.
The classification accuracy attained by the learner heavily
depends on parameter log(C,,) and its relationship with
log(C,,) is depicted in Figure 10. It is obvious that the
classification accuracy improves monotonically with the
increasing log(C,,) and reaches 90% when log(C,,) =
4.5. Similar to Cp in binary SVM models, parameter C,,
balances between training errors and margins of separating
hyperplanes, and a large C,, imposes heavy punishment on
training errors committed by SVM models, compelling the
latter to reduce training errors. Compared to the effect of
Cp on classification accuracies of binary learners for feature
Attack Avenue shown in Figure 6, parameter C,, in the
multiclass model for Integrity Impact demands a much larger
magnitude to achieve a commensurable performance due to
the complex objective function and constraints it controls.
With the same training data, we build a hexagonal SOM
map with a 10 X 10 neuron lattice for feature Integrity
Impact, and present its U-matrix in Figure 11. Apparently,
neurons with the same labels tend to cluster together in the
map: nodes for class Medium mainly reside at the upper edge
of the map, the territory of category Low is at the upper-
left corner and the middle of the grid, while the remaining
estate belongs to category High. The relatively dark color
for the region occupied by category Low reveals that the
average distance between its neurons are much larger than
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that for classes Medium and High. The clique formed by
cells with label Medium clearly points out that members of
the category Medium share similar features. In comparison,
species in class High scatter in a vast territory of the SOM
map, manifesting their diversified features. By performing
analysis on plane maps for feature Integrity Impact, we
can find that tokens such as sensitive and stolen are strong
differentiators for feature in question.

To analyze the effect on the classification performance
by the size of feature set selected by information gain, we
construct different sets of attributes which contain 60%,
70%, 80%, and 100%, respectively, of the features with the
highest information gains and build learners based on these
attribute sets. The performance of the resulting models is
depicted in Figure 12. It is clear that the relationship between
the size of attribute set and categorization performance is
monotonic, that is, a larger set of features leads to a better
classifier. However, the marginal difference in performance
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between the learner with top-70% attributes and the model
with full feature set also indicates that attributes with low
information gain actually contribute little to the classifica-
tion performance.

5.3. The Destructiveness of Grayware. The direct damage on
victim systems’ availability inflicted by grayware is measured
with taxonomic feature Destructiveness in the proposed
framework. A grayware is considered as destructive if it
corrupts victim’s file system or even formats the entire
hard drive; it is also destructive when grayware excessively
consumes target system’s resources affecting the stability
and productivity of the latter. By using infected machines
as launch pads for denial of service (DoS) attacks against
other hosts, grayware further affects the availability of DoS-
targeted systems as well. The single-label feature Destructive-
ness defined in the framework consists of two categories: Yes
and No. The training data for the feature are collected auto-
matically from the Trend Micro grayware encyclopedia. For
instance, spyware TSPY_LINEAGE.GL and ADW_ALEXA.AK
described in Table 1 are samples for categories Yes and No,
respectively. By using the multiclass-optimization method, we
build a sequence of classifiers for the feature with varying
parameter log(C,,) in the range of [1, 7] and present their
categorization accuracies in Figure 13.

The staircase-like curve in Figure 13 clearly indicates the
nonlinear relationship between classification accuracy and
log(C,,). The improvement on categorization accuracy is
marginal when log(C,,) changes in the range [1, 2]; however,
it jumps from 82.87% to 90.42% by increasing log(C,,)
from 2 to 3. After encountering a relatively insensitive
log(C,,) range in [3, 4], the classification accuracy once
again boosts significantly from 92.82% to 99.45% if log(C,,)
advances from 4 to 5. The classification accuracy saturates
as parameter log(C,) > 5. To evaluate the impact on
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grayware categorization by parameter log(C,,), we classify
species in the grayware repertoire with the series of learners
obtained above and compute grayware distributions on
classes Yes and No of feature Destructiveness. Our analysis
points out that 0.19% grayware species are tagged as Yes for
the feature in question when parameter log(C,,) = 3; and
it becomes 0.34% and 0.95% when parameter log(C,,) is 4
and 5, respectively. Therefore, grayware categorization is only
loosely sensitive to parameter log(C,,).

To evaluate the performance by using the model trained
based on data extracted from Trend Micro to classify entries
in other grayware encyclopedias, we randomly select 1000
grayware species collected in the Symantec encyclopedia to
be the test set. As taxonomic feature Destructiveness is not
used in the Symantec encyclopedia, instead, a feature termed
Risk Impact is defined, which has 5 levels: very low, low,
moderate, high, and very high. We tag an entry in the test
set as destructive if it is high or above in its feature Risk
Impact, or nondestructive otherwise. For comparison, we
also randomly pick 1000 entries from Trend Micro to obtain
another test set, and with both test sets in hand, we evaluate
the performance of the learner presented in Figure 13 with
log(C,,) = 4.0, which is described in Figure 14. Evidently, the
learner performs a little better on the test set collected from
Trend Micro and achieves a much higher recall. The fact that
the model delivers satisfactory performance on Symantec
encyclopedia seems to imply that similar tokens are used to
delineate the same grayware in different encyclopedias.

5.4. Payloads Carried by Grayware. The grayware effect on
confidentiality, integrity, and availability (CIA) of infected
systems has been measured with the help of taxonomic fea-
tures Information Exposure, Integrity Impact, and Destruc-
tiveness described previously. Another dimension to charac-
terize grayware activities relevant to CIA is to identify key
payload types carried by species even though it is unrealistic
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to enumerate all possible payloads. Our analysis on the Trend
Micro grayware encyclopedia indicates that many grayware
species deliver advertisements and other popups to end
systems, while some strains routinely modify system config-
urations or security settings on infected machines to avoid
detection. In addition, the excessive amount of processes and
network connections spawned by grayware on victim systems
not only consumes precious resources, but also degrades
user productivity. The surreptitious installation of multiple
grayware species on a victim host by different intruders in
a greedy and uncoordinated manner further deteriorates the
performance of the targeted host. The proposed framework
therefore introduces taxonomic feature Carried Payload to
classify grayware payloads into categories depicted in Table 5.
The feature Carried Payload is treated as multivariate as
grayware usually possesses multiple payloads simultaneously.

We resort to pattern matching techniques in generating
training data for feature Carried Payload: we first extract
entries from the Trend Micro grayware encyclopedia which
have information on the field Payload, then search the field
in question for any patterns specified in Column Keyword of
Table 5 to assign entries into corresponding categories. For
instance, spyware TSPY_LINEAGE.GL of Table 1 performs
three different activities, and its first task—move system
files to other folders—causes it to be put into category File
Manipulation due to keyword file, while its other two tasks
lead it to classes Terminate Process and Information Theft as
well. In the same manner, adware ADW_ALEXA.AK depicted
in Table 1 is assigned to class Hijack Session as it redirects
search queries via usurping user connections. The above-
described pattern matching process allows us to form a set
of training data consisting of 2,418 samples, among which
400 belong to the category Download Software, while 350
and 300 are from classes File Manipulation and Terminate
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Process, respectively. With the help of the multiclass-to-
binary reduction method, we obtain a series of SVM learning
models obtained by varying parameter C; in [10, 500], and
every learner comprises 10 binary classifiers, each of which
identifies a category shown in Table 5.

The categorization performance of the learners obtained
is shown in Figure 15. When parameter C, = 10, the model
attains average classification accuracy, precision, recall, and
Fi-measure 92.22%, 93.47%, 47.09%, and 0.58, respectively.
The recall and Fj-measure can be enhanced dramatically
with incremental parameter Cp,. More specifically, by chang-
ing Cp from 10 to 100, the recall increases from 47.09%
to 73.09% and the corresponding F;-measure jumps from
0.58 to 0.82; the recall and F;-measure continue to improve
significantly by further adjusting C, from 100 to 300,
but saturates after C, is beyond 300. In comparison, the
classification accuracy and precision remain above 92.00%
within the entire Cp, spectrum, in this regard, they are 98.95%
and 98.20%, respectively, when C, = 500. The grayware
distribution generated by the learner with C, = 500 is
depicted in Figure 16. Apparently, the largest category Popup
Advertisements (with ID = 3 in Figure 16) accounts for
51.39% of the entire grayware population. The contribution
from the next two most populated classes File Manipulation
and Network Connection (IDs = 10 and 9) is 21.12%
and 19.15%, respectively. It can be concluded that a vast
majority of grayware manipulates victims’ file systems to
store collected user profiles, sends them back to attackers via
network connections, and fetches targeted advertisements to
display on infected systems.

6. Extend Life Span by Eluding Detection

Profits generated by grayware heavily depend on the time
span of its discovery stage, motivating it to extend its life
expectancy at all costs. To avoid detection so that financial
gains can be maximized, grayware typically employs crypto-
graphic techniques to encrypt its communication channels
and collected information. Grayware can also increase the
difficulty of being identified by security applications through
compressing its executables and data generated. By residing
at main memory of infected systems and injecting itself into
legitimate processes, grayware essentially lives a parasite life
and becomes invisible to routine administration utilities,
turther expanding its life time. The diversified grayware
behavior in the Discovery stage of its life cycle is characterized
in this Section.

6.1. Information Encryption. One way for grayware to
defeat pattern-based anti-grayware products is to scramble
its files and network communications with cryptographic
techniques as it is nearly impossible for security devices to
transform ciphertexts into plaintexts to make pattern match
feasible without the knowledge of encryption algorithms
and keys involves. The proposed framework dedicates a
feature Information Encryption to characterize grayware
cryptographic behavior, and it contains two categories: Yes
for species employing encryption methods and No for
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TABLE 5: Malicious activities carried out by grayware.

ID Payload Description Keyword

1 Attack security software Lower security level, disable security applications Antivirus, firewall, security

2 Hijack Session Intercept connections or communication channels Hijack, affiliate, redirect

3 Popup advertisements Show ads out of contexts or overlap others Pop-up, pop-under

4 Information theft Collect sensitive data and keystrokes, send to attackers Passwords, information

5 Configuration change Modify homepage, preference, bookmarks, registry Folder, registry, config

6 Arbitrary commands Execute arbitrary programs by attackers Arbitrary code, execute, run

7 Download software Act as downloaders or droppers for extra programs Download, drop

8 Terminate process Kill system daemons or network applications Terminate, kill, stop

9 Network connection Open network connections to grant attacker full control Connect, proxy

10 File manipulation Add, modify, move, or delete system/data files File, overwrite, load, move
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Payload.

others. For instance, both the spyware TSPY_LINEAGE.GL
and adware ADW_ALEXA.AK depicted in Table 1 transport
and store their files in plaintext; while TSPY_LINEAGE.BZY
camouflages its data in an encrypted form. The training
data for the feature Information Encryption are gathered by
extracting entries from the Trend Micro grayware encyclope-
dia having information on the field Encrypted.

With the training data at hand, we evaluate the impact
on the grayware classification performance by the lattice
sizes of SOMs. For brevity, we only consider hexagonal
maps assuming dimensionality of x X y with x = y €
[5, 10] and present the categorization accuracy, precision,
recall, and F;-measure of the corresponding SOMs in
Figure 17. Generally speaking, the classification accuracy can
be improved steadily by enlarging the SOM grid size. In this
regard, the categorization accuracy boosts to 80.62% from
74.16% by changing the lattice dimensionality from 5 X 5
to 7 X 7, and it further advances to 83.97% for the 10 x 10
SOM grid. In the same manner, the F;-measure also increases
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FiGure 16: Classification on Carried Payload when C;, = 500.

monotonically along with the augmenting dimensions of
SOM maps. To this end, the F;-measure can be lifted from
0.63 to 0.72 when the 5 X 5 map is replaced with the 7 x 7
lattice, and it reaches 0.78 if a 10 x 10 SOM grid is used
instead.

The U-matrix of the 10 x 10 hexagonal SOM lattice
outlined in Figure 18 demonstrates the map’s clustering
capability. A SOM with a large grid size may result in
unlabeled neurons as manifested by cells at (5, 1) and (8, 1).
On the other hand, a large map estate indeed provides more
flexibility for weight vectors adjustment and refinement
leading to a better grouping power. In this context, the range
formed by the lowest and highest gray scales of neurons
occupied by class No in the 10 x 10 map is [27, 94], while
it is a much narrower spectrum [30, 72] for the 5 X 5 grid.
Compared to the highest categorization accuracy 83.97%
by SOMs, the SVM learner built on the same training data
with the multiclass-optimization method offers classification
accuracy 90.00%.
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6.2. File Compression. Executable file compression per-
formed by grayware not only reduces its storage foot-
print and consequently diminishes its exposure to scrutiny,
but also obfuscates its file content helping deter reverse
engineering and elude detection by pattern-based anti-
grayware devices. To achieve the same effect as uncompressed
executables, grayware usually transforms its executable into
a self-extracting archive consisting of the compressed file
and a piece of decompression code that unpacks the file
into its original form and transfers control to it on the fly
in execution. Although contemporary security devices are
capable of unpacking files that are compressed in a variety
of publicly known algorithms for grayware detection, they
are still ineffective when it comes to software packed with
proprietary compression methods.

In the proposed framework, we design a feature File
Compression to characterize the grayware behavior on
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packing executables. As it is nearly impossible to enumerate
all potential compression algorithms, especially when taking
proprietary packing mechanisms into considerations, we
only focus on the most grayware-favorite compression meth-
ods listed in Table 6. The training data for the feature File
Compression are constructed by retrieving entries from the
Trend Micro grayware encyclopedia. For instance, spyware
TSPY_LINEAGE.GL described in Table 1 compacts its files
in UPX format before shipping to affected systems, and
it is therefore marked as a positive sample for category
UPX. In contrast, adware ADW_ALEXA.AK transfers its
files in an uncompressed fashion excluding it from the
training data. By using the multiclass-to-binary reduction
method with parameter C, = 10, we build an SVM model
consisting of 8 binary classifiers, each of which identifies a
category of the feature File Compression. The performance
of the learner obtained can be derived with the cross-
validation procedure as 90.36% for categorization accuracy,
and 96.33%, 19.09%, and 29.00% for precision, recall, and
F)-measure, respectively.

The extremely low recall and F;-measure of the above-
described learner leads us to improve its performance by
adjusting parameter Cp,. By sweeping Cy in the range of [10,
500], we observe that the recall can be improved dramatically
from 19.09% to 57.94% when C,, is changed from 10 to 100,
and it further increases to 94.00% with C, = 500. In the same
manner, the F;-measure also reaches 96.17% when Cj is set
to 500. By analyzing the grayware distribution for feature File
Compression generated by the learner with C, = 500, we
observe that about half of grayware species resort to Petite
compression method, and Aspack and UPX are also heavily
used by grayware. In comparison, compression approaches
Upack, PECompact, and FSG are only occasionally employed
by grayware.

To evaluate the impact on categorization performance by
SVM kernel functions, we train learning models with the
following types of kernels, and present their performance
measures in Figure 19. (a) Polynomial kernels in the form
of (x;i-xj+ 1)? with variable exponent d and for brevity,
we only describe results with d = 1 or 2 (termed poly-
1 and poly-2 in Figure 19). (b) Radial basis functions
(RBFs) expressed as exp(—yl|X; — X; I*) with various y, and
Figure 19 only shows the result for y = 1 or 2. (c)
Sigmoid functions in the format of tanh(x; - X; + ¢) with
tunable parameter ¢ and the results are for ¢ = 0.5 or 1
(denoted as sigmoid-1 and sigmoid-2 in Figure 19). It can
be observed from Figure 19 that sigmoid functions deliver
the worst categorization performance, while RBFs marginally
outperform other kernel types even though the difference is
insignificant. Compared to linear kernels, learning models
with other kernel types such as RBFs demand much more
CPU cycles to train; therefore, the proposed framework
employs linear kernel functions by default in its learning
model generation.

6.3. Memory Residency. It is desirable for grayware to reside
at main memory of infected systems in order to continu-
ously track user activities, inject itself into active processes,



20 Journal of Computer Networks and Communications
TABLE 6: File compression types by grayware in encyclopedia of Trend Micro.
1D Compression  Description
1 Aspack A 'Win32 executable compressor capable of reducing file size and resisting reverse engineering
2 FSG A file compressor especially suitable for small EXE or ASM files.
3 PECompact A compressor for code, data, and import/export table with proprietary compression algorithm.
4 Petite A utility to compress and encrypt files, automatically expand files in memory when execution.
5 SFX The Self extractor (SFX) compresses a file and transports it to a remote system where decompression is performed.
6 UPX Ultimate Packer for eXecutables is an open-source packer performing in-place decompression.
7 Upack Upack is a file packer based on LZMA compression.
8 Other There are many other file compression packages such as Neolite, Nullsoft, PEPack, or RAR.
Performance on file compression by various kernels the former while inversely changes with respect to time in
1o ' ' ' ' ' ' ' the latter; meanwhile the gaussian-SOM model is obtained
105 b ] with neighborhood function gaussian and linear learning
rate. On the other hand, the linear-SVM is an SVM-based
LU R © S S PR learner generated with a linear kernel by the multiclass-
. to-binary reduction method. The classification performance
= in terms of categorization accuracy, precision, recall, and
E 90 k- - Fi-measure of the four models is depicted in Figure 20.
z With classification accuracy 83.78%, the linear-SVM learner
= B8 significantly outperforms its SOM counterparts as the best
it b= - SOM model can only achieve 73.84%. Among the three
SOM-based models, the inverse-SOM delivers the worst
75 L performance, while bubble-SOM and gaussian-SOM are
comparable in classification accuracy and precision. The
70 0 1T 2 3 4 5 6 grayware categorization on feature Memory Resident reveals

Kernel Id (1: linear, 2: poly-1, 3: poly-2,
4: rbf-1, 5: rbf-2, 6: sigmoid-1, 7: sigmoid-2)
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FIGURE 19: Performance on feature Compression Type by different
kernels.

and hide from administration utilities. Another benefit
of memory residency is that files associated to running
grayware programs cannot be modified or deleted unless
they are first removed from main memory. We designate
feature Memory Resident in the proposed framework to
characterize the property of grayware memory residency.
Two categories are defined for the feature in question: Yes for
species capable of staying at memory, while No for others.
For instance, both spyware TSPY_LINEAGE.GL and adware
ADW_ALEXA.AK depicted in Table 1 are memory resident
strains, while hacking tool HKTL_HIDEOUT.A and cracker
CRCK_REALVNC.A are not.

The training data for the feature Memory Resident are
automatically generated from the Trend Micro grayware
encyclopedia. With the training data at hand, we con-
struct four learning models named bubble-SOM, inverse-
SOM, gaussian-SOM, and linear-SVM. The bubble-SOM
and inverse-SOM models are built by using SOM tech-
niques with neighborhood function bubble but different
learning rates: the rate linearly decreases with time for

that 56.85% species are memory resident.

7. Trends on Grayware Characteristics and Risk

The proposed framework can also be used to evaluate
grayware threats and shed light on grayware evolution
leading to more effective prevention strategies and site-
specific defense policies.

7.1. Grayware with Compact Footprints. The storage foot-
print of a grayware strain characterized with the feature
File Size in the proposed framework clearly affects its
functionality and installation methods. The transportation
of a grayware specimen to infected hosts is inevitably
slowed down if it assumes a large footprint. The grayware
footmark is also constrained when it penetrates targets by
taking advantage of security vulnerabilities such as buffer
overflows as the latter necessitate specific size of input data
for successful exploitations. Furthermore, a sizeable grayware
consumes a large amount of storage space in victim systems
and leaves a visible trace leading to its detection. On the other
hand, a small grayware footprint does affect its payloads
carried and consequently its functionalities. Therefore, it
is expected that grayware creators would put much effort
on optimizing their products to balance between storage
consumption and functionality.

The sophisticated grayware behavior and its customized
functionalities complicates the definition of taxonomic
feature File Size. First, grayware could tailor its footprint
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Figure 20: Classification performance on Memory Resident by
different learners.

according to dynamics of affected systems such as OSs
and network bandwidth. Next, grayware is also capable of
transferring files in an accumulated manner, in addition,
periodical updates on files can change file sizes and extra
data/files may be downloaded on demand. Finally, it is
a common practice for grayware to compress its files to
facilitate transportation and storage. We therefore select
the smallest uncompressed footprint for a grayware if it
manifests diversified behavior on the feature File Size.

We specify ten categories for feature File Size: 10, 20,
30, 40, 60, 90, 150, 300, 600, and >600 (in KBytes). The
training data are constructed by extracting entries of the
Trend Micro grayware encyclopedia that have information in
field File Size and conversing their file sizes into the buckets.
AN SVM model is then built and used to classify the grayware
repertoire, resulting in the grayware distribution depicted in
Figure 21. Evidently, about 50.77% of the grayware popula-
tion specimens fall into the bucket with 60 KBytes, making
it the most populated category, while buckets with 10 and
90 KBytes contribute 17.74% and 15.56%, respectively, to
the grayware universe. By considering storage consumption
less than 100 KBytes to be footprint compact, we can easily
derive that 94.49% of grayware species are compact in their
footprints.

To investigate the relationship between grayware genre
and storage footprint, we classify grayware according to
feature Grayware Type and then categorize each group
with respect to feature File Size, and present part of the
classification results in Figure 22. The similar accumulated
distributions for grayware types Spyware and Adware result
in 94.76% and 90.86% of spyware and adware strains to be
compact in their storage footprints (i.e., <100 KBytes). In the
same manner, grayware Toolbar and Browser Helper Object
(BHO) share similar accumulated distributions; however,
they are quite different from Spyware and Adware. More
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FIGURE 22: Accumulated grayware distribution on Grayware Type
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specifically, only 38.10% and 41.21% of Toolbar and BHO
are footprint compact; while the remaining species bear
large storage footprints. Mainly functioning as plugins
for web browsers, Toolbar and BHO are confined by the
programming paradigms imposed by the host applications
such as Internet Explorer.

To further get insight into the trend on grayware storage
footprint, we classify grayware with respect to features File
Size and Discovery Date and obtain the categorization results
of Figure 23. Here, we aggregate together grayware species
discovered prior 2004 due to their sparse samples. The
evolution that grayware tends to shrink its storage footprint
chronologically can be easily observed. To this end, 74.03%
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and File Size.

of grayware species created before 2004 are compact in
their storage footprints, it increases to 92.56% for 2005
and further advances to 96.79% and 93.10% in 2006 and
2007, respectively. The heavy-tailed distribution of storage
footprint for 2004-born strains is also evident in Figure 23
as 12.24% of its members fall outside the range of [0,
600] KBytes. In contrast, only 2.13%, 0.70%, and 3.70%
of grayware species discovered in 2005, 2006, and 2007
consume storage larger than 600 KBytes.

7.2. Diversified Attack Avenues and Multiple Payloads. A
grayware typically carries a variety of payloads in order
to perform multiple activities including those listed in
Column Payload of Table 7. Meanwhile, grayware payloads
also develop and evolve along with time as demonstrated by
the categorization with respect to features Carried Payload
and Discovery Date shown in Table 7. Evidently, 181 species,
which are 33.21% of the 545 strains discovered prior 2004,
mainly manipulate files on affected systems, while 83 modify
system configurations. Similarly, a vast majority of 2005-
born grayware focus on file manipulation; however, an
increasing number of grayware strains are designed to steal
sensitive information. Advertisement delivery and software
download are the dominant payload types of species detected
in 2006. The three key payloads contained by specimens
discovered in 2007, Network Connection, Arbitrary Com-
mands, and Hijack Session, are clearly inseparable for any full-
fledged grayware; attackers-initiated commands are executed
on hijacked user sessions to collect sensitive information,
which is sent back to attackers via network connections.

The classification in Table 7 also manifests that payload
type Attack Security Software is an important weapon in gray-
ware’s arsenal used to fight against anti-grayware products
and subsequently extend its life span. Compared to the four
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2004-born grayware strains that detect and disable security
protection applications on affected systems; the number of
species with the payload in question reaches 60 and 458,
respectively, in 2005 and 2006; it further advances to 3,358 in
2008 after decreasing to 33 in 2007. There is no doubt that
improved detection capabilities of anti-grayware products
definitely weaken the effectiveness of grayware attacks and
force the latter to discard its ineffective payloads temporarily
until new and effectual attack mechanisms are invented. As
the battle between grayware and anti-grayware progresses,
the cycle formed by the growth and decline of the relative
strength of the two sides will continue. Similar observations
can also be applied to other payload types, for instance, the
favorite payload type File Manipulation in 2004 and 2005 is
overshadowed by others in 2006 and 2007 but resurges as a
major player in 2008.

The summation of grayware species presented in rows
and columns of Table 7 is 133,114, much larger than the
population of the Trend Micro repertoire (i.e., 86,834).
Therefore, some grayware strains in fact carry multiple pay-
loads simultaneously. Our grayware classification according
to the number of carried payloads reveals that 73.96% of
the population possess only one payload; while 3.52% and
18.02% encapsulate two and three payloads, respectively.
Although it is rare for a grayware to carry more than
six payloads, 23 grayware strains are still found to pack
six payloads within their footprints. The evolution on
payloads carried by grayware can be further analyzed by
classifying grayware with respect to features Carried Payload
and Discovery Date depicted in Figure 24. Most grayware
species created in 2004-2006 are single-payload carriers (i.e.,
singleton); more specifically, 65.67% of 2004-born strains
carry only one payload, and it is 92.48% and 95.46% for
2005 and 2006, respectively. In contrast, only 12.26% and
27.47% of grayware detected in 2007 and 2008 are singletons,
while 83.67% 2007-discovered species carry three payloads
and 64.49% 2008-created strains contain four payloads. By
taking into account the fact that grayware tends to reduce its
footprint in exchange for propagation speed and penetration
rate, we clearly perceive grayware achievement to pack more
payloads within the ever reduced footprint, indicating the
formation of professional grayware development process.

The evolving grayware attack avenues can be analyzed
with the help of the categorization according to features
Discovery Date and Attack Avenue shown in Figure 25.
The curve “Attack Avenues = 27 depicts the distribution
of grayware that penetrates target systems by utilizing two
attack mechanisms. Apparently, its peak clearly points out
that most two-attack-channel graywares are created in 2005.
In the same manner, the curve “Attack Avenues = 3” forms
its pinnacle in 2006, while spikes of curves “Attack Avenues =
47 and “Attack Avenues = 5’ coincide in 2007. The
observation that peaks of the above-described curves shift
chronologically signifies that newly-created grayware prefers
to penetrate targets with multiple installation mechanisms.
Again, the combined objectives of reduced footprint, multi-
payloads, and diversified attack avenues attained by grayware
can indeed act as a strong indicator for the maturity of the
grayware industry.
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TaBLE 7: Grayware classification based on payload and discovery date.

# Payload 2004 2005 2006 2007 2008

1 Attack security software 4 (0.005) 60 (0.069) 458 (0.527) 33 (0.038) 3358 (3.867)
2 Hijack Session 39 (0.045) 183 (0.211) 397 (0.457) 14660 (16.883) 86 (0.099)
3 Popup advertisements 58 (0.067) 594 (0.684) 43219 (49.772) 611 (0.704) 141 (0.162)
4 Information theft 49 (0.056) 821 (0.946) 621 (0.715) 152 (0.175) 3429 (3.949)
5 Configuration Change 83 (0.096) 362 (0.417) 1033 (1.190) 602 (0.693) 3578 (4.121)
6 Arbitrary commands 58 (0.067) 404 (0.465) 758 (0.873) 14789 (17.031) 151 (0.174)
7 Download software 37 (0.043) 350 (0.403) 3532 (4.068) 1603 (1.846) 794 (0.914)
8 Terminate process 10 (0.012) 166 (0.191) 597 (0.688) 165 (0.190) 105 (0.121)
9 Network connection 26 (0.030) 313 (0.361) 1307 (1.505) 14829 (17.077) 150 (0.173)
10 File manipulation 181 (0.208) 12806 (14.748) 1102 (1.269) 241 (0.278) 4009 (4.617)
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FIGURE 24: Accumulated distribution of grayware with respect to
number of payloads.

7.3. Strong Clotting Capability. By infiltrating deeply into
victim systems and intertwining tightly with other applica-
tions, grayware could increase the difficulty of being removed
by security products and therefore expand its life span.
One way for grayware to resist elimination is to create
multiple files in infected systems and make them work
in a coordinated manner so that any file removal could
trigger the self-healing process: survival files automatically
reinstall any missing files. Clearly, the self-healing effect can
be enhanced by increasing the number of files involved;
however, a large set of created files do leave more visible
traces on affected systems, exposing grayware to detection.
The grayware evolution on the number of created files can be
evaluated based on the classification with respect to features
Discovery Date and Created Files outlined in Figure 26. Here,
grayware with >10 generated files is aggregated into the
category Number of Files = 10. Figure 26 shows that 2004-
born grayware strains have no preference in the numbers
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of created files; while species discovered in 2005 tend to
contaminate affected systems with a large number of files,
increasing the difficulty to restore infected systems to a clean
state. Grayware discovered in 2006—2008 seems to neatly
balance between created files and detection probability as
most species create 3-4 files so that a self-recovery scheme
can still be feasible while visible traces are marginal.
Another way for grayware to enhance its coherence with
victim systems is to pollute registry databases of the latter
with multiple keys so that it is automatically activated in
every system reboot and survives system crashes, essentially
making it a permanent resident on affected systems. By
defining the taxonomic feature Registry Key and categorize
grayware accordingly, we observe that 52.44% of grayware
species create only one registry key, while 18.29% and 8.92%
generate two and three registry keys, respectively. Although
90% grayware strains contaminate registry databases with
less than 7 entries, some outliers actually insert a significant
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amount of registry keys, for instance, 2% grayware specimens
generate more than 20 registry keys, a dozen of which
including ADWARE_180SOLUTIONS and ADW_ALEXA.BS
even scatter more than 100 registry keys in victim systems.
By further categorizing grayware with respect to feature
Discovery Date in addition to Registry Key as demonstrated
in Figure 27, we can analyze grayware evolution on registry
key manipulation. First, the maximum number of registry
keys created by grayware increases gradually: it is 84 in
2004, but changes to 167, 119, 189, respectively, for the
subsequent three years. Next, the amount of grayware with
multiple registry keys also expands annually, in this regard,
only 4% of the 2004-created grayware generate >10 registry
keys; however, more than 8% of strains discovered in 2005—
2008 insert at least 10 entries into registry databases. For the
feature Registry Key, there is a trade-off between coherence
with infected systems and exposure to detection: a large
amount of registry keys certainly helps improve the clotting
capability but at the cost of excessive traces left by the created
keys that may eventually betray the grayware. Similar to
feature Created Files, Registry Key can achieve a self-healing
effect by monitoring the status of registry database and
rematerializing the keys if any change is detected.

7.4. Risk Imposed by Grayware. Efficient incident responses
and effective defense strategies necessitate grayware risk
assessment. However, the diverse grayware behavior and
its sophisticated characteristics make it challenging to
thoroughly evaluate the grayware threat on the Internet
ecosystems. Based on the grayware characteristics defined
in the proposed framework and summarized in Table 8,
we design the feature Risk Level to measure the threat
imposed by grayware. In addition to listing taxonomic
features in Table 8, which clearly cover the entire grayware
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life cycle, we also quantify the contribution to the feature Risk
Level by each characteristic with the configurable scoring
mechanism defined in Column Default Scoring Method
and compute a risk score for each grayware. For instance,
the spyware TSPY_LINEAGE.GL outlined in Table 1 attacks
seven different OSs causing 7 points to be added to its risk
score; in addition, each of its high information exposure
and high system impact contributes 3 points to its risk score
as well. By summing up the contributions from all features
described in Table 8 for TSPY_LINEAGE.GL, we obtain its
risk score 27.

Based on risk scores, we define five categories for feature
Risk Level according to the following criteria.

(1) Extremely Critical. This category accommodates the
most dangerous grayware species that possess sig-
nificant damaging power and are very difficult to
eliminate completely. Specimens of this category
typically have risk scores >40 (configurable).

(2) Highly Critical. This group contains grayware strains
that are highly dangerous and difficult to contain, and
assigned risk scores are larger than a threshold 36.

(3) Moderately Critical. Grayware in this class may have
multiple payloads or attack channels and impose
medium system impact or create >2 registry keys.
The default threshold for risk scores is 26.

(4) Mildly Critical. This category holds grayware spec-
imens with risk scores greater than a specified
threshold (20 by default).

(5) Slightly Critical. Species pose little threat to affected
systems and end users.

The grayware categorization, with respect to the
feature Risk Level based on the above-described
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TaBLE 8: Features used in the gray risk evaluation by the proposed framework.

Stage Feature Description Default scoring method
Penetration Affected Platform Operating systems (OSs) vulnerable to grayware Number of OSs affected
Attack Avenue Installation mechanisms to infect systems Number of attack channels
Information Exposure Expose confidential information Low: 1, Medium: 2, High: 3
Activation Integrity Impact Impact on system integrity and availability Low: 1, Medium: 2, High: 3
Destructiveness Damage file systems, stability, and productivity No: 1, Yes: 2
Carried Payload Malicious activities after invading victims Number of payloads
Discovery Information Encryption Cryptographic methods employed by grayware No: 1, Yes: 2
Memory Resident Stay at main memory after execution No: 1, Yes: 2
Eradication Registry Key Create registry keys to survive reboot Number of registry keys
Manipulated Files Create/modify files to customize victim systems Number of created files

criteria, allows us to derive that both the spyware
TSPY_LINEAGE.GL and the adware ADW_ALEXA.AK
depicted in Table 1 are in category Moderately Critical.
In comparison, TSPY_QQPASS.AXY, ADW_HOTBAR.P,
and HKTL_IPSCAN.C are assigned to class Extremely
Critical, while CRCK_QIQLA, ADWARE_HUNTBAR.C,
and SPYWARE_TRAK_ACTLOG.16 are considered highly
critical. Furthermore, the grayware classification according
to Grayware Type and Risk Level presented in Table 9
helps us investigate the risks imposed by different grayware
types. Generally speaking, the majority of grayware with
label Extremely Critical come from grayware types Cracking
Application, Adware, and Spyware. For category Highly
Critical, grayware types Adware, Hacking Tool, and Remote
Access Trojan (RAT) are the key contributors; while most
members of class Moderately Critical belong to Spyware,
Adware, Trojan Spyware, and Browser Helper Object. On
the contrary, most strains in Spyware, Trojan-Spyware, and
Toolbar are moderately critical, and the majority of Dialer,
Hacking Tool, and Dropper are labeled as Mildly Critical.

To analyze the evolution of risks imposed by grayware,
we categorize grayware according to features Risk Level and
Discovery Date to obtain the results of Figure 28. The major-
ity of the 2005-born grayware are highly critical, while most
species created in 2006 are considered as moderately critical,
and many strains discovered in 2007 and 2008 are labeled
as Mildly Critical. By computing the annual ratio between
species in extremely/highly and moderately/mildly/slightly
groups, we can observe that the ratio reaches its peak in 2005,
then falls into a valley in 2007, but rises again in 2008. It is
therefore expected that grayware risk fluctuates along with
time, demanding constant monitoring on its evolution and
continuous effort on its containment and mitigation.

8. Conclusions and Future Work

By chronologically enumerating discovered spyware, adware,
and other grayware, the Trend Micro grayware encyclopedia
provides critical information for grayware analysis and
incident responses. The encyclopedia is further enhanced
by the proposed framework Grayware Assessor that offers

classification and generalization capabilities. Treating gray-
ware classification as a supervised learning problem, the
proposed framework builds learning models for taxonomic
features with the help of support vector machines. Each
entry in the grayware encyclopedia is collapsed into a bag
of words by ignoring word positions in the entry text
and is further represented as a feature vector with each
word as an attribute and the word occurrence frequency
in the corresponding entry as its value. We reduce the
dimensionality of feature space formed by grayware entries
which is reduced via feature selection, word stemming, and
stopword removal. The training data for learning models
are automatically extracted from the encyclopedia, and SVM
learning models are built with both multiclass-to-binary
reduction and multiclass-optimization methods, while cat-
egorization results are visualized with self-organizing maps.

The classifications on taxonomic features covering entire
grayware life cycle demonstrate that the proposed framework
can classify grayware with high performance in terms
of accuracy, precision, recall, and F,-measure. The trend
analysis conducted in the proposed framework helps us
understand the grayware evolution and the development
of grayware characteristics. To this end, the proposed
framework reveals that grayware species are sparing no effort
on shrinking their storage footprints to improve propaga-
tion speed and therefore reduce the probability of being
detected. By finding entry points into victim systems with
diversified attack avenues and subsequently transporting
multiple payloads into infected hosts, grayware effectively
increases its penetration rate and possesses much versatile
functionalities. The proposed framework also exposes the
ever-improving grayware clotting capability manifested by
its deep infiltration into file systems and registry databases
on affected machines, making it extremely difficult to be
completely eliminated. Furthermore, attacks on security
protection applications have become an effective weapon to
defeat anti-grayware products. Finally, the threat assessment
conducted by the framework points out that grayware types,
Cracking Application, Adware, and Spyware, are the major
risks to the Internet ecosystem.

To further enhance both the functionality and flexibil-
ity of the proposed framework, we intend to work with
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TaBLE 9: Risk levels of grayware assigned by the proposed framework.
# Genre Extremely Highly Moderately Mildly Slightly
1 Spyware 223 (0.257) 44 (0.051) 47244 (54.407) 3954 (4.554) 609 (0.701)
2 Dialer 9(0.010) 5(0.006) 95 (0.109) 14931 (17.195) 156 (0.180)
3 Adware 413 (0.476) 12165 (14.010) 774 (0.891) 475 (0.547) 297 (0.342)
4 Hacking Tool 4 (0.005) 68 (0.078) 86 (0.099) 3444 (3.966) 70 (0.081)
5 Browser Helper Object 70 (0.081) 18 (0.021) 351 (0.404) 160 (0.184) 92 (0.080)
6 Cracking Application 461 (0.531) 0 (0.000) 100 (0.115) 27 (0.031) 36 (0.042)
7 Trojan-Spyware 6 (0.007) 0 (0.000) 516 (0.594) 68 (0.078) 18 (0.020)
8 Toolbar 46 (0.053) 16 (0.018) 233 (0.268) 66 (0.076) 33 (0.020)
9 Trackware 63 (0.073) 0 (0.000) 39 (0.045) 9(0.010) 5(0.004)
10 Keylogger 8(0.009) 5(0.006) 36 (0.042) 25(0.029) 11(0.011)
11 Remote Access Trojan 2(0.002) 58 (0.067) 9(0.010) 4 (0.005) 2(0.001)
12 Hijacker 4(0.005) 2 (0.002) 30 (0.035) 5 (0.006) 4(0.004)
13 Dropper 2(0.002) 1 (0.001) 24 (0.028) 34 (0.039) 21(0.019)
Trend analysis on risk level other encyclopedias. Our preliminary evaluation presented
50000 ' ' ' ' ' in this paper indicates that such a research direction is
45000 promising although manual intervention is still needed due
40000 to inconsistencies in feature taxonomies, connotation, and
© 35000 granula.ri'gy among different encyclopedias.. Fina.llly, we gim
“é at providing toolkits that are able to monitor in r.eal time
& 30000 the Internet ecosystem, evaluate the grayware evolution, and
5 25000 forecast the development trend of various grayware species.
—é 20000
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