Hindawi Publishing Corporation

Journal of Computer Systems, Networks, and Communications
Volume 2009, Article ID 682813, 13 pages
doi:10.1155/2009/682813

Research Article

A Cross-Layer Framework for Efficient Streaming of
H.264 Video over IEEE 802.11 Networks

Azfar Moid and Abraham O. Fapojuwo

Department of Electrical and Computer Engineering, University of Calgary, AB, Canada T2N IN4

Correspondence should be addressed to Azfar Moid, amoid@ucalgary.ca

Received 19 November 2008; Revised 1 March 2009; Accepted 20 April 2009

Recommended by Bechir Hamdaoui

This paper presents a framework for reliable and efficient streaming of H.264 video over an IEEE 802.11-based wireless network.
The framework relies on a cross-layer mechanism that jointly adapts the video transcoding parameters at the application layer
and the video transmission parameters at the data-link layer to the network conditions defined by buffer length and wireless
propagation channel. The effectiveness of the proposed framework is demonstrated through the transmission of three test video
sequences (Akiyo, Container, and Foreman) having different degrees of motion over an IEEE802.11 wireless network. Simulation
results show that the proposed cross-layer-based framework provides an enhancement of up to 3 dB in the video quality with a
negligible increase (<5%) in the packet processing time. Hence, the proposed framework achieves a good balance in the tradeoff
between video quality and packet processing time. The proposed framework, along with its performance results, provides valuable
insights on the selection of network parameter values for efficient and reliable transmission of video applications in wireless
networks.

Copyright © 2009 A. Moid and A. O. Fapojuwo. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1. Introduction

In recent years, the advances in efficient video compression
technologies have made it possible for the transmission
of video applications over bandwidth constrained wireless
channels. The H.264 video format, which is a latest state-
of-the-art international video coding standard developed by
the joint video team (JVT) of ITU-T and ISO/IEC [1], is
recently adopted as a dominant video coding standard in
mobile broadcasting and in other advanced video streaming
networks. Due to its excellent compression efficiency and
ability to adapt to different mobile devices [2], service
providers, such as online video storage and telecommuni-
cations companies, are also beginning to adopt H.264 to
their system model. As far as real-time video streaming
over wireless channel is concerned, researchers have already
started working toward adapting the H.264 standard for
video streaming applications [3], thereby making real-
time transmission of the time-sensitive video information
possible over bandwidth-constrained wireless channels.
Currently, video is pre-encoded at the content provider’s
server at different bit-rates, and the clients select the

video stream based on their requirements. This method
is not an intelligent way of streaming the video content
because the network resources can sometime be overused
or under-utilized. The use of real-time transcoder, also
called transcoder-on-fly, is suggested in literature [4] to
adapt the video stream to the network conditions, defined
by buffer length and wireless propagation channel. Video
transcoding is a process of recompressing a video stream
according to the end-user’s requirement. The essential part
of the process is to closely meet the constraints of the
target applications. For example, in the wireless domain,
constraints include the varying channel conditions, available
transmission bandwidth, current traffic load, desired spatial
or temporal resolution, delay allowance, error resilience, and
so forth. Homogeneous and heterogeneous transcoding are
possible where, in the former, the conversion of bit-stream
is done within one video standard and, in the latter, bit-
stream conversion is done using multiple video standards.
As the H.264 standard is efficient in both the storage and
transmission, in this work, we have focused only on the
homogeneous transcoding method.

Among the existing techniques of transcoding, the bit-
rate reduction techniques are the most efficient ones [5],
which provide the dynamic adjustment of bit-rate to meet
the conditions of required output video stream. Usually, the
bit-rate of the compressed video can be adjusted by changing
the quantization parameter (QP) at the re-encoding process,
where larger quantization steps (QSs) are used for generating
lower bit-rate video stream. When the channel condition
is bad, the transmitted video is encoded at a lower bit-
rate, to avoid any retransmission delay and packet-loss. This
adaptation does not only provide a smooth video quality at
the end device but also minimizes the load on the network.

Two different types of problems are typically coexisting
in wireless video streaming networks [6, 7]: (1) stabilizing
the video buffers at the application layer, and (2) providing
efficient error-resilience functionality at the data-link layer.
Conventionally, the error-resiliency is provided by injecting
the redundant packets in the video stream, but this injection
destabilizes the video buffer at the decoder side. Hence, both
the aforementioned problems need a joint treatment. As
channel adaptive video transcoding is proven to be the most
efficient way for video streaming over the wireless channel
[8], there is a requirement of redefining the transcoder and
decoder buffer dynamics for variable bit-rate encoded videos.
At the same time, care must be taken to avoid any packet
dropping at the decoder side due to exceeding the deadline
time limit. In this paper, both the buffer constraint at the
application layer and the time constraint at the data-link
layer are jointly treated using a cross-layer mechanism, to
achieve an efficient video streaming solution.

Based on the specific applications and requirements,
different bit-rate reduction transcoding algorithms are pro-
posed in literature. Recently, a significant improvement
in transcoding efficiency is reported in [9], where the
authors propose a rate-distortion- (RD-) based model, using
different Lagrangian multipliers in the pixel and transform
domains to obtain the optimum results. The RD cost is
minimized in both pixel and transform domains and exper-
imental results show that the proposed transcoding model
provides a good balance in the tradeoff between high perfor-
mance and transcoding speed. An error-resilient transcoding
scheme is presented in [10], where RD-optimized intra-
and intermode decisions are made, based on the impact of
channel errors propagated to the next frame. The proposed
scheme in [10] enhances the performance of the error-
resilient transcoder and improves the robustness of the
generated bit-stream against packet loss. High peak-signal-
to-noise-ratio (PSNR) improvement is also achieved due
to the error-resilience property of the scheme proposed in
[10]. The authors in [11] have shown that for constant
bit-rate video coding, the encoder buffer size can solely be
maintained by changing the decoder buffer size according
to the bit-rate conversion ratio and transcoder buffer size.
Although the constant bit-rate videos are more sensitive to
varying channel errors, still the finding that the transcoder
buffer can be controlled by the decoder buffer is phenomenal
[11] and this has been exploited since then. For example,
a fuzzy-logic-based congestion control algorithm has been
developed in [12], which changes the sending rate of a

Journal of Computer Systems, Networks, and Communications

video transcoder based on the packet description, instead
of using the feedback information of packet loss. A cross-
layer packetization and retransmission technique for delay
sensitive applications over wireless networks is presented in
[13], where the proposed greedy algorithm takes advantage
of the available information on retransmission attempts at
the medium access control (MAC) layer for improving the
streaming video quality. Although the approach presented
in [13] might be useful for wavelet coders, where some
sub-bands are more important than the others, this scheme
cannot be generalized to H.264 video encoders because of
the equal priority of all P-frames (i.e., predicted frames).
However, the idea of using the retransmission information
available at the MAC layer is attractive and can be utilized to
assess the network conditions.

The motivation for this work comes from the fact that to
the best of our knowledge, a framework for video streaming
over the wireless network, considering both the application
and data-link layer constraints, is missing in literature. In this
paper, we present a cross-layer-based framework for efficient
transcoding of the incoming video stream, where a joint
treatment of the application layer buffer stabilization and
data-link layer error resiliency is considered. This serves as
the paper’s main contribution.

The paper is organized as follows. Section 2 is the core
of the paper where the proposed cross-layer-based video
streaming framework is described in detail along with
analysis of the relevant parameters. The performance of the
proposed framework and simulation results are presented
and discussed in Section 3. Section 4 concludes the paper.

2. Video Streaming Framework

2.1. Preliminaries. The proposed cross-layer-based frame-
work comprises a cross-layer module (CLM) that interfaces
with the application and data-link layers of the TCP/IP
protocol stack, as shown in Figure 1. The CLM consists of
four main elements, which are briefly summarized here and
their detailed treatment is provided in later subsections.
First, the channel estimator is the nucleus of the CLM
responsible for estimating the current channel conditions,
which are extracted from the information on the packet
transmission attempts available at the data-link layer. The
estimated channel information is then fed to the buffer
controller, transcoding controller, and FEC/ARQ controller,
as shown in Figure 1. The second element of the CLM is the
buffer controller, which uses the channel information from
the channel estimator to control the application layer’s buffer
overflow/underflow. The third element of the CLM is the
transcoding controller, which calculates the video transcod-
ing rate in real-time, based on the information available
from the channel estimator and the buffer controller. The
final element of the CLM is the FEC/ARQ controller, which
optimally calculates the number of redundant FEC packets
required for providing the error resilient functionality, based
on the estimated channel information. The paper shows that
by combining all the four elements of proposed framework, it
is possible to achieve an efficient and reliable video streaming

Journal of Computer Systems, Networks, and Communications

Application layer

{

Transport layer

U

Network layer

{

i
Buffer
controller
1T

Transcoding
controller

Channel estimator
Cross-layer module

FEC/ARQ
controller
1

Data link layer

]

Physical layer

FIGURE 1: Augmented TCP/IP stack with the proposed cross-layer
module (CLM).

over wireless networks. It is important to note here that
the application layer buffer management and video rate
calculation functionalities can be generalized to any video
format and any wireless network. However, the data-link
layer error resilient functionality can only be applied to the
protocols where FEC and ARQ schemes can be implemented,
such as IEEE 802.11 wireless network. Hence, in this work,
we have only considered the infrastructure mode IEEE
802.11 wireless network, where a video client is connected
to an access point (AP), as illustrated in Figure 2. The
incoming video frames are stored at the transcoder buffer
before the transcoding operation starts at the AP, where the
proposed CLM has also been implemented. In the ensuing
analyses and simulations, the transmitter refers to the AP,
while the video client is termed as the receiver. The decoder
functionality is implemented at the receiver, where video
frames are eventually received, buffered, and rendered to the
client’s terminal. Also, throughout the paper, a packet refers
to an IEEE 802.11 data-link layer protocol data unit whereas
a frame denotes a video frame at the application layer. In this
paper, the terms CLM and cross-layer framework will also
be used interchangeably. A slow varying wireless channel is
considered in which the channel state does not change during
the transmission of one frame. The preceding statement
implies that a form of microdiversity is implemented at the
AP and wireless client device to combat fast fading.

2.2. Channel Estimation. As the wireless channel varies
unpredictably over time and space dimensions, the first
step in building the proposed framework is estimating
the current wireless channel condition. Conventionally, the
channel errors are characterized by the average bit-error
rate (BER). According to [14], accurate modeling of the
BER requires knowledge of channel coding schemes and

the modulation type used. For IEEE 802.11 wireless local
area network (WLAN), the modulation types and channel
coding schemes vary dynamically based on the data-rate
and channel errors [15]. Therefore, instead of using a
conventional channel estimator for IEEE 802.11 channel that
extracts the information directly from the physical layer,
we have used the information of the packet transmission
attempts from the data-link layer to estimate the required
channel information, which is also consistent with [13].

In a wireless environment, it is important to note that
the channel state information (CSI) available at the receiver
side cannot directly be used at the transmitter side because
of the latency involved in information transfer from the
receiver to the transmitter. Therefore, all the real-time video
streaming solutions rely on the channel estimation at the
transmitter side, where a channel estimation is made, based
on different parameters available directly at the transmitter
(e.g., the retransmission parameter).

Here is how the channel estimator works. A transmission
attempt counter is associated with every outstanding packet
at the data-link layer. The counter is initialized to zero
for each new packet to be transmitted and incremented by
one at every transmission attempt. A maximum number of
transmission attempts (Rp,y) is enforced for each packet, in
order to prevent excessive packet delay. In essence, further
transmission of a packet after Ry, unsuccessful transmission
attempts is aborted at the data-link layer, this packet is then
recovered by higher layer error control mechanisms. Note
that each transmission attempt at the data-link layer costs a
round-trip time (RTT), which is a measure of the delay in
the network. Due to the associated RTT cost, Ryay is limited
for time-sensitive applications, such as video streaming. If
the number of transmission attempts reaches Rpay, this
indicates a bad network condition. The typical Ry value
for IEEE 802.11-based wireless network is 4 [16]. In this
paper, we assume the threshold of L, = 1 transmission
attempt to indicate a good channel. A second threshold of
L, = 2 indicates a moderate channel condition. The channel
condition is considered to be bad if a packet gets transmitted
in 3 or 4 attempts, which is also consistent with [13].

Based on the available channel information through the
packet transmission attempts and the optimum size of the
application layer buffer sizes calculated, the application layer
then invokes the best strategy to transcode the incoming
video bit-stream. This is a bottom-up approach in which
the quality of streaming video is maximized for a given set
of network conditions. Similarly, the channel information is
used at the data-link layer to calculate the required number
of redundant FEC packets to maximize the error-resilience
functionality.

2.3. Buffer Management at the Application Layer. Buffer
management is another feature of the proposed framework,
implemented in the buffer controller, as shown in Figure 1.
For real-time video streaming applications, the application
layer buffer sizes at both the transcoder and decoder sides
play an important role in system performance (e.g., the
overall power budget requirement [17]). The key to the

Streaming media server

(transcoder)-transmitter

Journal of Computer Systems, Networks, and Communications

Access point

Video client
(decoder)-receiver

FIGURE 2: Infrastructure mode IEEE 802.11 wireless network for video streaming.

application layer buffer management is the rate-control
scheme employed. A rate control scheme determines the
optimum transcoding rate, which is used during the video
compression process to adjust the coding parameters, for
example, the QP to prevent the application layer buffers from
overflow or underflow. Various rate-control schemes have
been studied in literature, for example, TM5 for MPEG-
2 [18], TMNS for H.263 [19], VM-18 for MPEG-4 [20],
and JVT-1049 for H.264 [21]. To analyze and meet the
buffer constraints at the application layer, in this section, we
first determine the buffer occupancy at both the transcoder
and decoder sides. It is assumed that the maximum size of
transcoder and decoder buffers is limited and denoted by
B" and B (in bits), respectively. Moreover, the decoder
has a cushion of F video frames in its buffer to provide
protection against any blackout periods, in case of buffer
underflow. At time ¢, let the transcoder and decoder buffers
be denoted by B:(t) and B,4(t), respectively. We assume that
at the startup time ¢t = 0, both the transcoder and decoder
buffers are empty, that is, B;,(0) = 0 and B4(0) = 0,
respectively.

2.3.1. Transcoder Buffer. Let r(t) denote the incoming video
bit-rate (in bits/sec) at the transcoder input, 7’ (¢) denotes the
bit-rate (bits/sec) of the transcoded video, and R.(t) is the
channel bit-rate (bits/sec). The transcoded video bit-rate can
be writtenas ' (¢) = B(t)r(t), where 3(¢) is a scaling function.
After a video frame y is processed at the transcoder, the total

number of bits generated Ré? (T) at the buffer, during a video
frame interval time T, is calculated by

yT

Y= ro, (1)

(=1

where y (=1) is the video frame index and T is the frame
interarrival time.

Similarly, the transmitted bits R{){)(T) from the
transcoder buffer, during the interval (y — I)T to yT,
is

T

R =

(y-1DT

R.(t)dt. (2)

The instantaneous transcoder buffer occupancy at any time ¢
can be calculated as

By(t) = Jo(r'(h) — Rc(h))dh. 3)

More specifically, the transcoder buffer occupancy after
transcoding y frames is given as

yT
B,(yT) = JO (r'(h) = Re(h))dh. (4)

This can also be written in discrete form as
. (s) (s)
B/(yT) = Y[Rig(T) - RG(T)], (5)
s=1

where s (>1) is the frame index.

Equation (5) shows the buffer occupancy after transcod-
ing the yth frame is just the summation of all the accumu-
lated bits at the transcoder buffer during the interval 0 to yT.
Equation (5) can also be written in a recursive manner:

y-1
B/(yT) = > [RG(T) = RE(D) | + [Riy (T) - R (T
s=1

B((y = 1)T) + R} (T) - R (T)].
(6)

To avoid transcoder buffer overflow/underflow, the con-
straint is given as

0 < B(yT) < B™~. (7)

Equation (7) is interpreted to mean that overflow at the
transcoder buffer can be avoided if the instantaneous
transcoder buffer occupancy is kept equal to or below the
maximum buffer size. Similarly, if the transcoder buffer
occupancy exceeds zero, the underflow of video packets can
be avoided. Note that only the overflow constraint at the
transcoder is of critical nature because its violation would
result in packet loss and, consequently, quality loss. The
underflow constraint at the transcoder side can be ignored
because the decoder might still have the cushion packets to
be rendered on the client’s device.
By making use of (6) in (7) we have:

Bi((y - D)T) +RY(T) ~RY(T) < BM™. (8)
Equation (8) is useful for calculating the upper bound on the

transcoder buffer size, from knowledge of the transcoding
rate, channel rate, and previous buffer occupancy conditions.

Journal of Computer Systems, Networks, and Communications

2.3.2. Decoder Buffer. Let r"(t) denote the rate (in bits/sec)
of rendering the video sequence to the user terminal. The

number of bits rendered Ré}? (T) to the video terminal during
the interval (y — 1)T to yT is given as

yT

RY(T) = J (o 9)

(-1
As the decoder waits for F frames before starting the
decoding process, this corresponds to a delay of FT seconds.
The initial decoder buffer occupancy at t = FT can be
calculated as

F
B4(FT) = > R(T), (10)

s=1

which is the accumulation of incoming bits over F frames. In
general, the decoder buffer occupancy after decoding the yth
frame is given by

y
By(yT) = By(FT) + > [R™(T) - R(D)]. (1)
s=1

The expression given in (11) states that the instantaneous
decoder buffer occupancy is a function of the initial buffer
occupancy and accumulated bits at the decoder buffer.

On the decoder side, both the buffer overflow and
underflow are avoided by maintaining the condition:

0 < By(yT) < BI™. (12)

Equation (12) reveals that the decoder buffer underflow
can be avoided by keeping the instantaneous decoder buffer
occupancy above zero, and to avoid the buffer overflow, it is
required to keep the instantaneous decoder buffer occupancy
equal to or below the maximum buffer size. Both the
underflow and overflow are of critical nature at the decoder
side because the former will lead to the terminal screen
blackout due to packet starvation, and the latter would cause
packet dropping, eventually leading to video jerks. Hence,
proper care should be taken in designing the dynamic buffers
at the decoder, to minimize or eliminate the occurrence of
buffer overflow and underflow.

Applying (11) in (12), the buffer underflow constraint
becomes

[RE(T) ~ RE(T) | < Ba(FT). (13)

£

The expression given in (13) is the key to finding the
threshold number of video frames (F) that the decoder must
keep in its buffer to avoid any underflow. For a fixed video
rate and, by combining (10) and (13), the minimum number
of frames F can be determined.

Similarly, applying (11) in (12), the decoder buffer
overflow is avoided by maintaining the condition:

4
By(FT) + > [RE™(T) - RY/(T)| < BY™. (14)
s=1

Once F is determined from the underflow constraint, the

max

upper bound B can then be calculated.

2.4. Video Transcoding Rate Calculation. The first step in
calculating the transcoding parameters (e.g., target bit-rate
and QP) is the bit-budget allocation [1], where an estimate is
made to distribute the available bits to each frame. Depend-
ing on the scheme chosen for the rate-quantization (RQ)
optimization (linear or quadratic), a QP is then assigned
to each frame to meet the calculated target encoding rate.
This calculation is refined after encoding each frame, where
the actual remaining bits are recalculated to be distributed
to the remaining frames. The target bit-rate to encode each
frame is calculated based on different parameters, such as
real-time application layer buffer status, target buffer level
of the transcoder, available channel bandwidth, frame rate,
actual bits used to encode previous frame, and so forth. The
moving vector information in video sequences yields more
complex frames and more bits are required to encode such
complex frames, thus generating a large number of bits in
the transcoder buffer. In case of bad channel condition when
packets that cannot be promptly transmitted cause queue
buildup, it is required that the transcoding rate be reduced
so as to minimize buffer overflow. As far as video coding is
concerned, the original MPEG-4 design uses the periodic I-
frames (i.e., intraframes) [22], whereas the state-of-the-art
H.264 encoder design suggests very few I-frames to be used
for refreshing the video quality [1]. Based on the practical
H.264 codec design [23], it is assumed that the first frame of
a video sequence is encoded as an I-frame, followed by the
P-frames in the sequence. The total number of bits required
to encode an arbitrary frame y can then be calculated as [1]

RY(T) = (1-a)- R(T) + (@) - RY(T), (1)

where « is the model parameter of which the JVT-G012
standard [24] suggests the value of @ = 0.75. Moreover, R,
and R, are the transcoding rates (bit/frame) based on the
application layer buffer status and amount of bits remaining
to encode the frame, respectively, and given by [1]:

R:(T)

;
RY(T) = () ==

rem

R(T) = +q(BY (1) - BI(D), (16)

+(1-pREY, a7

where, f, in (16) is the video frame rate (frames/sec), and
n is the model parameter (JVT-GO012 standard [24] suggests
the value of # = 0.5). The functions B(Ty)(T) and B(Cy)(T)
are the application layer target and actual buffer occupancies
(bits/frame) for frame y, respectively, and given as [1]:

_ B (yT)

) (y=1)
By (T)=Bf (1)~ ="

>

(18)
R(T)

Jr
In (17), y is the model parameter (JVT-GO12 standard [24]

suggests y = 0.875), Rg{; 1)(T) is the amount of actual bits
used to encode the (y — 1)th frame, and Ryem is the amount

of remaining bits to encode the subsequent remaining frames
Nrem .

B (1) = B (T) + R, V(1) -

Input: number of transmission attempts = L, Réyg) (T)
Output: R(b};(T)
Begin
if (L<Ly)
{ /*channel state = Good*/
}R{,&T) = 12Ry)(T)
elseif (L <L,)
{ /*channel state = Moderate*/
Ry (T) = Ry, (T)
}
else
{ /*channel state = Bad*/
RY(T) = 0.8Ry) (T)
}
End

ALGoriTHM I: Refining the calculated target transcoding rate.

The target bit-rate of a frame, calculated in (15), is
required to be further refined by considering the current
channel conditions. We propose here a further reduction in
the video transcoding rate under bad channel condition. This
will not only help reduce the loading on the network but also
smooth-out the transcoded video stream. For the moderate
channel (i.e., the number of transmission attempts < L), the
calculated video bit-rate is used as it is, to take full advantage
of the current channel state. Finally, when the channel
condition is good (i.e., the number of transmission attempts
< L), the target bit-rate is increased to exploit the good
channel condition for higher video quality. The proposed
algorithm for refining the calculated target transcoding rate
is then given by Algorithm 1.

Note that the multiplication factors 1.2, 1, and 0.8
in Algorithm 1 are the rate adjustment factors, which are
empirically determined for each channel condition. For the
good channel condition, we select a rate adjustment factor
of 1.2 because higher values lead to a disruption of the pre-
calculated bit-budget allocation in H.264 encoder [1], which
should be avoided. Also, in case of bad channel condition,
we use a rate adjustment factor of 0.8 because lower values
distort the video quality. The rationale for selecting a rate
adjustment factor of 1 for moderate channel condition was
stated earlier.

Once the refined target bit-rate is obtained, the next
step is to calculate the QP for transcoding the incoming
video sequence. In H.264/AVC reference software [25], the
QP is mapped to QS: when QP increases by a step of size
6, the size of QS doubles. For a given bit-rate, selecting
the optimum QP for encoding the video sequence can
naturally be posed as an optimization problem, solved by,
for example, Lagrangian multiplier methods. Both the linear
and quadratic RQ models are proposed for selecting the QP
when the target bit-rate is available. Although the quadratic
model has a higher accuracy than the linear model in QP
selection, the model is unsuitable for real-time transcoding

Journal of Computer Systems, Networks, and Communications

IHPUt: di) Neecs Tiots Tats Tav
Output: Nege, Tior
Begin
while ((Tior > Ta1)&(Neec > 0))
{
Nrgc = Npgc — 1
Npa+NrEC
Ttot = Z:i:pllrr e Tav
}
End

ArcoriTHM 2: Enforcing the time constraint at the data-link layer.

because of its complexity [26]. Consequently, a linear RQ
model is selected in this work to achieve a good balance in
the tradeoff between complexity and accuracy, for real-time
video streaming application, as shown in what follows:

x(1)
Qp()’)

Ry(T) = MADY) +x37(1), (19)
where MAD is the mean absolute difference of the motion
information between a reference frame and a predicted
frame, and is used as a measure of frame complexity. The
functions X; and X, are model parameters of the linear RQ
model, which are updated after transcoding every frame [24].

2.5. Meeting the Time Constraint at the Data-Link Layer. The
fourth key element of the proposed cross-layer-based video
streaming framework is the optimum FEC/ARQ controller,
which selects the number of redundant FEC packets for a
given Ry, at the data-link layer. To prevent a video packet
from being rejected at the receiver, the total transmission
time of a video frame (Ti) must satisfy the time constraint
of Tyoy < Tga, where Tq is the deadline time (i.e, the
arrival time of the next video packet at the decoder) of a
given video frame. As the deadline time is independent of
the existing number of packets in the decoder queue [27],
the time constraint Tyt < Tg can only be fulfilled by
adjusting Tior. Moreover, Tior further depends on the average
transmission time of a packet and total number of data-
link layer packets of the given video frame, given by [27]

Tiot = Zfi” | Tav, where, Ty is the average transmission time of
a single packet and N, represents the total number of packets
after FEC redundancy is added to the given video frame. If
the given video frame is segmented into N,; packets, then
N, is given by N;, = Npgq + Nrec, where Negc is the (initial)
number of redundant FEC packets, determined using the
cost-throughput ratio- (CTR-) based method proposed in
[28]. Based on the calculated average transmission time of
a video packet, Npgc needs to be reduced to satisfy the
above time constraint. The time constraint is enforced by
Algorithm 2.

Algorithm 2 shows that the number of redundant FEC
packets is reduced until the time constraint is met or the
number of FEC packets reduces to zero, whichever comes
first. If the maximum number of transmission attempts
(Rmax) at the data-link layer can be controlled, Algorithm 3

Journal of Computer Systems, Networks, and Communications

Inplltl dia NFEC) lea Rmax, Tav
OUtPUt5 Neecs Trots Rmax
Begin
while ((Twor > Ta1)&(Negc > 0))
{
Nrgc = Nprc — 1
N,q4+NrEC
Tmt = Zi:pldJr " TaV
}
Whll@ ((Ttot > le)&(Rmax > 1))
{
Riax = Rimax — 1
Np,a+NggC
Tt = Zizpld+ " Ty
}
End

ArcoriTHM 3: Enforcing the time constraint at the data-link layer
(Algorithm 2 refined).

serves the purpose of meeting the time constraint by
reducing Ryayx in addition to Npgc.

Algorithm 3 shows that if the time constraint is violated,
the constraint can be met by reducing the number of
redundant FEC packets in a video frame and also limiting
the number of transmission attempts.

2.6. Summary. A flowchart that describes the operation of
the proposed video transcoding and transmission framework
is depicted by Figure 3. The first frame of video sequence is
fed to the transcoder, where it is analyzed and, depending
on the specified video bit-rate, the initial preset QP is used
for transcoding the first frame. As the transcoder buffer
was empty before transcoding the first video frame of the
group of pictures (GOPs), the dynamic buffer adjustment
is not required at this moment. However, if the current
video frame is not the first, then the video transcoder
calculates the new transcoding parameter, that is, the QP,
based on the following information: actual transcoder buffer
occupancy, target buffer level, available channel bandwidth,
frame rate, bit-rate of the previous frame, and channel
information from the channel estimator. If the conditions
of application layer buffer constraints are met at both
the transcoder and decoder sides, the calculated QP is
used for transcoding. Otherwise, in the case of buffer
violation due to source coding rate adjustment, a default
QP is used to transcode the given frame. Once the video
frame is transcoded, it is passed to the data-link layer
for processing of the FEC/ARQ functionality. The CTR-
based model presented in our previous work [28] is used
at this level to generate the initial number of redundant
FEC data-link layer packets which serve as an input to
Algorithms 2 and 3. For the given ARQ maximum number
of transmission attempts, the redundant number of FEC
packets is adjusted based on Algorithm 2 or Algorithm 3.
Channel estimator then estimates the channel condition
based on the number of transmission attempts for a packet.

The estimated channel information is then fed back to
the application and data-link layers for transcoding and
transmitting the next video frame. In summary, the proposed
CLM provides the joint functionalities of efficient video
transcoding and error-resiliency by considering both the
application layer buffer occupancy and data-link layer time
constraints.

3. Performance Evaluation

We evaluate, using the simulation approach, the performance
of the proposed video streaming framework by streaming
three video clips of different motion categories over an
IEEE 802.11 wireless network. The three video streams
selected for our evaluation are Akiyo, Container, and Foreman
categorized as belonging to slow, medium, and fast motion,
respectively. The simulation code was developed using the
NS2-based platform [29], enhanced by EvalVid framework
[30]. The JM reference software (ver. 13.2) [25] has been
used for bit rate adjustment during the transcoding of an
incoming video sequence. To capture the realistic network
operation conditions, three different traffic sources are
considered in the simulation environment: (1) an FTP source
transmitting packets using TCP protocol, (2) an exponential
source transmitting packets using the UDP protocol, and (3)
a video streaming source transmitting the test video clips.
The FTP source represents a bulk file transfer application
over the TCP protocol and, for the simulation, the file is
considered big enough such that there is always data to
transmit over the length of the simulation. The exponential
source represents the bursty traffic, with a maximum packet
size of 1500 bytes. Burst time and idle time are each
set to 0.5 second and the source rate is set at 256 Kbps.
Only the first 100 frames of each video stream considered
are encoded for this study, which capture all the motion
sequences in each video stream. The first frame of the
video sequence is an I-frame, containing only the intracoded
macroblocks, while the subsequent frames are P-frames that
allow both the intra coded and predicted macroblocks. The
video frame rate is set to 30 frames per second, as such
Tal is considered to be 1/30 seconds. To avoid any packet
dropping at both the transcoder and decoder buffers, the
respective maximum buffer sizes B/ and BJ"* are kept
to 5 times the size of an average I-frame (5 X 10,000
bits), while a cushion size of F = 3 frames is chosen at
the decoder side. RD optimization [1] was enabled and
context adaptive binary arithmetic coding (CABAC) [1] was
used for the entropy encoding. Without loss of generality,
an IEEE 802.11b link is selected between the AP and the
client device, where the maximum data-rate is 11 Mbps.
Joint FEC/ARQ [28] mechanism is implemented at the data-
link layer to generate the redundant FEC packets, for error
correction. The number of FEC packets generated for the
good channel condition, when the probability of data-link
layer packet error (u) ranges from 10™* to 1072, is too
few to be used for comparison. Therefore, only moderate
to bad channel conditions are considered (when y ranges

Start
2

New frame to the
transcoder buffer

Is this the first
frame of GOP?

Look up the channel
estimator

Initial source coding

Journal of Computer Systems, Networks, and Communications

Bad

Channel condition

Transcoding controller

parameters calculation

Source coding parameters

Source coding parameters
calculation (rate = rate X 1)

calculation (rate = rate X 0.8)]|;

Source coding

1
1
J "|calculation (rate = rate X 1.2)
1
1

I
!
Source coding parameters |
I
I

Channel coding/
packetization

:r \b i |

Transcoder/decoder

I I
i !
! 1 P
i | While (Tior>Ta1) & (Npgc >1)) FEC/ARQ i
i {update Nggc, Tar} controller; !
[P
Take a packet to i
transmitter buffer i
7 i

Start transmission

attempts

buffer constraints
are met?

Source rate is changed back
to the default calculation

Bulffer controller

Packet is transmitted

before reaching first attempts

Keep doing transmission

threshold

Pass the good channel info
to the channel estimator

Packet is transmitted
before reaching Rmax

Discard the packet

Is this the last packet
of the frame?

Pass the moderate channel
info to the channel estimator

Pass the bad channel info
to the channel estimator

|

Channel estimator :

Is this the last frame
of the GOP?

No

Stop

FIGURE 3: Flow of operations in the proposed framework (GOPs: group of pictures).

from 1072 to 10%). This gives a more realistic count of the
redundant FEC packets required for comparison. We assume
the Gilbert-Elliot (GE) channel model, which defines the
wireless channel to be in either good or bad state and Py,
is the probability of going from state x to y, where x,y €
{0,1}, 0 and 1 being the bad and good states, respectively.
The channel state transition probabilities are set to Pyy =
0.5, Po; = 0.5, Pyp = 0.1, and P;; = 0.9, representing the
wireless channel has a tendency of being in the good state
most of the time.

3.1. Processing Time at the Access Point Buffer. The increase
in processing time of a video packet at the AP is an
important metric to quantify the cost associated with the
proposed cross-layer framework versus the improvement in
video quality. When the cross-layer framework for video
transmission is not implemented, the AP puts video packet
in the transmission queue without any preprocessing of the
packet. However, when the proposed framework is used,
there is an associated delay at the AP, where the video
packets are processed (at both the application and data-link

Journal of Computer Systems, Networks, and Communications

Normalised time

1.08
1.07
1.06
1.05
1.04
1.03
1.02
1.01

1
0.99

D%

7%

B

N\

Container

Foreman

200

—_
5
=)
13

100 !

Akiyo

Video sequence

1 w/oCL
[0 w/CL, only D
K w/ CL, A+D

FIGURE 4: Video packet processing time at the AP buffer.

layers) for delivery. Three different scenarios are considered
to compare the processing times at the AP buffer: (1) the
parameters of both the application and data-link layers are
adapted using the proposed framework (denoted by w/ CL
A+D), (2) when only the parameters at data-link layer are
adapted (denoted by w/ CL, only D), and (3) without any
adaptation of parameters at the application and data-link
layers (denoted by w/o CL). In Figure 4, the processing times
at the AP are compared for the three test video sequences,
under the moderate channel condition (u = 1072). All these
processing times are normalized with respect to the packet
processing time when no cross-layer signaling mechanism is
used (w/o CL). Two observations can be made from Figure 4.
First, the processing times are independent of the video
motion category, and second, the highest processing delay is
incurred when the proposed framework is used, due to the
extra processing required at both the application and data-
link layers. As the maximum size of a video packet at data-
link layer is predefined and the packet sizes belonging to the
video clips of different motion categories are identical, there
is no effect of video motion category in the packet processing
time. Comparing the results of cases (1) and (2), it is seen
from Figure 4 that when parameters of both the application
and data-link layers are jointly adapted (case 1), there is a
marginal delay increase of less than one percent compared to
that of case 2. This indicates that adapting the transcoding
parameters at the application layer to the current channel
conditions does not produce significant processing delays.
This is attributed to the fact that the application layer merely
limits the calculated value of the QP using the information
available from cross-layer signaling mechanism. On the
other hand, when the parameters at the data-link layer are
adapted for a given maximum value of the transmission
attempts (e.g., Rmax 2 in this case), the calculation
and generation of the number of FEC packets take much
of the processing time, that is, approximately 3.5 percent
above the processing time when the cross-layer signaling
mechanism is not used. It is concluded from Figure 4 that
there exists a small (3-5 percent) processing time cost
associated with the implementation of the proposed cross-
layer framework.

Number of FEC packets Number of FEC packets

Number of FEC packets

FiGUure 5: Number of redundant FEC packets (for 100 frames)
for the three test sequences: (a) Akiyo, (b) Container, and (c)

Foreman.

50

0%
1072

200

107!
Packet error probability (u)
(a)

100

150

100

50

0¢

1072

107!
Packet error probability (u)

(b)

100

200

150

50

0
1072

1071
Packet error probability (u)

--8- w/o proposed framework
—— w/ proposed framework

(c)

10°

20000

15000

10000

Buffer size (bits)

5000 —

0 [T

Akiyo

[T

Container

[T

Foreman

Video sequence

O w/o proposed framework
[M w/ proposed framework

Figure 6: Comparison of the application layer buffer sizes for three
test video sequences under moderate channel condition (y = 1072).

3.2. Number of Redundant FEC Packets. For the bad channel
condition (i.e., y ranges from 1072 to 10°), there is a need for
an increased number of redundant FEC packets to provide
error resiliency against the channel. If the deadline time is
fixed, for a given number of transmission attempts, the time
constraint is satisfied by limiting the number of redundant
FEC packets. This puts an upper bound on the number of
redundant FEC packets that must be generated, to avoid any
packet dropping at the decoder buffer caused by violation
of the deadline time constraint. The total number of FEC
packets injected in the video stream, when the probability of
packet error is varied from 10~ to 10%, is shown in Figures
5(a), 5(b), and 5(c), for the three video sequences Akiyo,
Container, and Foreman, respectively. It is seen from Figure 5
that the number of redundant FEC packets increases when
the channel condition worsens because these redundant FEC
packets are required to provide error-resiliency against the
bad channel. Clearly, an increase in the number of redundant
FEC packets translates to an increase in the network load.
It is concluded from Figure 5 that the proposed framework
imposes less packet loading on the network than when it
is not used, the advantage becoming significant under bad
channel conditions. The reduced loading is attributed to the
limit placed on the number of transmission attempts for each
packet.

3.3. Dynamic Buffer Optimization. To satisfy the buffer
constraints at the application layer, the proposed video
streaming framework adapts the video bit-rate according
to the current network conditions. For example, under the
moderate channel condition (4 = 107?) when the buffer
requirements of the three test video sequences are compared,
it is seen in Figure 6 that the average buffer requirement for
the dynamically stabilized buffers (labeled as w/ proposed
framework) drops by almost an order of magnitude as
compared to the fixed buffers (termed as w/o proposed
framework). The reduction in buffer size is attributed to
the fact that the buffer sizes are now calculated in real-
time for each video frame instead of being fixed at a worst-
case value when the proposed framework is not enabled.

Journal of Computer Systems, Networks, and Communications

41

PSNR (dB)

34

33 k

32
1072 107!

Packet error probability (u)
(a)

PSNR (dB)

1072 107!
Packet error probability (u)

(b)

33

32
31
30
29
28

PSNR (dB)

27
26

25

24
1072 107!

Packet error probability (u)

—s— w/ CL, A+D
-6- w/CL,only D
-0 w/oCL

(c)

FIGURE 7: Objective video quality of the three test sequences, (a)
Akiyo, (b) Container, (c) Foreman.

Journal of Computer Systems, Networks, and Communications

(®”)

11

FIGURE 8: Subjective quality test for three test video sequences.

A comparison of the predicted buffer sizes for the three
test video sequences reveals that the video sequences with
high motion content tend to require a larger buffer space,
when the proposed cross-layer optimization is not used. This
dependence of buffer sizes on the video motion category
makes a fixed allocation of buffer space highly inefficient
because the application layer buffers must be provisioned
for the worst case (i.e., for the videos with the highest
motion content). On the other hand when the proposed
framework is used, it is seen in Figure 6 that the average
buffer size requirement at the decoder is independent of
the video motion category. This is due to the fact that the
dynamic buffer allocation scheme takes advantage of RD
optimization at the application layer, for example, a large
QP (typically 40, in JM software encoder for H.264) is used
for the videos with high motion content to encode the
video frames (in contrast to QP values of 20-30 for the
slow-medium motion categories), when the target bit-rate is
specified.

3.4. Objective and Subjective Video Quality. Peak-signal-to-
noise-ratio (PSNR) is the most commonly used metric to
measure the quality of reconstruction in image compression
and is therefore used in this paper as a measure of
objective video quality. Figures 7(a), 7(b), and 7(c) show the
improvement in PSNR with the proposed framework for the
three test video sequences Akiyo, Container, and Foreman,
respectively. The three scenarios described in Section 3.1 are
considered. When the channel condition gets worse (i.e.,
4 goes beyond 1071), the proposed cross-layer framework
performs 3-4dB better in terms of PSNR than the case
when no such cross-layer-based approached is used. This
improvement is more or less the same in all the three test
video sequences. The performance improvement is due to
the fact that in the case of bad channel condition, the less
number of FEC packets added per frame guarantees the non-
violation of the deadline time constraint. The video frames
rendered to the client device without being dropped causes
the increase in PSNR. Moreover, the application layer-based

12

40

35 A

30

25

PSNR (dB)

20

15

10 T T T
1/90 1/60 1/30 1/20

Deadline time (s)

--=— Container w/o
—e— Foreman w/

—&— Akiyo w/
-—k— Akiyo w/o

—=— Container w/ --o— Foreman w/o

FIGURE 9: Effect of deadline time on received video quality.

optimization also lowers the video bit-rate for bad channel
conditions, thereby reducing the number of video packets
and giving high probability of transmission without a packet
getting dropped. For comparison, we also consider a partial
cross-layer-based framework, where only the data-link layer-
based optimization is achieved. It is concluded from the
results in Figure 7 that for the bad channel condition (e.g.,
¢ = 5x107"), the application layer based rate adjustment
in the proposed framework contributes up to 1dB of
improvement in PSNR, while the rest of approximately 2 dB
PSNR improvement (totaling to approximately 3 dB) comes
from the data-link layer optimization. This shows that under
worse channel condition, most of the PSNR gains come from
the data-link layer optimization. This result is consistent
with Figure 4, where the data-link layer optimization exhibits
higher packet processing time. The foregoing confirms that
the proposed framework demonstrates a tradeoff between
the PSNR gain and the increase in packet processing
time.

We also assess the subjective quality of the three test video
sequences and the results are shown in Figure 8. The source
format is qcif (quarter common intermediate format), where
the pixel values are 176 x 144. Without loss of generality,
frame number 50 of each test video sequence is arbitrarily
chosen, which is in the middle of the 100 frame test video
sequences. Figures 8(a), 8(b), and 8(c) are the reference
video frames of the video sequences Akiyo, Container, and
Foreman, respectively, and are given here for comparison
purpose. Figures 8(a’), 8(b’), and 8(¢’) are the screenshots of
the three test video sequences when they are reconstructed at
the decoder under the channel error of 4 = 5 x 107!, and in
the absence of the proposed framework. The degradation in
video quality is visible, meaning that the viewers will have
poor quality of experience watching the video. When the
cross-layer-based framework is used for video streaming, it is
seen in Figures 8(a”), 8(b”), and 8(c”) that the errors are very
limited as the erroneous bottom parts of Figures 8(a”) and
8(b”), and the top left part of Figure 8(c”) cannot be easily
recognized. The corresponding PSNR values and the gain in
PSNR with the proposed framework are listed in Table 1.

Journal of Computer Systems, Networks, and Communications

TaBLE 1: PSNR values (in dB) for the subjective quality test.

Akiyo Container Foreman
Original (dB) 40.041 36.644 32.648
u = 0.5,w/o CL (dB) 32.978 28.963 24.824
u = 0.5, w/ CL (dB) 36.671 32.703 27.878
w/ versus w/o CL Gain (dB) 3.393 3.740 3.054

3.5. Impact of Deadline Time on Video Quality. When the
temporal resolution is controlled at the decoder, such that
the rate at which the video frames are rendered at the client
terminal be reduced for the bad channel condition, the
value of deadline time Ty increases, thereby relaxing the
constraint of Ty, < Ty1. For the bad channel condition, that
is, y = 5X 1071, the effect of deadline time on the three test
video sequences in terms of video quality (PSNR) is given
in Figure 9. The label-suffixes w/ and w/o in Figure 9 refer
to the scenarios where the simulations are conducted with
and without the proposed framework, respectively. Clearly,
decreasing the deadline time adversely affects the output
video quality due to the increased likelihood that more video
frames would violate the time constraint and dropped. For
example, from Figure 9, at a deadline time of 1/60 second,
the achieved PSNR gain is about 1dB for the three test
sequences. On the other hand, increasing the deadline time
to 1/20 seconds leads to better video quality, as a gain of
approximately 3.5dB is observed in all the three test video
sequences. An increased deadline time allows more number
of FEC packets to be added on the transmitted video stream,
for a given Rp.. However, when temporal resolution is
decreased to increase the deadline time, it must be done
with caution because the human eye can detect flickering at
reduced frame rates.

4, Conclusion

In this paper, the buffer constraint at application layer
is jointly considered with time constraint at data-link
layer, leading to an optimized solution of transcoding and
transmitting the H.264 video stream over an IEEE 802.11-
based wireless network. The four key elements of the
proposed framework are channel estimator, buffer controller,
transcoding controller, and FEC/ARQ controller. The pro-
posed model is fully adaptive to the changes in the network
conditions and size of the video frames. Simulation results
clearly establish the validity of the proposed model, as video
quality is improved (up to 3 dB, under bad channel condi-
tion) with a minimal increase in packet processing time (less
than 5 percent). Moreover, the proposed framework imposes
less packet loading on the network than when it is not used,
as the number of redundant FEC packets are reduced by up
to 50 percent under bad channel condition. This shows the
effectiveness of the proposed framework in maximizing the
available resources for background traffic. The application
layer buffer requirements are also dropped by almost an
order of magnitude when the proposed framework is used as
compared to the case where it is not implemented, thereby

Journal of Computer Systems, Networks, and Communications

decreasing the memory requirement. It is concluded that
the proposed framework will support efficient streaming of
video over IEEE 802.11 wireless networks.

Acknowledgments

The authors acknowledge the support of the University of
Calgary, TRLabs, and National Sciences and Engineering
Research Council (NSERC), Canada, for this research.
The authors also thank the anonymous reviewers whose
comments and suggestions have enhanced the quality of the

paper.

References

[1] ITU-T Rec. H.274 and ISO/IEC 14497-10 (MPEG4-AVC),
“Advanced video coding for generic audiovisual services,”
ver. 1, May 2003; ver. 2, January 2004; ver. 3 (with FRExt),
September 2004; ver. 4, July 2005.

[2] Z.Wei, K. L. Tang, and K. N. Ngan, “Implementation of H.274
on mobile device,” IEEE Transactions on Consumer Electronics,
vol. 53, no. 3, pp. 1109-1117, 2007.

[3] A.Argyriou, “Error-resilient video encoding and transmission
in multirate wireless LANs,” IEEE Transactions on Multimedia,
vol. 10, no. 5, pp. 691-700, 2008.

[4] Y. Wang, J.-G. Kim, S.-F. Chang, and H.-M. Kim, “Utility-
based video adaptation for Universal Multimedia Access
(UMA) and content-based utility function prediction for real-
time video transcoding,” IEEE Transactions on Multimedia,
vol. 9, no. 2, pp. 213-220, 2007.

[5] J.-W. Kim, G.-R. Kwon, N.-H. Kim, A. Morales, and S.-J. Ko,
“Efficient video transcoding technique for QoS-based home
gateway service,” IEEE Transactions on Consumer Electronics,
vol. 52, no. 1, pp. 129-137, 2006.

[6] Q. Li and M. van der Schaar, “Providing adaptive QoS to
layered video over wireless local area networks through real-
time retry limit adaptation,” IEEE Transactions on Multimedia,
vol. 6, no. 2, pp. 278-290, 2004.

[7] M. C. Yuang, P. L. Tien, and S. T. Liang, “Intelligent video
smoother for multimedia communications,” IEEE Journal on
Selected Areas in Communications, vol. 15, no. 2, pp. 136-146,
1997.

[8] A. Vetro, J. Xin, and H. Sun, “Error resilience video trnscoding
for wireless communications,” IEEE Wireless Communications,
vol. 12, no. 4, pp. 14-21, 2005.

[9] H. Shen, X. Sun, and F. Wu, “Fast H.264/MPEG-4 AVC
transcoding using power-spectrum based rate-distortion opti-
mization,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 18, no. 6, pp. 746-755, 2008.

[10] H. Shu and L.-P. Chau, “The realization of arbitrary down-
sizing video transcoding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, no. 4, pp. 540-546, 2006.

[11] P. A. A. Assuncao and M. Ghanbari, “Buffer analysis and

control in CBR video transcoding,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 10, no. 1, pp.

83-92, 2000.

E. Jammeh, M. Fleury, and M. Ghanbari, “Fuzzy-logic conges-

tion control of transcoded video streaming without packet loss

feedback,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 18, no. 3, pp. 387-393, 2008.

(12

13

[13] M. vander Schaar and D. S. Turaga, “Cross-layer packetization
and retransmission strategies for delay-sensitive wireless mul-
timedia transmission,” IEEE Transactions on Multimedia, vol.
9, no. 1, pp. 185-197, 2007.

[14] Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Channel-adaptive
resource allocation for scalable video transmission over 3G
wireless network,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 14, no. 8, pp. 1049-1063, 2004.

[15] B. Bing, Emerging Technologies in Wireless LANs: Theory,
Design, and Deployment, Cambridge University Press, Cam-
bridge, UK, 2007.

[16] V. Sgardoni, P. Ferre, A. Doufexi, A. Nix, and D. Bull, “Frame
delay and loss analysis for video transmission over time-
correlated 802.11A/G channels,” in Proceedings of the IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC °07), September 2007.

[17] M. Yokotsuka, “Memory motivates cell-phone growth,” Wire-
less Systems Design, vol. 9, no. 3, pp. 27-30, 2004.

[18] ISO/IEC JTCI/SC29/WG11, “Test Model 5, 1993.

[19] ITU-T/SG15 TMNS, “Video Codec Test Model,” Portland,
Ore, USA, June 1997.

[20] MPEG-4 Video Verification Model V18.0, “Coding of moving
pictures and audio,” N3908, ISO/IEC, JTC1/SC29/WG11,
January 2001.

[21] G. Sullivan, T. Wiegand, and K. P. Lim, “Joint model reference
encoding methods and decoding concealment methods,” Sec.
2.7: Rate Control, JVT-1049. San Diego, Calif, USA, September
2003.

[22] ISO/IEC JTC 1, “Coding of Audio-Visual Objects—Part 2:
Visual,” ISO/IEC 14497-2 (MPEG4 Visual Version 1), April
1999; Amendment 1 (Version 2), February 2000; Amendment
4 (streaming profile), January 2001.

[23] D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4
advanced video coding standard and its applications,” IEEE
Communications Magazine, vol. 44, no. 8, pp. 134-142, 2006.

[24] Z.G.Li, E Pan, K. P. Lim, G. N. Feng, X. Lin, and S. Rahardaj,
“Adaptive basic unit layer rate control for JVT,” in Proceedings
of the JVT-GO12, 7th Meeting, Pattaya, Thailand, March 2003.

[25] M reference software, Maintained by K. Siithring, June 2008,
http://iphome.hhi.de/suehring/tml/.

[26] M. Jiang and N. Ling, “Low-delay rate control for real-time
H.264/AVC video coding,” IEEE Transactions on Multimedia,
vol. 8, no. 3, pp. 467477, 2006.

[27] A. Moid and A. O. Fapojuwo, “Three-dimensional absorbing
Markov chain model for video streaming over IEEE 802.11
wireless networks,” IEEE Transactions on Consumer Electronics,
vol. 54, no. 4, pp. 1672-1680, 2008.

[28] A. Moid and A. O. Fapojuwo, “An analytical model for
optimum byte-level and packet-level FEC assignment using
buffer dynamics,” Research Letters in Communications, vol.
2008, Article ID 547184, 4 pages, 2008.

[29] Network Simulator, http://www.isi.edu/nsnam/ns/.

[30] “EvalVid—A video quality evaluation tool-set,” http://www
.tkn.tu-berlin.de/research/evalvid/.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

