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analyze both the cooperative team in which a common goal is jointly optimized as well as the noncooperative game problem where
mobiles reach to optimize their own objectives. Furthermore, we derive the throughput and the expected delay and use them as the
objectives to optimize and provide a stability analysis as alternative study. Exhaustive performance evaluations were carried out,
we show that schemes with power differentiation improve significantly the individual as well as global performances, and could
eliminate in some cases the bi-stable nature of slotted aloha.
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1. Introduction

Aloha [1] and slotted aloha [2] have long been used as
randomly distributed medium access protocols for radio
channels. They are used in satellite networks and cellular
telephone networks for the sporadic transfer of data packets.
In these protocols, packets are transmitted sporadically by
various users. If packets are sent simultaneously by more
than one user, then they collide. After a packet is transmitted,
the transmitter receives the information on whether there has
been a collision (and retransmission is needed) or whether
it has been well received. All colliding packets are assumed
to be corrupted which get backlogged and are retransmitted
after some random time. We focus on the slotted aloha [3],
in which time is divided into units. At each time unit a packet
may be transmitted, and at the end of the time interval, the
sources get the feedback on whether there was zero, one,
or more transmissions (collision) during the time slot. A
packet that arrives at a source is immediately transmitted.
Packets that are involved in a collision are backlogged and
are scheduled for retransmission after a random time.

Interest has been growing in recent years in study-
ing competition of networking in general and access to
a common medium in particular, within the frame of
noncooperative game theory; see, for example, the survey
paper [4]. Various game formulations of the standard slotted
aloha (with a single power) have been derived and studied
in [5–10] for the noncooperative choice of transmission
probabilities. Several papers study slotted aloha with power
diversity but without differentiating between transmitted
and backlogged packets and without the game formulation.
In [11] it is shown that the system capacity could be increased
from 0.37 to 0.53 if one class of terminals always uses high
power and the other always uses low power level. In [12],
power diversity is studied with the capture model that we use
as well as with another capture model based on signal-to-
noise ratio. The workin [13] studies power diversity under
three types of power distribution between the power levels
and provides also a detailed stability analysis. The workin
[14] proposes a model and evaluates the throughput that
can be achieved in a system of N mobiles using generalized
aloha like protocols where the mobiles transmit data using
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a two-state decision system. For cooperative systems, it gives
the throughput bounds and explores the trade-off between
throughput and short-term fairness. But our proposal is
different here; we address the effect of randomization in
power levels for both cooperative and noncooperative setups.

When multiple users share a common channel and
contend for access, a typical conflict problem arises. Recently,
the selfish behavior of users in MAC protocols has been
widely analyzed using game theory with all its powerful
solution concepts. It was shown in [5, 7, 15, 16] that the users
selfish behavior likely leads to a network collapse, where a
typical prisoners dilemma situation occurs. This illustrates,
in fact, that Nash equilibrium (NE) is not efficient in some
situations. (A Nash equilibrium is a strategies profile where
no player can improve its reward by deviating unilaterally
from its strategy.) This way, full system utilization requires
coordination among users using explicit message exchanges
or presence of an arbitration mechanism [17], which may
be impractical given the distributed nature and arbitrary
topology change (due to mobility, ended calls, new calls,
environment, etc.) of wireless networks. To achieve a better
performance without coordination schemes, users need to
sustain cooperation or priority. It is beneficial to design a
set of users whose mission is to provide incentives for other
users to behave cooperatively as well as respect the defined
priority; this mechanism may limit the aggressiveness level
(access to the channel) and resolve the contention/random
problem. Another way to reduce the access contention is
to introduce a transmission cost. Indeed, it was shown in
[18] that costs have a stabilizing effect; being rational, users
will defer packet transmissions when congestion develops
and the cost for successful transmission becomes high. This
way, users will drop packets when the total transmission
costs are high which can cause a huge delay and then the
analysis seems to be not applicable to delay-sensitive traffic.
Authors in [19] showed that introducing users hierarchy
improves the performances of the whole system and the
enhancement depends on the offered load. At low load,
this improvement is due to the fact that users (both of
leaders and followers) retransmit with high probability at
low load; hence the backoff time is reduced. At average and
high loads, leaders turn to be generally less aggressive than
Nash equilibrium case. This way, the collision probability
is reduced and then the performance of the hierarchical
scheme is enhanced. A pretty phenomena, when the number
of followers becomes larger than the number of leaders, is
that those latter users become more friendly and reduce their
retransmission probability, whereas the followers become
very aggressive and transmit at probability close to 1. Here,
we extend the model first proposed in [15] and introduce
new schemes in which multiple power levels are used for
transmission. When several packets are sent simultaneously,
one of them can often be successfully received due to the
power capture effect. In this paper, we consider a general
capture model where a mobile transmits successfully a packet
if his instantaneous SINR (signal-to-interferences-plus-noise
ratio) is larger than the fixed threshold. In particular,
we introduce the differentiation between new packets and
backlogged packets allowing prioritization of one or the

other in terms of transmit power. We study and compare the
following schemes.

(1) The first scheme considers the power diversity but
defines no prioritization in transmission or retrans-
mission. This scheme will mainly show the effect of
power diversity on system performances;

(2) In the second scheme, each new packet is imme-
diately transmitted with the lowest power, whereas
backlogged packets are sporadically retransmitted at
a random power selected among N −1 larger distinct
levels.

(3) Here, new packets are transmitted with the highest
power, and backlogged packets are retransmitted at a
random power level picked from N − 1 lower distinct
levels.

(4) This scheme gives more priority to new arrivals.
Indeed, backlogged packets are retransmitted with
the lowest power level and a new packet is transmitted
at a random power selected among N − 1 larger
distinct levels.

(5) All previous schemes are compared with standard
slotted aloha taken as reference; this allows to com-
pare and analyze performances of each scheme.

The capture model used in [15] is not realistic; authors
assume therein that when a unique mobile chooses the
highest power, compared to other mobiles, its transmission
is succeeded independently of the other mobiles and their
respective choices. This assumption could not be always true.
Indeed, the aggregate signal of other mobiles may jam the
signal of the tagged mobile, that is, whose power level is
the highest; therefore no successful transmission exists. In
this paper, a terminal succeeds its transmission if it chooses
the most elevated power level compared to other mobiles
and its instantaneous SINR is greater than a given threshold
γth. Under more general capture model, we study the team
problem in which we optimize transmission probabilities
for the various schemes so as to achieve the maximum
throughput or to minimize the expected delay. We discover
however that in heavy load, the optimality is obtained at
the expense of huge expected delay of backlogged packets
(EDBPs). We therefore consider the alternative objective
of minimizing the EDBP. We study both the throughput
as well as the delay performance of the global optimal
policy. We also solve the multicriteria problem in which
the objective is a convex combination of the throughput
and the EDBP. This allows, in particular, to compute the
transmission probabilities that maximize the throughput
under a constraint on EDBP, which could be quite useful
for delay-sensitive applications (e.g., Video streaming, Voice,
VoD, etc.). We show that schemes with priority do not only
improve the average performances considerably but they are
also able in some cases to eliminate the bistable nature of
the slotted aloha. Furthermore, we study the game problem
in which each mobile chooses its transmission probability
selfishly in order to optimize its own objective. This gives rise
to a game theoretic model in which we study the equilibrium
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properties (Nash equilibrium). We show that the power
diversity and the prioritization profit to mobiles also in this
competitive scenario even if the advantage is less notorious
than in the team’s behavior.

The rest of this paper is organized as follows. Section 2
describes the problem and introduces the Markovian model.
We discuss in Section 3 the team formulation of the problem.
Next, we formulate the game setting in Section 4. We
finally discuss the performance of different schemes using
some numerical examples in Section 5 and finish by some
concluding remarks in Section 6.

2. Problem Formulation

We consider a collision channel used by one central receiver
and m mobiles without buffer; that is, mobiles do not
generate new packet till the current one is successfully
transmitted. This assumption can have realistic application
in the context of signaling. Indeed, it is natural to assume
that a source does not start generating a new signaling
packet (e.g., a new reservation) as long as the current
signaling packet is not transmitted successfully. Here, the
process of attempts to retransmit a new packet from a source
after the previous packet has been successfully transmitted
corresponds well with our bufferless model.

At the beginning of any slot, each mobile can transmit
a packet using a power level among N available levels P =
{p1, p2, . . . , pN}. We consider a general capture model where
a packet transmitted by a mobile i is received successfully
when and only when its instantaneous SINR is larger than some
given threshold γth. Let pi be the transmit power chosen by
mobile i in the current slot, and let σ2 be the spectral density
of the background noise which is assumed to be AWGN and
time-independent. Let us denote by gi the gain experienced
by mobile i over the channel. It depends on the distance
between the mobile and the AP, but it is also impacted by the
reflective paths. The instantaneous SINR of mobile i received
by the central receiver is given by

γi =
gi pi

∑k
j=1 gj p jI

(
j
)

+ σ2
, (1)

where I( j) is indicator of the event that at the current
slot, user j is transmitting. We address here a random
power selection fashion where transmit powers are selected
according to a probability distribution X = [x1, x2, . . . , xN ];
that is, power level pj is chosen with probability xj . The
impact of selection probability distribution will be discussed
in Section 5.1 In particular, we propose to discuss the
case of (1) uniform distribution; (2) high power levels are
prioritized; that (3) the case where low power levels are
prioritized.

Here, we extend the Markovian model first described by
Altman et al. [5, 6, 15] in order to incorporate the instan-
taneous capture effect. The arrival probability of the packets
to the source i follows a Bernoulli process with parameter qa
(i.e., at each time slot, there is a probability qa of a new arrival
at a source, and all arrivals are independent). As long as there
is a packet at a source (i.e., as long as it is not successfully

transmitted) new packets to that source are blocked and lost
(because we consider sources without buffer). The arrival
processes of different sources are assumed to be independent.
Similarly, we consider that a backlogged packet at source i is
retransmitted with probability qir . We should restrict in our
control and game problems to simple policies in which qir
does not change in time. We also will be interested in the
case of symmetric sources; we should then find a symmetric
optimal solution, that is, a retransmission probability qr
which does not depend on i. Next, we consider as a state of
the system the stochastic process representing the number of
backlogged packets in the beginning of a slot; we denote it
by n. For any choice of values qir ∈ (0, 1], the state process
is a Markov chain that contains a single ergodic chain (and
possibly transient states as well). Define qr to be the vector
of retransmission probabilities for all users (whose jth entry

is q
j
r ). We note the transition matrix of the Markov chain by

P(qr). Let π(qr) be the corresponding vector of the steady-
state probabilities where its nth entry πn(qr) denotes the
probability of n backlogged mobiles. When all entries of
qr are the same, say q, we shall write (with some abuse of
notation) π(q) instead of π(qr).

We introduce further notation; assume that there are
n backlogged packets, and all use the same value qr for
retransmission rate. We denote by Qr(i,n) the probability
that i mobiles out of the n backlogged packets retransmit at
the current slot. Then

Qr(i,n) =
⎛

⎝
n

i

⎞

⎠(1− qr)n−i
(
qr
)i
. (2)

Let Qa(i,n) be the probability that i unbacklogged
mobiles transmit packets in a given slot (i.e., that i arrivals
occurred at mobiles without backlogged packets). We have

Qa(i,n) =
⎛

⎝
m− n
i

⎞

⎠
(
1− qa

)m−n−i(
qa
)i
. (3)

Let Qr(i, 0) = 0 and Qa(i,m) = 0.
For ease of reading, we summarize the assumptions of

our contention model as follows.

(i) A finite set of m bufferless mobiles interacts over a
single collision channel.

(ii) Time is divided into multiple equal and synchronized
slots. Transmission feedbacks (success or collision)
are received in the end of the current slot.

(iii) Each user i is assumed to be nonsaturated; packets
arrive from higher layers according to a Bernoulli
process with parameter qa.

(iv) Each user i retransmits, in every slot, its packets with
probability qir .

(v) The average throughput or minus expected delay
of backlogged packets is the objective functions to
maximize.
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3. The Team Problem

In this section we study slotted aloha in a team problem
point of view; that is, all mobiles optimize the same objective
function (maximize the system throughput or minimize the
average delay). Here, we analyze the case when there exists
a central entity (base station, dedicated device, etc.) that
calculates the optimal strategy profile and broadcasts it to
operating mobiles. This entity should get the information of
the number of mobiles as well as the individual new arrivals
intensity qa. Next, we allow prioritization by incorporating
a selective transmit power allocation mechanism. On the
beginning of each slot, each mobile picks a power level
from the N available power levels and decides to trans-
mit/retransmit its packet. Based on power allocation fashion,
we analyze the following four schemes. The corresponding
Markov chain is depicted in Figure 1.

3.1. Scheme 1: Random Power Levels without Priority. In this
approach, there is no preference between new packets or
backlogged ones. A mobile chooses to transmit using any
power level among N different levels. In case all mobiles use
the same transmit rate q, the transition probability of the
system is given by

Pn,n+i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qa(m− n,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj+m−n
)

,

i = m− n, i ≥ 2,

Qa(i,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj+i

)

+Qa(i + 1,n)
n∑

j=0

Qr
(
j,n
)
Aj+i+1,

2 ≤ i < m− n,

Qa(1,n)
n∑

j=1

Qr
(
j,n
)(

1− Aj+1

)

+Qa(2,n)
n∑

j=0

Qr
(
j,n
)
Aj+2, i = 1,

Qa(0,n)

⎡

⎣Qr(0,n) +
n∑

j=2

Qr
(
j,n
)(

1− Aj

)
⎤

⎦

+Qa(1,n)
n∑

j=0

Qr
(
j,n
)
Aj+1, i = 0,

Qa(0,n)
n∑

j=1

Qr
(
j,n
)
Aj , i = −1,

(4)

where Ak is the probability of a successful transmission
among k ≥ 2. Denote by aki the event that transmission
of some tagged mobile i is successful when having k − 1
other simultaneous transmissions. It can be derived by the
following decomposition aki =

∑N
t=2 P (mobile i transmits

with power level pt; other mobiles transmit with powers

less than pt; SINR of mobile i is greater than the threshold
γth). Since mobiles are assumed to be symmetric, then Ak =
∑k

i=1 a
k
i = k · aki , and it follows that

Ak = k
N−2∑

l=0

k−1∑

k1=0

k−1∑

k2=0

· · ·
k−1∑

kN−l−1=0

xk1
1 · xk2

2 · · · xkN−l−1
N−l−1 · x1

N−l

· δ
⎛

⎝k − 1−
N−l−1∑

s=1

ks

⎞

⎠ · u
(

pN−l
∑N−l−1

s=1 psks + σ2/g
− γth

)

(5)

withA0 = 0 andA1 = 1. xs denotes the probability that a user
(with new arrival or backlogged packet) (re)transmits using
power level ps.pN−l is the power level chosen by the terminal
whose transmission maybe potentially succeed, that is, its
corresponding to the highest power selected in the current
slot, whereas ks denotes the number of terminals that choose
the power level ps. δ(t) (Dirac distribution) and u(t) (unite
echelon) are defined as follows:

δ(t) =
⎧
⎨

⎩

1, if t = 0,

0, else,
u(t) =

⎧
⎨

⎩

1, if t ≥ 0,

0, else.
(6)

Calculating the success probability is a very hard issue.
The difficulty in formula (5) is to consider one single
transmitting mobile at the highest power level and list all the
cases where the k − 1 remaining mobiles transmit at lower
power. This corresponds exactly to the set of partitions of the
positive integer k − 1 considering all possible permutations.
(A partition of a positive integer n is a way of writing n
as a sum of positive integers.) Generating all the partitions
of an integer is widely studied in the literature and several
algorithms were proposed; for example, see [20, 21]. The
computational complexity of such algorithms is very high
and may take long time to list the set of all partitions
as well as their permutations. However, in our model the
success probability depends on none of the following: the
instantaneous backlog of the system n, the arrival probability
qa, and, the retransmission probability qr . Henceforth,
success probability matrix A = (Ak), k = 1 · · ·m can
be calculated once and reused to derive the transition
matrix.

3.2. Scheme 2: Retransmission with More Power. Now, back-
logged packets have more priority; mobile having a back-
logged packet retransmits using a random power level among
theN available, while a mobile with a new arrived packet uses
always the lowest level (p1). Successful capture is occurred
when one of the backlogged packets transmits with a power
level which is larger than the one chosen by all other
transmitters and its corresponding SINR is greater than the
threshold γth when arriving at the AP, or a single new
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· · · n− 1 n n + 1 n + 2 · · ·

P(n−1,n)

P(n,n−1)

P(n,n+1)

P(n+1,n)

P(n+1,n+2)

P(n+2,n+1)

P(n−1,n+1)

P(n−1,n+2)

P(n,n+2)

P(n−1,n−1) P(n,n) P(n+1,n+1) P(n+2,n+2)

Figure 1: Markov chain for the team problem. The state of the system is the backlog, it can decrease by at most one per transition but can
increase by an arbitrary amount less than or equal m− n.

arrival occurs and there is no retransmission attempt of any
backlogged packet. The transition probabilities are given by

Pn,n+i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qa(m− n,n)
n∑

j=1

Qr
(
j,n
)(

1− Bj,m−n
)

,

i = m− n, i ≥ 2,

Qa(i,n)
n∑

j=0

Qr
(
j,n
)(

1− Bj,i
)

+Qa(i + 1,n)
n∑

j=1

Qr
(
j,n
)
Bj,i+1,

2 ≤ i < m− n,

Qa(1,n)
n∑

j=1

Qr
(
j,n
)(

1− Bj,1
)

+Qa(2,n)
n∑

j=1

Qr
(
j,n
)
Bj,2, i = 1,

Qa(0,n)

⎡

⎣Qr(0,n) +
n∑

j=2

Qr
(
j,n
)(

1− Bj,0
)
⎤

⎦

+Qa(1,n)
n∑

j=0

Qr
(
j,n
)
Bj,1, i = 0,

Qa(0,n)
n∑

j=1

Qr
(
j,n
)
Bj,0, i = −1,

(7)

where the probability of a successful transmission among k
retransmissions and k′ new arrival packets when k + k′ ≥ 2
is given by

Bk,k′ = k
N−2∑

l=0

k−1∑

k1=0

· · ·
k−1∑

kN−l−1=0

N−l−1∏

i=1

xkii · x1
N−l

· δ
⎛

⎝k − 1−
N−l−1∑

s=1

ks

⎞

⎠

· u
(

pN−l
∑N−l−1

s=1 psks + k′p1 + σ2/g
− γth

)

(8)

with B0,0 = 0, B0,1 = 1, and B1,0 = 1.

3.3. Scheme 3: Retransmission with Less Power. New arrivals
are transmitted with the highest power pN , whereas mobiles
having backlogged packets attempt new retransmission using
a random power picked from N − 1 distinct lower power
levels. The transition matrix is summarized by

Pn,n+i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qa(i,n), 2 ≤ i,

Qa(1,n)
n∑

j=1

Qr
(
j,n
)(

1− Cj,1

)
, i = 1,

Qa(0,n)

⎡

⎣Qr(0,n) +
n∑

j=2

Qr
(
j,n
)(

1− Cj,0

)
⎤

⎦

+Qa(1,n)
n∑

j=0

Qr
(
j,n
)
Cj,1, i = 0,

Qa(0,n)
n∑

j=1

Qr
(
j,n
)
Cj,0, i = −1,

(9)

where the probability of a successful transmission when k ≥
1 mobiles attempt retransmissions is calculated using the
following formula:

Ck,1 = k
k−1∑

k1=0

k−1∑

k2=0

· · ·
k−1∑

kN−1=0

N−1∏

i=1

xkii · x1
N−l · δ

⎛

⎝k −
N−1∑

s=1

ks

⎞

⎠

· u
(

pN
∑N−1

s=1 psks + σ2/g
− γth

)

.

(10)

The probability of a successful retransmission among k ≥
2 simultaneous attempts is given by

Ck,0 = k
N−2∑

l=1

k−1∑

k1=0

k−1∑

k2=0

· · ·
k−1∑

kN−l−1=0

N−l−1∏

i=1

xkii · x1
N−l

· δ
⎛

⎝k − 1−
N−l−1∑

s=1

ks

⎞

⎠

· u
(

pN−l
∑N−l−1

s=1 psks + σ2/g
− γth

)

,

(11)

whereas Ck,k′ = 0 if K ′ ≥ 2,C0,1 = 1, and C1,0 = 1.
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3.4. Scheme 4: Retransmission with the Lowest Power. In
this last proposal, a new transmitted packet uses a power
among N − 1 higher available power levels. Mobiles having
backlogged packet retransmit with the lowest power level
(p1). The transition matrix of the Markov chain is given by

Pn,n+i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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Qa(m− n,n)
n∑

j=0

Qr
(
j,n
)(

1−Dj,m−n
)

,

i = m− n, i ≥ 2,

Qa(i,n)
n∑

j=0

Qr
(
j,n
)(

1−Dj,i

)

+Qa(i + 1,n)
n∑

j=0

Qr
(
j,n
)
Dj,i+1,

2 ≤ i < m− n,

Qa(1,n)
n∑

j=1

Qr
(
j,n
)(

1−Dj,1

)

+Qa(2,n)
n∑

j=0

Qr
(
j,n
)
Dj,2, i = 1,

Qa(0,n)

⎡

⎣Qr(0,n) +
n∑

j=2

Qr
(
j,n
)(

1−Dj,0

)
⎤

⎦

+Qa(1,n)
n∑

j=0

Qr
(
j,n
)
Dj,1, i = 0,

Qa(0,n)Qr(1,n), i = −1,
(12)

where Dk,k′ represents the probability of a successful new
transmission among k backlogged packets and k′ new
packets such that k′ + k ≥ 2. The value Dk,k′ is given by

Dk,k′ = k′
N−2∑

l=0

k−1∑

k′1=0

· · ·
k′−1∑

k′N−l−1=0

N−l−1∏

i=1

xk
′
i

i · x1
N−l

· δ
⎛

⎝k′ − 1−
N−l−1∑

pl=1

k′ pl

⎞

⎠

· u
⎛

⎝ pN−l
∑N−l−1

pl=1 plk
′
pl + kP1 + σ2/g

− γth

⎞

⎠,

(13)

where D0,0 = 0, D0,1 = 1, and D1,0 = 1.

3.5. Performance Metrics. We now turn to present the
performance measures (average throughput and expected
delay) of interest for optimization as a function of the steady-
state probabilities of the Markov chain. Let us denote by
πn(q) the equilibrium probability that the network is in state

n (number of backlogged packets at the beginning of a slot).
Hence the equilibrium state equations are

π
(
q
) = π

(
q
) · P(q),

m∑

n=0

πn
(
q
) = 1,

πn
(
q
) ≥ 0, n = 0, 1, . . . ,m.

(14)

System (14) yields the equilibrium probabilities vector.
The average number of backlogged packets can then simply
be calculated by

S
(
q
) =

m∑

n=0

πn
(
q
) · n. (15)

Similarly, the system throughput (defined as the sample
average of the number of packets that are successfully
transmitted) is given almost surely by the constant

m∑

n=0

m−n∑

i=0

n∑

j=0

πn
(
q
)
Qa(i,n)Qr

(
j,n
)
Aj+i, Scheme 1,

m∑

n=0

πn
(
q
)
⎡

⎣
m−n∑

i=0

n∑

j=1

Qa(i,n)Qr
(
j,n
)
Bj,i +Qa(1,n)Qr(0,n)

⎤

⎦,

Scheme 2,

m∑

n=0

πn
(
q
)
⎡

⎣Qa(0,n)
n∑

j=1

Qr
(
j,n
)
Cj,0 +Qa(1,n) ,

·
n∑

j=0

Qr
(
j,n
)
Cj,1

⎤

⎦ Scheme 3,

m∑

n=0

πn
(
q
)
⎡

⎣
m−n∑

i=1

n∑

j=0

Qa(i,n)Qr
(
j,n
)
Dj,i +Qa(0,n)Qr(1,n)

⎤

⎦,

Scheme 4,

m∑

n=0

πn
(
q
)
[Qa(0,n)Qr(1,n) +Qa(1,n)Qr(0,n)],

Same power.
(16)

Using the rate balance equation (i.e., input=output) at
the steady state, the throughput satisfies (and thus can be
computed more easily through)

thp
(
q
) = qa

m∑

n=0

πn
(
q
)
(m− n) = qa

(
m− S(q)). (17)

Indeed, the throughput is the expected number of
arrivals at a time slot (which actually enter the system), and
this is expressed in the equation for thp(q) by conditioning
on n. The throughput should be equal to the expected num-
ber of departures (and thus the throughput) at stationary
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regime, which is expressed in (17). The expected delay of
transmitted packets D is defined as the average time, in slots,
that a packet takes from its source to the receiver. Then,
Little’s result yields

D
(
q
) = 1 +

S
(
q
)

thp
(
q
) = 1 +

S
(
q
)

qa
(
m− S(q)) . (18)

Analyzing (17) and (18) it is easy to show that maxi-
mizing the global throughput is equivalent to minimizing
the average delay of transmitted packets. We shall therefore
restrict in our numerical investigation to maximization of
the throughput. However, we shall consider the delay of
backlogged packets as yet another objective to minimize.

3.6. Performance Measures for Backlogged Packets. If we
denote by Δ the throughput of new arrivals, that is, the
amount of arrivals whose first transmission attempt is
successful, then the throughput of backlogged packets for
each scheme is given by thpc(q) = thp(q) − Δ, where Δ is
calculated from Markov chain and given by

m∑

n=0

m−n∑

i=1

n∑

j=0

i

i + j
πn
(
q
)
Qa(i,n)Qr

(
j,n
)
Ai+ j , Scheme 1,

m∑

n=0

πn
(
q
)
Qa(1,n)Qr(0,n), Scheme 2,

Qa(1,n)
n∑

j=0

Qr
(
j,n
)
Cj,1, Scheme 3,

m∑

n=0

m−n∑

i=1

n∑

j=0

πn
(
q
)
Qa(i,n)Qr

(
j,n
)
Dj,i, Scheme 4,

m∑

n=0

πn
(
q
)
Qa(1,n)Qr(0,n), Same power.

(19)

The expected delay of backlogged packets Dc, which is
defined as the average time, in slots, that a backlogged packet
takes to go from the source to the receiver, can also be
calculated by applying Little’s result. Hence

Dc
(
q
) = 1 +

S
(
q
)

thpc
(
q
) . (20)

3.6.1. Team Problem Resolution. The optimal solution of
the team problem is obtained by resolving the following
optimization problem:

max
q

objective
(
q
)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π
(
q
) = π

(
q
) · P(q),

m∑

n=0

πn
(
q
) = 1,

πn
(
q
) ≥ 0, n = 0, 1, . . . ,m,

(21)

where objective (q) is replaced by the average throughput
or minus expected delay. We note that the solution can be
obtained by computing recursively the steady-state probabil-
ities, as Problem 4.1 in [3].

3.6.2. Singularity at q = 0. The only point where the Markov
chain P does not have a single stationary distribution is at
q = 0, where it has two absorbing states: n = m and n =
m−1. All remaining states are transient (for any qa > 0), and
the probability to end at one of the absorbing states depends
on the initial distribution of the Markov chain. We note that
if the state m − 1 is reached, then the throughput is qa w.p.
1. However, if the state m is reached, then the throughput
equals 0, which means that it is a deadlock state. For qa > 0
and qr = 0, the deadlock state is reached with positive
probability from any initial state other than the absorbing
state m− 1. we shall therefore exclude the case of qr = 0 and
optimize only on the range ε < qr ≤ 1.

3.6.3. Existence of a Solution. The steady-state probabilities
π(q) are continuous over 0 < q ≤ 1. This is not a closed
interval, therefore a solution needs not exist. However, as
we restrict to the closed interval [ε, 1], where ε > 0, an
optimal solution indeed exists. Therefore for any δ > 0, there
exists some q∗ > 0 which is δ-optimal. q > 0 is said to
be δ-optimal for the throughput maximization if it satisfies
thp(q∗) ≥ thp(q) − δ for all q ∈ [ε, 1]. A similar definition
holds for any objective function (e.g., delay minimization).

3.7. Stability. Another qualitative way to compare schemes
is the stability characteristics of the protocol. Slotted aloha
is known to have a bi-stable behavior, we hence shall check
whether this is also the case in our four schemes, if answer is
yes, under which conditions?

Let us denote psucc
n the expected number of successful

transmissions in the current slot having n backlogged
packets. Based on the derived Markov chains, the probability
of a successful transmission is given by

psucc
n

(
q
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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m−n∑

i=0

n∑

j=0

Qa(i,n)Qr
(
j,n
)
Aj+i, Scheme 1

m−n∑

i=0

n∑

j=1

Qa(i,n)Qr
(
j,n
)
Bj,i +Qa(1,n)Qr(0,n),

Scheme 2

Qa(0,n)
n∑

j=1

Qr
(
j,n
)
Cj,0 +Qa(1,n)

n∑

j=0

Qr
(
j,n
)
Cj,1,

Scheme 3

m−n∑

i=1

n∑

j=0

Qa(i,n)Qr
(
j,n
)
Dj,i +Qa(0,n)Qr(1,n),

Scheme 4

Qa(0,n)Qr(1,n) +Qa(1,n)Qr(0,n). Slotted aloha
(22)

Define now the drift Dn in state n, as the expected
change in backlog from one slot to the next slot, which is
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Figure 2: Stability of slotted aloha with random power selection algorithms: Probability of success transmission versus backlogged packets
n for all the schemes. We consider γth = 10 dB, transmit powers P = [1, 5, 25, 125, 625] mW, arrival probability qa = 0.01 and different
retransmission probabilities (aggressiveness levels) qr = 0.1 (sub-figure a), qr = 0.25 (sub-figure b) and qr = 0.5 (sub-figure c).

the expected number of arrivals, that is, qa(m − n), less the
expected number of successful departures psucc

n , that is

Dn = qa(m− n)− psucc
n . (23)

For standard slotted aloha it has been shown that three
equilibria may exist. System equilibrium points occur where
the curves psucc

n and the straight line qa(m − n) intersect.
When the drift, which represents the difference between the
straight line and the curve, is positive the system state tends
to increase, because the system input rate becomes greater
than its output rate. Whereas it decreases when the drift is
negative. This explains why the middle equilibrium point is
definitively unstable and the other two are stable. A bi-stable
situation as in the standard aloha is hence undesirable since it
means, in practice, that the system spends long time in each
of the stable equilibria, including the one with large backlog
n corresponding to a congestion situation (low throughput
and large delay).

Let us examine the stability behavior of slotted aloha
and our new schemes for m = 40 mobiles, threshold SINR
γth = 10 dB, arrival probability qa = 0.01, and N = 5
selectable powers; see Figure 2. We note that no scheme
suffers from the bistability problem under low aggressiveness
qr = 0.1, where the departure rate of our schemes is,
all the time, greater than the arrival rate. It follows that
slotted aloha under our algorithms is stable and the average
number of backlogged packets is very low (which decreases
significantly the expected delay). Under qr = 0.25 slotted
aloha and scheme 4 become instable whereas other schemes
with random power keep stability whatever the average
number of backlogged packetis. In contrast to standard
slotted aloha and through simple computation of equilibria,
the expected number of backlogged packets for schemes 1–
4 can be approximated by the desired stable equilibrium
which provides a very interesting feature. That means that
in the bistability case for schemes 1–4, the system spends
most of the time at that desired equilibrium. Next, we
note that success probability Psucc

n decreases with n and

vanishes for all schemes for qr > 0.5, where all schemes
acquire a bi-stable behavior. It follows that the stability
region is tightening with transmission rate qr . Indeed slotted
aloha and all other schemes become instable when mobiles
retransmit aggressively. Then the collision probability is close
to 1 and the departure rate becomes less than the arrival rate
which causes absorption of the system by the undesired equi-
librium point. Under this situation the average number of
backlogged packets can be approximated by the nondesired
equilibrium. Here, the system spends most of the time at that
equilibrium.

The observed bipolar behavior of slotted aloha as well as
in our schemes can be avoided by decreasing the probability
of retransmission. Yet, decreasing qr expands the departure
rate curve which removes all intersections with arrival
straight line but the desired stability point. The drawback is
that expected delay increases since a packet will wait longer at
a backlogged node before a successful transmission and the
maximum throughput decreases slightly.

4. Game Problem

Implementation of a centralized system is a real issue since
it needs a high technology, advanced software performances,
extra signaling protocol, and full information about mobiles
and their instantaneous QoS (Quality of Service) require-
ments. This way, a high amount of bandwidth should be
reserved for signaling. Moreover, mobile users are not forced
to cooperate and may act in a selfish way. We derive in this
section an alternative framework which is decentralized. In
this context, the team model does not hold any more, we
shall then formulate a distributed model by the help of game
theory tools. Yet, the decentralized model is more powerful
and appropriate to slotted aloha and has high interest
for analyzing access games in general. Therefore, Nash
equilibrium concept will replace the optimality concept used
in the team problem. It possesses a robustness property: at
equilibrium and assuming rationality of mobiles, no mobile
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has incentive to deviate. The elements of our contention
game are listed as follows.

(i) A finite set of m + 1 bufferless users interacts over a
single collision channel.

(ii) Each user i retransmits, in every slot, its packets
with probability qir . The open interval qir ∈ (0, 1]
corresponds to the set of all possible actions of user
i.

(iii) There is no cost of (re)transmitting packets.

(iv) The individual throughput or minus expected delay
of backlogged packets is the utility functions to
maximize.

For any instance of the game, we denote the policy vector
of retransmission probabilities for all users by qr whose jth

entry is q
j
r . Define (q−ir , qir) to be a retransmission policy at

a slot, where user i retransmits with probability qir and any

other user j retransmits with probability q
j
r for all j /= i. Each

user i seeks to maximize his own objectivei(qr); each mobile
either maximizes its own throughput or maximizes minus
expected delay. The problem, we are interested in, is then
to find a symmetric equilibrium policy q∗r = (qr , qr , . . . , qr)
such that for any user i and any retransmission probability qir
for that user,

objectivei
(

q∗r
) ≥ objectivei

([
q∗r
]−i, qir

)
. (24)

Without any loss of generality, we restrict to symmetric
policy q∗r where all mobiles are balanced-payoff. We shall
also identify it (with some abuse of notation) with the actual
transmission probability which is the same for all users.
We first note that due to symmetry, to see whether q∗r is
an equilibrium, it suffices to check (24) for a single player.
We shall thus assume that m users retransmit with a given
probability [qr]

−(m+1) = (qor , qor , . . . , qor ) and the user m + 1
retransmits with probability qm+1

r . Define the set Qm+1(qor )
as the set of best response strategies of user m + 1; it can be
written as

Qm+1(qor
) = arg max

qm+1
r ∈[ε,1]

(
objectivem+1

([
qor
]−(m+1), qm+1

r

))
,

(25)

where qor denotes the policy where all users retransmit with
probability q0

r and the maximization is taken with respect to
qm+1
r . Then q∗r is a symmetric equilibrium if

q∗r ∈ Qm+1(q∗r
)
. (26)

To compute the performance measures of interest, we
introduce again a Markov chain with a two dimensional state;
see Figure 3. The first state component corresponds to the
number of backlogged packets among users 1, . . . ,m, and
the second component is the number of backlogged packets
(either 1 or 0) of user m + 1.

4.1. Scheme 1: Random Power without Priority. We con-
sider the game problem in which packets are transmit-
ted/retransmitted with a random power (according to the
distribution probability X = [x1, x2, . . . , xN ]) selected from
N levels. In this scheme, there is no priority for both classes
of packets. The transition probabilities when a given mobile
uses qm+1

r and the m other mobiles use q0
r are given in

Appendix A.

4.2. Scheme 2: Retransmission with More Power. We consider
here the proposal in which backlogged packets are retrans-
mitted with random power picked from N − 1 high levels.
A new arrival packet is always transmitted with the lowest
power level, that is, p1. The transition probabilities when m
mobiles use q0

r and the m + 1 mobile transmits at a rate qm+1
r

are clarified in Appendix B.

4.3. Scheme 3: Retransmission with Less Power. In this
scheme, we assume that new arrivals always transmit over
the channel using the highest power level pN , whereas
backlogged packets attempt retransmission with some power
among remaining N − 1 lower levels. The corresponding
transition matrix whose elements are p(n,a),(n+i,b) is summa-
rized in Appendix C.

4.4. Scheme 4: Retransmission with the Lowest Power. We
finally consider the noncooperative scenario where back-
logged packets are retransmitted with the lowest power level
p1. Here, new arrival packets are transmitted with a power
selected among N − 1 distinct higher levels. The transition
matrix of this scheme is given in Appendix D.

4.5. Performance Metrics. Let πn,a be the steady state of the
Markov chain where n is the number of backlogged packets
of the m first mobiles and a is the binary-valued number of
backlogged packets of user m + 1. The average number of
backlogged packets of source m + 1 is written as

Sm+1

([
qor
]−m+1, qm+1

r

)
=

m∑

n=0

πn,1

([
qor
]−(m+1), qm+1

r

)
, (27)

and the average throughput of user m + 1 is almost surely
given by

thpm+1

([
qor
]−(m+1), qm+1

r

)
= qa

m∑

n=0

πn,0

([
qor
]−(m+1), qm+1

r

)
.

(28)

Thus, the expected delay of transmitted packets at sourcem+
1 for all schemes verifies (Little’s result)

Dm+1

([
qor
]−(m+1), qm+1

r

)
= 1 +

Sm+1

([
qor
]−(m+1), qm+1

r

)

thpm+1

([
qor
]−(m+1), qm+1

r

) .

(29)

4.5.1. Performance Measures for Backlogged Packets. Let us
denote the throughput of backlogged packets (i.e., packets
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Figure 3: Bi-dimensional Markov chain for the game setting. The state of the system is the backlog vector; the first component corresponds
to the number of backlogged packets for m first mobiles whereas the second component indicates the number of backlogged packets of the
tagged mobile m + 1 (either 0 or 1).

that arrive and become backlogged) at source m + 1 by

thpcm+1

(
qm+1) =

m∑

n=0

m∑

n′=0

p(n,0),(n′,1)
(

qm+1)πn,0
(

qm+1). (30)

Thus, the expected delay of backlogged packets at source
m + 1 is

Dm+1
(

qm+1) = 1 +
Sm+1

(
qm+1

)

thpcm+1

(
qm+1

) . (31)

5. Numerical Investigation

We conduct here a numerical investigation of the discussed
cooperative and noncooperative frameworks of slotted aloha
under power diversity, packets priority, and capture effect.
We fix throughout this section ε = 10−4; that is, the solution
q∗ will be searched in the closed interval [ε, 1] instead of
]0, 1]; see Section 3.6.

5.1. Impact of System Parameters. In the following we
investigate the impact of each parameter on the protocol
performance. For illustrative purpose, we use scheme 1 and
yield similar results for other schemes. We also focus on the
throughput as a measurement metric; other metrics such as
delay provide similar trends. We plot the throughput as a
function of arrival probability when changing the number
of available power levels; Figure 4(a). We note that the
throughput is improved when increasing the number of
power levels. This is quite intuitive since mobiles will have

larger choices and then high chance to decode correctly the
received signal by the central receiver.

Next we depict the average throughput for different
values of threshold SINR γth; see Figure 4(b). The system
performances are deteriorated while increasing γth. When
the access point requires a high signal quality (i.e., high
value of γth) to decode correctly the received signals,
the loss probability becomes very high and therefore the
throughput decreases. Furthermore, we note that the best
performances are obtained when the available power levels
follow a geometric progression (see Figure 5(a)) whereas
same power scenario (the case of standard slotted aloha)
provides the lowest performance. This can be explained by
the distance between power levels and its strong impact
on the instantaneous SINR value. For a tagged mobile i,
with geometric or more rapid progression, only successive
power levels may interfere significantly with the chosen
power pil , whereas all other power levels have high interfering
capability on transmitted packet when using arithmetic
progression. It is also interesting to show that performances
are improved when increasing the geometric step. Another
parameter which influences on the whole performances
is the probability distribution X = [x1, x2, . . . , xN ] to
select transmit powers. Figure 5(b) shows that uniform
distribution (i.e., xi = 1/N) is the best, whereas prioritizing
high power levels provides the lowest performances. Yet,
prioritizing some power levels leads the system to behave
as an equivalent system with less number of available power
levels, which explains the observed decrease of performance.
When available power levels are uniformly distributed, they
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Figure 4: Impact of the number of available power levels (a) and threshold SINR γth (b) on the global throughput under scheme 1.

all have the same chance to be used and henceforth that
fashion outperforms other distributions.

5.2. Team Problem

5.2.1. Aggregate Throughput Maximization. In the following,
we are interested in the symmetric solution that maximizes
the global throughput. We depict in Figures 6–8 the through-
put, expected delay of backlogged packets (EDBPs), and opti-
mal retransmission probability for all addressed schemes.
We fix the threshold SINR to γth = 10 dB and consider
five selectable power levels P = [1, 5, 25, 125, 625] mW for
all schemes. Note that slotted aloha can be obtained from
scheme 1 using same power policy and infinite value of γth.

First, we evaluate the system performance in terms of
aggregate throughput for 4 mobiles. In Figure 6, we plot the
global throughput as a function of arrival probability qa.
At very low load (qa < 0.1), all schemes have likely same
performance which can be approached by a linear function
in qa. For low load (0.1 < qa < 0.24), scheme 2 seems
to perform slightly better than other schemes. When arrival
rate is average (between 0.24 and 0.6), scheme 2 performs
better and provides higher throughput. This is due to the fact
that scheme 2 prioritizes the retransmission of backlogged
packets exploiting the fact that there is few new arrivals.
But at high load the throughput of scheme 4 becomes
the highest because it prioritizes new arrivals. Clearly, new
arrival packets have an extended choice of power levels and
therefore benefit from prioritization and power diversity.

We remark that scheme 3 (retransmission with less
power) which is the same as the one first proposed in [15]
presents the least performance compared to other schemes.
This is due to the negative effect of large choice of power
levels reserved to backlogged packets and in particular to
the penalizing capture effect. This way, the instantaneous
SINR of new arrival becomes strongly noised by backlogged

packets. However, we note that all schemes with random
power selections and capture effect outperform standard
slotted aloha.

In terms of expected delay of backlogged packets, at low
and average load and for all schemes (see Figure 6(b)), we
obtain a slightly increasing function of the arrival probability,
and it can be approached by a semiconstant value. For
instance, the average backoff duration of schemes 1–4 and
slotted aloha can be approximated by d1 � 7, d2 � 4, d3 � 10,
d4 � 4, and d0 � 11 slots, respectively. It is clear that schemes
3 and 4 are the best in terms of throughput and delay. At
heavy and very heavy loads (0.75 < qa), delay of schemes 1–3
and slotted aloha increases exponentially, whereas scheme 4
holds a semiconstant value for expected delay. Under scheme
4, backlogged packets have extended choices (all power
levels indexed as p1, p2, . . . , pN−1), and this gives advantage
to retransmissions when there is no new arrival. Hence,
latter fashion provides a very good amount of successful
transmission under a low delay tradeoff. The dramatic huge
of delay of other schemes decreases significantly the system
reliability by causing very large backoff stage. Then schemes
1–3 and slotted aloha are not recommended for the delay
sensitive applications such as real time services (e.g., voice,
streaming etc.) elsewhere the system reliability and QoS
guaranteeing become a hard issue, whereas scheme 4 seems
to be perfectly adapted to support these classes of services
since its respective backoff stage is strongly reduced.

Next we plot the of optimal retransmission probability
versus offered load. We remark that for m = 4, see
Figure 8(a), all schemes optimal retransmission probabilities
qr are decreasing with qa until to be semiannulled (qr �
10−4 = ε because we only consider solutions in [ε, 1])
for schemes 1–3 and slotted aloha. This explains the huge
EDBP seen for these schemes: each backlogged packet stays
a long time in the system. whereas retransmission rate keeps
a constant value (around 0.3) for scheme 4 (for qa over 0.5)
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Figure 5: This figure shows the impact of power levels (a) and selection probabilities distribution (b) on the global throughput under scheme
1.
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Figure 6: Aggregate throughput and expected delay of backlogged packets for 4 mobiles under the team problem and throughput
maximization.

because it prioritizes new packets and then it hurts not from
backlogged packets. This later scheme seems to be the most
fair since both new arrivals as well as backlogged packets take
advantage from a high throughput and low delay and then
may meet a good channel utilization.

For m = 10, see Figures 7(a), 7(b) and 8(b), we observe
similar trends in terms of throughput and delay for all
schemes. In fact even if the number of mobiles becomes
large, a good whole performance is handled by decreasing
retransmission rates so as to avoid/reduce potential colli-

sions. We remark that at heavy load the base station asks
mobiles to decrease their retransmission probabilities to
avoid collisions; therefore the system keeps a very good
amount of successful departure. Henceforth an optimal value
of throughput is achieved and is much better compared to
slotted aloha.

5.2.2. Delay Minimization. When maximizing the global
throughput, we observed a huge EDBP for all schemes 1–3
and slotted aloha, in particular at heavy load, whereas scheme
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Figure 7: Aggregate throughput and expected delay of backlogged packets for 10 mobiles under the team problem and throughput
maximization.
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Figure 8: Optimal retransmission probability for schemes 1–4 and slotted aloha versus arrival rate qa for both 4 mobiles and 10 mobiles
when throughput is maximized.

4 keeps a constant low delay. This may be very harmful
for many applications which are delay-sensitive (real-time
applications). Now we shall investigate the problem of
minimizing EDBP and the impact of this optimization
(Figures 9(a) and 9(b)) on the throughput performance. We
note in particular that throughput performance in the four
schemes improves considerably with respect to slotted aloha.
Scheme 1 is slightly better in terms of throughput only at
light load, scheme 2 is almost better at medium load whereas

scheme 4 outperforms remarkably all other schemes at high
(0.55 < qa) and very high loads. The case of 10 mobiles
provides similar trends (Figure 10).

When EDBP is minimized, for m = 4 and N = 5,
retransmission probability decreases with qa, so standard
aloha and scheme 4 have optimal retransmission probability
of around 0.3 at heavy load whereas algorithms 1–3 have
much higher retransmission probabilities (Figure 11(a)). For
larger mobile population m = 10 (Figure 11(b)), we observe
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Figure 9: Aggregate throughput and expected delay of backlogged packets for 4 mobiles under the team framework. The objective is to
minimize the expected delay of backlogged packets.
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Figure 10: Aggregate throughput and expected delay of backlogged packets for 10 mobiles under the team framework. The objective is to
minimize the expected delay of backlogged packets.

that optimal retransmission rate falls down rapidly for all
schemes. Numerically, when traffic is high, slotted aloha
mobiles retransmit with probability around 0.13, around 0.1
for scheme 4, and around 0.19 for schemes 1–3 at average and
heavy load. In the team problem we note that the optimal
retransmission probability qr decreases when increasing
arrival probability qa and vice versa. This means that mobiles
have to cooperate (adapt their retransmission probabilities
according to the load) to reach the best performance either

when maximizing global throughput or where minimizing
EDBP.

5.2.3. Discussion and Remarks. In previews simulations we
considered the extreme cases of maximizing independently
the throughput and minimizing the EDBP. Radunovic and
Le Boudec [22] suggest that considering the total throughput
as a performance objective may not be a good objective,
and this yields also for delay. In practice it may be more
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Figure 11: The optimal retransmission probability for schemes 1–4 and slotted aloha as function of arrival rate qa for both 4 mobiles and
10 mobiles when throughput is maximized.
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Figure 12: Joint throughput and delay convex optimization. This figures shows the impact of multicriteria factor α on aggregate throughput
and expected delay of backlogged packets at low load qa = 0.3.

interesting to have a multicriteria optimization in which a
convex combination of both the throughput and EDBP is
optimized. We consider the following objective αthp(q)+(1−
α)/Dc(q), 0 ≤ α ≤ 1. This allows in particular handling QoS
constraints: by varying α one can find appropriate tradeoff
between the throughput and the expected delay, so that the
throughput is maximized while keeping the EDBP bounded
by some constant. This improves considerably the system
reliability and makes the system able to support several kinds
of services with different QoS requirements.

At low load (qa = 0.3) and under schemes 2 and 4, see
Figures 12(a) and 12(b), the optimal throughput and EDBP
are slightly constant and so insensitive to the values of the
weight α under different loads, because optimal retransmis-
sion probabilities under separated objectives (maximizing
throughput or minimizing delay) are so close. This means
that for schemes 2 and 4, when throughput is maximized,
the EDBP is also optimized which corroborates previous
result in Figures 9 and 10. At high load, when we give more
weight to the throughput (by increasing α), throughput and



16 Journal of Computer Systems, Networks, and Communications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
h

ro
u

gh
pu

t

m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 1
m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 2
m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 3

m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

100

101

102

103

104

105

E
xp

ec
te

d
de

la
y

of
ba

ck
lo

gg
ed

pa
ck

et
s

m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 1
m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 2
m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 3

m = 4, N = 5, γth = 10 dB, qa = 0.9, scheme 4

(b)

Figure 13: Impact of multicriteria factor α on aggregate throughput and expected delay of backlogged packets at heavy load qa = 0.9.

EDBP for scheme 1 (without prioritization) and scheme 3
(retransmission with less power) increase slightly. In Figures
13(a) and 13(b) we plot the performance whenN = 5,m = 4
and γth = 10 dB at high load (qa = 0.9); we note that, for
schemes 1 and 3, the throughput improves when increasing α
whereas it decreases a little for scheme 4. Despite this hybrid
optimization, a huge delay is seen for schemes 1 and 3 while
schemes 2 and 4 keep constant value because of prioritization
and large power randomization given to backlogged packets.

We note, through simulations, that our algorithms
perform much better than the standard slotted aloha and
remark that schemes behavior is changing with the offered
load. Yet, scheme 2 is generally more efficient at average load
whereas scheme 4 seems to be the most performing at high
and very high loads. These remarks motivate us to propose a
load adaptive algorithm described as follows:

q∗ = max
scheme=1···4

⎛

⎜
⎜
⎜
⎜
⎜
⎝

max
q
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(
q
)
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π
(
q
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(
q
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(
q
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πn
(
q
) ≥ 0, n = 0, 1, . . . ,m.

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

(32)

Our mixed algorithm can be implemented in practice as the
SP (Service Provider) is continuously monitoring the state
of its radio system and then can estimate the instantaneous
load as well as the number of communicating mobiles and
the average number of backlogged packets. Here, one can
use history statistics or any adapted algorithm such the
Pseudo-Bayesian Algorithm described in Problem 4.2 in [3].

Having this information, the SP will be capable to judiciously
switch its system to the best scheme and therefore take
advantage from collected data. However, the base station
should integrate a powerful software coupled with a high-
technology measurement devices.

5.3. Game Problem

5.3.1. Throughput Maximization. Figures 14(a) and 14(b)
show the variation of Nash equilibrium throughput and
expected delay of backlogged packets versus the offered load
for 4 mobiles. The throughput of slotted aloha increases
with the arrival rate till achieving a maximum throughput of
thpmax = 0.34 at qa � 0.14, and then it decreases till getting
annulled for qa ≥ 0.32. This throughput collapse causes a
huge delay for slotted aloha. Schemes 1 and 3 have similar
behavior but keep a constant value of throughput although
the arrival rate continues to increase. We have, respectively,
thpmax

1 = 0.38 at qa � 0.15 and thpmax
3 = 0.53 at qa � 0.23.

Under these parameters values, an interesting feature
occurs. In contrast to [15] where scheme 3 seems to achieve
a performance close to the team problem, the throughput
obtained for scheme 2 in the game setting matches closely
the throughput of the team setting. Here, scheme 3 turns to
perform less better than our schemes 1, 2, and 4. This shows
that prioritizing backlogged packets rather than new arrival
can be a good policy and constitutes a tradeoff to support
services with different QoS requirements.

5.3.2. Behavior under Large Mobile Population. When the
population size becomes large, we note that the throughput
is only improved at low load for schemes 1–3 compared to
slotted aloha, (Figures 15(a) and 17). An interesting result is
that scheme 4 outperforms all other schemes and does not
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Figure 14: Nash equilibrium throughput and EDBP for 4 mobiles when the payoff function is the individual throughput.

suffer from throughput collapse in average and high loads,
and the throughput falls exponentially only at very high load.
This behavior can be explained by the fact that new arrivals
are prioritized and can succeed their transmissions even if
backlogged mobiles become very aggressive (retransmission
probability close to 1). In term of EDBP, at low load scheme 4
seems to outperform all other schemes. Whereas it performs
less better than schemes 1–3 when the load becomes average
or high (Figure 15(b) and 17(b)), indeed schemes 1–3
keep a constant value of EDBP (scheme 2 that prioritizes

backlogged packets is the best). Plotting the retransmission
probability in Figure 16 shows why the throughput vanishes
and the expected delay becomes huge. Contrary to the small
population size case where mobiles become aggressive only
at heavy load, here, users are very aggressive and transmit at
probability close to 1 at average and high loads. One can note
that schemes 1 and 2 are similar and provide same average
throughput; however a slight difference is seen in terms
of EDBP where scheme 2 performs a bit better. Scheme 3
seems to perform bad at large population but still slightly
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Figure 15: Nash equilibrium throughput and EDBP for 10 mobiles when the payoff function is the individual throughput.

better than slotted aloha, in particular by providing a smaller
expected delay.

5.3.3. Delay Minimization. When the expected delay of
backlogged packets is minimized, see Figures 18 and 19, we
obtain similar behavior as when maximizing the individual
throughput we note that in some cases the throughput
obtained when minimizing the delay is better than the
corresponding one when throughput is maximized. This
situation is similar to the prisoners dilemma; it shows in fact

that Nash equilibrium is not efficient in some situations (very
known result in literature).

6. Concluding Remarks

We define the throughput gain byGi = 20 log((thpi)/(thps)),
i = 1 · · · 4, where thpi is the throughput of scheme i
and thps is the corresponding throughput of slotted aloha.
Figures 20(a) and 20(b) show that priority and power control
improve considerably the system performance both in terms
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Figure 16: Retransmission rate (Nash equilibrium strategy) when maximizing individual throughput for 4 and 10 mobiles.
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Figure 17: Nash equilibrium throughput and EDBP for 40 mobiles when maximizing individual throughput.
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Figure 18: Throughput and delay when minimizing EDBP for 4 mobiles under the game problem.
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Figure 19: Retransmission probability when minimizing EDBP for 4 and 10 mobiles under the game problem.
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Figure 20: The throughput gain when the payoff function is the individual throughput for 4 mobiles, under both optimization (a) and game
settings (b).

of throughput and delay. This gain becomes more important,
in particular, at high load where congestion situation may
be efficiently avoided or attenuated using our new schemes.
The gain function looks like an S-shaped function and can be
divided into two regions. The first region corresponds to low
load where throughput is slightly improved and the average
and high loads where throughput is considerably improved
(throughput vanishes for slotted aloha under game problem)
as well as expected delay.

Our schemes improve the channel utilization and allows
the system to support several services requiring different
QoS. The team formulation examines the case when coor-
dination between users and control of their retransmission
probabilities are possible. This needs some cognition capa-
bilities and therefore requires to upgrade the already existent
access points to support power control and coordination
mechanisms. This solution consumes valuable bandwidth
and requires advanced devices with complex computing
capability; this is why we studied the game problem. Latter
setting requires no coordination between the central access
point and mobile users and represents well the nature of
aloha system; each mobile optimizes its own objective func-
tion according to the other users strategies and its collected
information such as estimated value of the instantaneous
backlog of the system. We found that performance indicators
obtained at Nash equilibrium are, in general, less than those
of the team setting. The experienced SINR is increasing
as the number of available power levels is large as well as
the distance between two consecutive power levels is larger.
We also showed that introducing power differentiation and
priority may improve the stability of the protocol.

However unfortunately, for large mobiles population
and such slotted aloha, our schemes may also suffer from

bistability and experience a throughput break down causing
thereby a huge delay as the offered load becomes heavy. This
is visible in particular under game setting. This is due to
the fact that contention becomes very important and then
mobiles are more aggressive. Controlling the retransmission
probability qr as in team setting seems to be an efficient
way to stabilize the slotted aloha system and reach high
performance. The idea behind this is to reduce the collision
probability by decreasing the aggressiveness of communi-
cating mobile users. Here, each mobile has to estimate the
instantaneous backlog state n based on its feedback. there
are many learning solutions, for example, see [23, 24], based
on the following statement: increase qr when experiencing
an idle slot and decrease qr when a collision occurs. One
can also reduce the expected delay by limiting the number
of retransmissions per packet; note that each packet is then
definitively dropped after K retransmissions. The problem
of throughput collapse in overload condition can also be
resolved using a dynamic retransmission control which fine-
tunes the retransmission limit according to the instantaneous
backlog state. By means of game theory, one can also
shrink mobiles aggressiveness by adding a (re)transmission
cost to reduce access contention and then improve the
stability of the system. Finally, it should be noted that
aloha’s characteristics are still not much different from those
experienced today by CSMA/Wi-Fi and similar contention-
based systems that have no carrier sense capability. Indeed,
there is a certain amount of inherent inefficiency in this
family of systems. For instance, 802.11b sees about a 2–
4 Mbit/s effective throughput with a few stations talking
versus its theoretical maximum of 11 Mbit/s. These remarks
show that our presented result can be extended to other
contention systems.
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Appendices

A. Transition Probabilities for the Game
Problem under Scheme 1

The transition probabilities P(n,a),(n+i,b) are given by the
following expression:

qm+1
r Qa(i,n)

n∑

j=0

Qr
(
j,n
) Aj+1,i

j + i + 1
, a = 1, b = 0

Qa(i,n)qa
n∑

j=0

Qr
(
j,n
)(

1− Aj,i+1

)
, a = 0, b = 1

Qa(i,n)

⎡

⎣
(
1− qa

) n∑

j=0

Qr
(
j,n
)(

1− Aj,i

)
+ qa

n∑

j=0

Qr
(
j,n
) Aj,i+1

j + i + 1

⎤

⎦, a = 0, b = 0

Qa(i,n)

⎡

⎣
(
1− qm+1

r

) n∑

j=0

Qr
(
j,n
)(

1− Aj,i

)
+ qm+1

r

n∑

j=0

Qr
(
j,n
)(

1− Aj+1,i

)
⎤

⎦, a = 1, b = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = (m− n) ≥ 2,

qm+1
r Qa(i,n)

n∑

j=0

Qr
(
j,n
) Aj+1,i

j + i + 1
, a = 1, b = 0

qa

⎡

⎣Qa(i,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj,i+1

)
+Qa(i + 1,n)

n∑

j=0

j + i + 1
j + i + 2

Qr
(
j,n
)
Aj,i+2

⎤

⎦, a = 0, b = 1

(
1− qa

)
⎡

⎣Qa(i,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj,i

)
+Qa(i + 1,n)

n∑

j=0

Qr
(
j,n
)
Aj,i+1

⎤

⎦

+qaQa(i,n)
n∑

j=0

Qr
(
j,n
) Aj,i+1

j + i + 1
, a = 0, b = 0

(
1− qm+1

r

)
⎡

⎣Qa(i,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj,i

)
+Qa(i + 1,n)

n∑

j=0

Qr
(
j,n
)
Aj,i+1

⎤

⎦

+qm+1
r

⎡

⎣Qa(i,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj+1,i

)
+Qa(i + 1,n)

n∑

j=0

j + i + 1
j + i + 2

Qr
(
j,n
)
Aj+1,i+1

⎤

⎦, a = 1, b = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2 ≤ i < m− n,

qm+1
r Qa(1,n)

n∑

j=0

Qr
(
j,n
)Aj+1,1

j + 2
, a = 1, b = 0

qa

⎡

⎣Qa(1,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj,2

)
+Qa(2,n)

n∑

j=0

j + 2
j + 3

Qr
(
j,n
)
Aj,3

⎤

⎦, a = 0, b = 1

(
1− qa

)
⎡

⎣Qa(1,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj,1

)
+Qa(2,n)

n∑

j=0

Qr
(
j,n
)
Aj,2

⎤

⎦

+qaQa(1,n)
n∑

j=0

Qr
(
j,n
) Aj,2

j + 2
, a = 0, b = 0

(
1− qm+1

r

)
⎡

⎣Qa(1,n)
n∑

j=1

Qr
(
j,n
)(

1− Aj,1

)
+Qa(2,n)

n∑

j=0

Qr
(
j,n
)
Aj,2

⎤

⎦

+qm+1
r

⎡

⎣Qa(1,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj+1,1

)
+Qa(2,n)

n∑

j=0

j + 2
j + 3

Qr
(
j,n
)
Aj+1,2

⎤

⎦, a = 1, b = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = 1,



Journal of Computer Systems, Networks, and Communications 23

qm+1
r Qa(0,n)

n∑

j=0

Qr
(
j,n
)Aj+1,0

j + 1
, a = 1, b = 0

qa

⎡

⎣Qa(0,n)
n∑

j=0

Qr
(
j,n
)(

1− Aj,1

)
+Qa(1,n)

n∑

j=0

j + 1
j + 2

Qr
(
j,n
)
Aj,2

⎤

⎦, a = 0, b = 1

(
1− qa

)
⎡

⎣Qa(0,n)
n∑

j=0, j /= 1

Qr
(
j,n
)(

1− Aj,0

)
+Qa(1,n)

n∑

j=0

Qr
(
j,n
)
Aj,1

⎤

⎦

+qaQa(0,n)
n∑

j=0

Qr
(
j,n
) Aj,1

j + 1
, a = 0, b = 0

(
1− qm+1

r

)
⎡

⎣Qa(0,n)
n∑

j=0, j /= 1

Qr
(
j,n
)(

1− Aj,0

)
+Qa(1,n)

n∑

j=0

Qr
(
j,n
)
Aj,1

⎤

⎦

+qm+1
r

⎡

⎣Qa(0,n)
n∑

j=1

Qr
(
j,n
)(

1− Aj+1,0

)
+Qa(1,n)

n∑

j=0

j + 1
j + 2

Qr
(
j,n
)
Aj+1,1

⎤

⎦, a = 1, b = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = 0,

qaQa(0,n)
n∑

j=1

j

j + 1
Qr
(
j,n
)
Aj+1, a = 0, b = 1

Qa(0,n)

⎡

⎣
(
1− qm+1

r

) n∑

j=1

Qr
(
j,n
)
Aj,0 + qm+1

r

n∑

j=1

j

j + 1
Qr
(
j,n
)
Aj+1

⎤

⎦, a = 1, b = 1

(
1− qa

)
Qa(0,n)

n∑

j=1

Qr
(
j,n
)
Aj,0, a = 0, b = 0

0, a = 1, b = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = −1.

(A.1)

B. Transition Probabilities for the Game
Problem under Scheme 2

The transition probabilities P(n,a),(n+i,b) are given by the
following expression:
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i = −1,

0, otherwise.
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The transition probabilities P(n,a),(n+i,b) are given by the
following expression:
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game theoretic approach for delay minimization in slotted
Aloha,” in Proceedings of the IEEE International Conference
on Communications (ICC ’04), vol. 7, pp. 3999–4003, Paris,
France, June, 2004.

[7] R. El-Azouzi, E. Sabir, S. Benarfa, T. Jiménez, and E. H.
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