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1. Introduction

Many wireless sensing devices can comfortably operate one
way, that is, sending their samples at some intervals with no
feedback from the receiving end, assuming that occasional
losses are acceptable. There exist, however, a few sensing
applications where all samples are considered important.
They involve systems where the samples represent a certain
process to be analyzed at the receiver, and the fidelity of
that analysis is critical. Many areas of medical monitoring,
especially those dealing with tracing and diagnosing heart
activity, fall into this category. Even though one may argue
that occasional gaps in the sampled data can be filled
by interpolation or other “guessing,” the community of
health care professionals is not receptive to such arguments.
On top of the understandable obsession about the utmost
quality of data constituting the basis for life-saving diagnosis,
medical procedures are prone to (often uninformed) public
criticism and litigation. To prevent it, the vocabulary of
terms characterizing the precision of medical diagnostic
procedures must exclude phrases like “almost all data” and
“approximate records.”

From the engineering point of view, one would like to
build a practical device with the minimum cost, where by
“practical,” we understand one that works and fulfills the

expectations of its users. Even if those expectations are high,
an overdesigned device is bound to cost more than one
that meets those expectations with the minimum expense
of resources, be it memory, CPU power, or RF bandwidth.
Notably, the amount of RF bandwidth needed by the device
affects more than just the monetary cost of the project. The
RF spectrum is bound to be more and more polluted every-
where, and especially so in places like health care facilities,
where the multitude of wireless sensors will have to compete
for bandwidth to deliver all the samples to their collection
devices. So, we cannot just say that money is no object
for the kind of reliability requirements inherent in medical
applications, and for example, nonchalantly overdesign the
device for bandwidth. Our goal should be rather to find
the right set of algorithms and protocols to accomplish the
reliability objectives with the minimum bandwidth possible.
In addition to reducing the raw cost of the device, this
approach will also result in an “environmentally friendly”
design, and if only to our own immediate advantage,
will allow us to deploy more devices within a given
perimeter.

The problem addressed in this paper arose during the
design of a wireless sensing device for heart monitoring based
on ballistocardiography (BCG [1, 2]). The primary function
of the device, dubbed HDL in the sequel (for Heart Data
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Logger), was to collect data samples from a set of sensors,
store them temporarily in local flash memory, and transmit
them reliably (in near real time) to a workstation (which we
will call the CPP) over a wireless channel. (For collection
and processing point.) Cost considerations combined with
restrictions regarding the RF bandwidth, as well as demands
for long sustained battery operation, led us to base the
wireless link on a cheap low-power RF device driven by a
microcontroller.

The most challenging element of the design was the
protocol for transmitting the sampled data to the CPP. Even
ignoring the losses, the amount of bandwidth needed to
transmit the samples in real time approached the physical
capability of the RF module. A by-the-book implementation
of a two-way window-based ARQ scheme with periodic
(sparse) acknowledgments and retransmissions [3] brought
the system down to its knees. Regardless of how selective the
acknowledgments were, the very fact that the transmitter had
to expect feedback and make room for it within the stream
of outgoing data rendered its operation extremely inefficient.
Consequently, we have devised and studied alternatives to
those obvious and popular schemes and arrived at a solution
meeting our objectives.

Besides addressing a specific problem, our paper demon-
strates that the realm of small embedded wireless systems
brings about a bag of idiosyncratic constraints which often
force us to look for solutions off the beaten path. Unfortu-
nately, the high-level approach to transport and application-
layer protocols, pervading most academic research, tends
to ignore the kind of mundane low-level implementation
constraints that proved decisive in our study. To a large
extent, this is yet another fallout from protocol layering,
which has met with consistent criticism in the world of
wireless communication [4–9]. One has to resort to cases of
product engineering to show those issues in the proper light
of their highly practical relevance.

2. The System

2.1. General Outline. Ballistocardiography [1, 2] is a method
of collecting and interpreting data about heart action by
measuring the acceleration of body surrounding the heart
area. The acceleration is detected and measured by sensors
attached to the body and transformed into digital data
samples, which are subsequently analyzed and visualized
by DSP software. In our design, the accelerometers are
connected (by wires) to the HDL device, which is responsible
for the analog-to-digital conversion, intermediate storage of
the data, and its transmission to the CPP for analysis and
visualization.

The device is equipped with a small amount of flash
memory which plays a dual role. From the viewpoint of
transmitting BCG samples to the CPP, it acts as a buffer
compensating for the transmitter’s jitter and allowing the
node to retransmit missed samples. It also functions as a
simple database storing the last few sample streams taken
from the subject, which can be transmitted retroactively
upon request from the CPP.

2.2. Hardware and Software. The essential hardware com-
ponents of the HDL are the MSP430F1611 microcontroller
[10] and the CC1100 RF module [11] (both by Texas
Instruments). RF band restrictions prevented us from using
Bluetooth for the radio link (the 916 MHz band was
practically the only option), although a variant of the
HDL utilizing a Bluetooth module was built and tested.
Another reason for rejecting Bluetooth was the considerably
larger hardware cost as well as significantly increased power
requirements. Moreover, the arcane rules for device pairing
and the consequent long and nondeterministic delays in
binding the HDL to its CPP (especially with other Bluetooth
devices present in the neighborhood), turned out to be
prohibitively troublesome.

The microcontroller was programmed under PicOS [8,
12–14], which is a convenient and highly efficient operating
system for small-footprint devices, capable of structural
multithreading within the confines of the tiny RAM available
on low-end microcontrollers. In fact, MSP430F1611 is the
largest representative of the MSP430 family, with 10 KB
of RAM, which turned out to be more than needed.
Our primary concern was to provide an RAM buffer for
accommodating the samples before storing them in flash,
to account for the occasional hiccups caused by the various
special conditions, for example, the need to erase before write
on the boundary of a nonempty block. To maximize the life
of the flash memory, we avoid unnecessary erase operations
and balance the usage of all its segments. Consequently, the
procedures (system calls) writing data to flash may block
awaiting the moment when the segment to be written gets
into the proper state.

The input to the HDL consists of eight analog signals
arriving from the accelerometers. Those signals are fed to
the eight ADC ports of MSP430F1611 and converted into 8
12-bit values at the rate of fs = 500 conversions per second,
yielding 8 × 12 × 500 = 48000 bits per second of incoming
data. That rate is a required standard for a diagnostic-grade
digital representation of the BCG signal. To avoid confusion,
from now on, by a sample we will mean a single set of 8 values
collected every 1/500 of a second, while the complete series of
samples sent for processing to the CPP will be called a take.
In other words, a take represents a complete measurement,
which is processed and visualized at the CPP for the purpose
of assessment or diagnosis.

The ADC converter as well as the sample collection
process are turned on upon a request from the CPP. Such
a request specifies the duration of the take in seconds, which
is transformed by the HDL into the corresponding number
of samples. Those samples are then collected and stored
in flash memory. They can be transmitted in parallel with
their collection, or merely collected and stored locally to be
transmitted later. The device employs a simple differential
compression scheme applied at the stage when the 12-bit
ADC samples are repackaged into 48-byte blocks, which
are the storage/transmission units. Owing to the nature
of the BCG data, the compression scheme brings about
highly consistent 45% average savings, which practically
never get below 42%. This means that a typical 48-byte
block accommodates over 7 samples. As with all loss-less
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Figure 1: The communication model.

compression techniques, it is theoretically possible (although
unimaginable in practice) that the scheme will sponta-
neously inflate the data size by up to 29%.

The range of data transmission rates available to CC1100
is adjustable within a certain interval, with the raw limit
around 200 kbps, which, considering the coding (Manch-
ester), framing, and interpacket spacing reduces to about
50 kbps of effective rate (assuming one-way back-to-back
packets).

3. Data Communication

3.1. The Problem and Its Classical Solutions. The amount
of bandwidth needed to maintain a connection between an
HDL and its CPP is trivial, except for the transmission of
takes from the HDL to the CPP. Thus, we will focus on
this highly asymmetric communication scenario, whereby a
significant amount of data is transferred essentially in one
direction. The classical problem of reliable data transmission
over an unreliable link is formulated in the context of two
parties, one of them being the sender (S) and the other
the recipient (R), as shown in Figure 1. The setup assumes
two separate (possibly logical) channels. With the reverse
channel, the recipient is able to convey feedback to the
sender, for example, to request retransmission of the missing
(damaged) packets.

The simplest solution to the problem has been known as
the alternating bit protocol (ABP) [15, 16], and consists in
acknowledging every single received packet by the recipient.
Generalizations and improvements upon this simple scheme
are known under the generic name of ARQ protocols
[3]. Their objective is to reduce the amount of traffic in
the recipient-to-sender direction, and provide for smooth
operation in the face of nontrivial propagation delays
between the two parties [17]. They typically involve a
window, representing the limit on the number of outstanding
(i.e., sent but unacknowledged) packets or bytes that the
sender is allowed to send ahead. In the simplest case,
a positive acknowledgment referring to a specific packet
indicates that all packets up to and including the acknowl-
edged one have been received [18]. Some schemes employ
negative acknowledgments [19, 20] to explicitly describe
what has been missing, some others rely solely on time-
outs. With the latter, having received no acknowledgment
for an excessive amount of time, the sender will begin
retransmitting packets from the first unacknowledged one
[19].

3.2. System Conditioning. The most difficult problem facing
an ARQ scheme in our system is the utmost simplicity
of the radio link and the lack of a reasonable reservation

mechanism that would allow us to implement reliable
and deterministic separation of the two logical channels
shown in Figure 1. Based on our estimates in Section 2.2,
the available bandwidth is already close to the minimum
required to sustain the data transfer alone. Consequently,
any attempts to impose extra structure on that bandwidth
(e.g., acknowledgment slots akin to 802.11 [21–24]), while
possibly facilitating orderly delivery of data packets, would
significantly reduce the amount of bandwidth available to
those packets.

CC1100 comes equipped with rudimentary tools for
collision avoidance [11]. The module is able to recognize
radio activity in the neighborhood, based on a definable
threshold, and automatically hold its own transmission until
the activity is gone. The system can take advantage of this
function to implement a medium access control scheme
facilitating coexistence of multiple nodes within their mutual
range. Owing to the fact that our design admits such a
situation, we would like, as much as possible, to provide
for a social behavior of the multiple HDLs present in the
same area. Realistically, we cannot hope to achieve more
than one take transfer at a time. However, we should
be able to have multiple HDLs reporting their status to
the CPP and responding to simple requests effectively in
parallel.

To this end, our driver of the RF module implements
a simple listen before transmit (LBT) scheme, whereby a
node perceiving a radio activity before transmission backs
off to avoid a collision. Such a scheme greatly facilitates
low-bandwidth communication among multiple nodes, but
it does waste bandwidth. Note that all request and status
messages are very short. Thus, complex handshakes of the
RTS-CTS-DATA-ACK variety are completely useless (and
would be harmful [25]) under the circumstances.

Under ideal conditions, that is, no interference from
other nodes, the HDL transmitter is able to send packets
back-to-back reasonably fast, with minimal interpacket spac-
ing. However, as soon as the collision-avoidance mechanism
kicks in (i.e., foreign activity is sensed and backoff is
employed), it “loses its step” and may remain blocked for
a relatively long time. This is because the time intervals
of the collision-avoidance scheme are measured in tens of
milliseconds; the RF module is slow to respond to the
changes in its status and exhibits a considerable inertia in
its built-in LBT mechanism. Besides, the smallest sensible
backoff window is about 20 milliseconds.

3.3. Data Formats. Data exchanged between the HDL and its
CPP consist of packets framed as shown in Figure 2. This
layout, including the maximum payload (data) length, is
enforced by the physical characteristics of CC1100. While
theoretically, by resorting to some tricks, it would be possible
to have payloads of arbitrary length, the 55-byte maximum
for the data component is already on the large side, consid-
ering the reliability of single-packet reception. (CC1100 uses
a 64-byte internal FIFO for storing the outgoing/incoming
frame. When the total length of the packet exceeds the FIFO
size, the packet must be sent and received “in pieces,” which
is not very practical.)
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Preamble Sync Len RQ Data CRCLink ID

Inserted by module CRC coverage

Octets: 4 2 1 2 1 0–55 2

Figure 2: The frame format.

The first logical component of a packet is the link ID, that
is, the temporarily unique session identifier assigned by the
CPP to one particular HDL. This field is used to tell apart
multiple HDLs supervised by the same CPP. The single-byte
RQ field identifies the packet type, that is, the kind of request
or response carried in “data.”

A packet representing a take fragment always carries
a block of 48 bytes encoding a compressed portion of
successive samples (see Section 2.2). It also includes the
block number, such that its position within the take can be
determined independently of other blocks. The data portion
of such a packet consists of 52 bytes partitioned between
the block number and the 48-byte chunk of compressed
data.

3.4. Traditional ARQ Schemes. The first transmission proto-
col that we tried in our design operated as follows. When
the CPP wants to retrieve a take from an HDL, it sends to
the HDL a short SEND request that, in addition to the take
identifier, specifies two parameters: F—the starting block
number, and N—the number of blocks to be retrieved. The
same request format is also used as a positive or negative
acknowledgment. Initially, to start the retrieval, the CPP
sends a request with F = 0 and N equal to the total number
of blocks in the take.

Having received the initial SEND request, the HDL starts
to transmit the requested blocks consecutively. As the block
number is included in every packet, the receiving node can
tell which blocks have made it and which have been lost.

Conceptually, when the CPP receives a new block of data
that adds to the continuous sequence of already received
blocks belonging to the requested take, it should acknowledge
the reception with a new SEND request specifying the next
expected block number. A block number behind the last
block of the sample means that the entire take has been
received. This is how the simplest window-less version of the
scheme could work.

To avoid too many acknowledgments, the HDL is allowed
to use a window, that is, having sent the first block, it is
permitted to send a few blocks ahead without waiting for
separate requests for them. Specifically, the HDL maintains
two counters: NextToGo and NextToAck. The first counter
tells the number of the next block to be transmitted, while
the second one points to the first block for which an
acknowledgment (meaning an SEND request) has not been
received yet. The device is allowed to keep sending blocks
for as long as NextToGo − NextToAck < W , where W is the
assumed window size. To facilitate this operation, the CPP
will refrain from acknowledging every single block. Ideally, it
would like to get away with a single acknowledgment per the
entire window.

Having reached the end of window, for as long as
NextToAck is not advanced, the HDL keeps retransmitting
the last block (at some reasonably short intervals). If the CPP
has missed some packets from the window, it should repeat
the last SEND message until the missing fragment arrives. A
duplicate SEND request for the NextToAck block is viewed
by the HDL as a request to retransmit all packets starting
from NextToAck. Note that as soon as the hole (or holes) in
the received data have been plugged by the CPP, it can issue
a SEND message whose offset will jump to the end of the
received continuous set. This will tell the HDL to abandon
the retransmission and move ahead.

In general terms, the described scheme falls into the
standard family of Go-Back-N ARQ protocols and, in
particular, lies at the foundation of TCP [26]. The key to
its effectiveness in the application at hand is in the right
selection of the window size W , the intervals between SEND
messages, and the timeouts. Notably, the HDL has to make
sure that the acknowledgments can be received at all; thus, it
cannot be overly aggressive with transmissions.

Note that the problem is quite idiosyncratic of our RF
framework. In the classical analysis of the ARQ schemes,
it is commonly assumed that the cost of receiving an
acknowledgment has nothing to do with the cost of sending
a data packet. The primary role of the window in such
a system is to compensate for the end-to-end propagation
delay by turning the channel into a pipe [27]. In our case,
the propagation delay is insignificant, and the window is
used as the grain of acknowledgment—to avoid too frequent
“channel reversals” and interruptions in the “proper” stream
of data arriving from the HDL.

To the best of our knowledge, the problem of imple-
menting an ARQ scheme over a wireless channel has never
before been looked at from this particular angle. Most
of the previous efforts in this area have focused on two
issues: (1) adapting TCP for wireless connections [28–30],
and (2) lowering the effective packet error rate in cellular
channels [9, 31, 32]. In the second case, the role of ARQ is
not to absolutely guarantee the delivery of all data, but to
reduce the number of losses, possibly in combination with
various forward error correction (FEC) techniques naturally
employed in cellular systems [9]. All those variants of ARQ
assume that the requisite acknowledgments are delivered
over a separate channel whose interference with the primary
(data) channel is either completely immaterial, or its nature
is much less destructive than with our “channel reversal.”

The amount of time needed to expedite a single data
packet containing a block of the requested take is tp ≈ 5
milliseconds. Adding to this the various unavoidable delays
in the OS and in the driver, we conclude that with back-to-
back transmissions we are able to send about fp ≈ 150 blocks
per second. Considering that the frequency of sampling fc
is 500 samples per seconds, which translates into about 70
blocks on the average (see Section 2.2), we find ourselves
comfortably within the realm of feasibility. One should
realize, however, that this optimistic conclusion only holds
under the assumption that the stream of transmitted data
is not disrupted for excessively long intervals. As it turns
out, any attempts to provide reception opportunities (LBT)
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between a pair of sent data packets incur a time overhead ta
of order 15–30 milliseconds, which is 3–6 times more than
the transmission time of one block.

Consequently, the performance of the traditional ARQ
scheme, in the version described above, was pathetic regard-
less of the setting of its parameters. With the LBT delays
and the extra losses incurred by the interference from
acknowledgments (backoffs), the effective rate went down
to about 15–20 blocks per second. This way, the amount of
time needed to transmit a 20-second take was close to two
minutes.

Most of the relevant insight into the problem can be
obtained from a very simple model based on the following
assumptions:

(1) the cost (time) of a packet (block) transmission
within a window is fixed and equal tp;

(2) the time penalty of receiving a feedback from the
recipient is also fixed and equal to ta;

(3) the probability of a packet error, expressed as Pe, is
fixed and independent.

Let W denote the window size. With sparse acknowl-
edgments separated as widely as the window size, the
approximate amount of time needed to transmit a take of
N blocks can be expressed as

T(N) =Wc × tp + ta +
Wc∑

i=0

P
(
i,Wc

)× T(N − i), (1)

where Wc = min(W ,N) and

P(n,m) =
⎧
⎨
⎩
Pe ×

(
1− Pe

)n
if n < m,

(
1− Pe

)m
otherwise

(2)

is the probability that exactly n initial blocks of m total
have been transmitted successfully. This yields the following
recursive formula:

T(N) = Wc × tp + ta +
∑Wc

i=1P
(
i,Wc

)× T(N − i)
1− P(0,Wc

) , (3)

with T(0) = 0.
If the acknowledgments are in fact sent independently

(based on loose timeouts at the recipient), tp has to be
large enough to provide a reception opportunity after every
packet. On the other hand, one can try to make the windows
explicit and formally request that the feedback be only
sent at the window boundary. This may require special
signals (short packets) at the end of a window—to notify
the recipient that the feedback is expected and should be
provided. While those “signals” may take more time than a
simple reception opportunity for an acknowledgment, the
packets sent within a window can be spaced tightly (no LBT)
avoiding much of the overhead. The advantage is illustrated
in Figure 3, which compares the normalized time of trans-
mitting a long series of blocks under different scenarios, with
the two variations discussed above represented by curves I.
and II. The normalized time is expressed as the ratio of the
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Figure 3: Normalized time of sending a series of blocks under Go-
Back-N and selective schemes.

actual transmission time T to the time Ts required to collect
N samples, where N is the number of transmitted packets
(thus, any value above 1 should be viewed as a failure to keep
pace with the sample collection process). The window size
was 10 blocks. In the first (spontaneous) case, tp is set to 20
milliseconds, which roughly corresponds to the minimum
reasonable packet separation interval that would provide
any reception opportunities at all. The cost of receiving an
acknowledgment was set to 30 milliseconds in both cases,
which was rather optimistic. No detailed experimental tests
were carried out for these schemes, as they were immediately
seen to be practically useless.

Indeed, once we conclude that acknowledgments should
only be sent at explicit window boundaries, it makes little
sense to follow the Go-Back-N approach. Instead, it would
be much wiser to selectively indicate in the acknowledgment
the exact blocks that were missing in the window. Then,
the next window would start with the missing blocks from
the previous one. The performance of this new scheme is
captured by (1) substituting

P(n,m) =
(
m
n

)
× (1− Pe

)n × P(m−n)
e , (4)

which represents the probability that exactly n of the m
blocks have been received correctly.

The solution for Wc = 10 is depicted by curve III. in
Figure 3. Its superiority over the Go-Back-N approach is
clear. One of its desirable features is the strict monotonicity
with respect to the window size, which is not the case with
the Go-Back-N scheme. This is because, with Go-Back-
N, an error occurring within a large window will trigger
the retransmission of the entire tail. While a jump ahead
can be forced by the CPP when it detects that the hole
has been plugged (this possibility is not captured by our
simple model), large windows will tend to contain multiple
erroneous packets, which will nullify the impact of this
feature.

The difference in character between a Go-Back-N pro-
tocol and a selective scheme applied to our system is shown
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in Figure 4. Parameters tp and ta correspond to the values
characteristic of our platform, and the probability of error
Pe = 0.1 is relatively large, but not uncommon in our
application.

3.5. The Workable Scheme. The monotonicity of the sim-
ple selective scheme with respect to the window size W
(Figure 4) suggests that the window size should be as large
as possible. Note, however, that one factor tacitly ignored in
the simplified performance model is the size of the feedback
(acknowledgment) packet, which depends on the number of
missing blocks. One would like to avoid a situation when the
feedback message itself consists of multiple packets because
then we would have to cope with two more issues.

(1) Multiple channel reversals, which, as we explained in
Section 3.2 tend to waste a disproportionate amount
of bandwidth.

(2) Reliable reception of the feedback. In a situation
when the feedback message consists of multiple pack-
ets, simple persistent and idempotent schemes will
not work, which will bring about more bandwidth
wastage.

As a side note, let us mention here a third issue, usually
ignored in protocol design studies, namely, the complexity
of the implementation expressed in the mundane terms of
code length. This parameter is not irrelevant in the realm of
microcontrollers; even if the computational complexity of a
program is acceptable, the program should not be too big, as
it may not fit into the limited ROM.

As Figure 4 shows diminishing returns for pushing the
window size beyond a “reasonably” large value, we propose
to make the window size variable and adopt the following set
of rules:

(1) the window size is determined by the (maximum)
number of requested blocks whose description can fit
into a single request/feedback packet;

(2) the end of a window is explicitly indicated by the
sender (the HDL) in a persistent manner until
noticed by the recipient (the CPP);

(3) Request packets are idempotent and they are sent
persistently by the CPP, until it notices the arrival of
a new window.

This approach minimizes the number of channel rever-
sals and results in a scheme whereby the CPP repeatedly polls
the HDL for the missing blocks and then expects to receive
them in the next window of packets, doing so until all the
blocks have made it. At every step, the CPP asks for the
maximum number of blocks that can be described in a single
request packet. The generic algorithm for take extraction
executed by the HDL can be described as follows.

(1) Wait for a request. This is the main loop executed by
the HDL while being idle. Having received a request,
proceed at 2.

(2) Extract from the request the list of blocks to be sent and
send them blindly back-to-back (no LBT) until the last
requested block has been expedited. Then proceed at 3.

(3) Send periodically, at reasonably sparse intervals and
with LBT on (as to enable reception opportunities), a
short packet indicating the end of window. A natural
choice for such a packet is an empty block. Keep doing so
until a new request arrives from the CPP. Then proceed
at 4.

(4) If the request is NULL, that is, no more blocks are
needed, terminate the operation and proceed at 1.
Otherwise, proceed at 2.

A flowchart view of the above algorithm is shown in
Figure 5, with the ovals representing waiting states, and the
triangle (labeled Rq) indicating the event consisting in the
reception of a request packet. For transmission while sam-
pling, the algorithm starts with one implicit round whereby
the blocks are sent back-to-back while being collected from
the ADC. This constitutes the first window consisting of all
blocks contributing to the take. Following that round, the
algorithm continues at step 3.

The CPP’s end of the protocol looks like the following.

(1) Initialize by marking all blocks to be received as absent.
Then continue at 2.

(2) Find out which blocks are still absent. If none, send
a NULL request and enter the IDLE state. Otherwise,
prepare a single request packet that covers as many of
the missing blocks as possible and proceed at 3.

(3) Keep sending the request packet at reasonably sparse
intervals until a block packet arrives from the HDL.
Then proceed at 4.

(4) Keep receiving the blocks and storing them until you
see the end-of-window packet (an empty block). Then
proceed at 2.

Figure 6 shows the flowchart view of the above algorithm.
The Bk triangle represents the reception of a block packet
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from the other party. For an immediate transmission-while-
sampling request, the first request issued by the CPP will
instruct the HDL to initiate the sampling procedure, and will
implicitly trigger the first “total” window consisting of all the
blocks contributing to the take.

The simple (idempotent) nature of requests and block
transmissions automatically takes care of all possible loss
scenarios and races. Note, for example, that all blocks of a
given window requested by the CPP can be lost. Thus, when
the HDL arrives at step 3 of its algorithm, it will eventually

receive again the original request, which persists at the CPP
until it sees the first (any) packet of the requested window.
Consequently, it will just retransmit the last requested
window in its entirety. Similarly, the CPP does not assume
that its single NULL request (sent in step 2 to indicate the
completion of the transfer) always makes it to the HDL.
Rather, having assumed the IDLE state, it will reply with a
NULL request to any end-of-round packet received from the
HDL, to eventually force it to the IDLE state as well. This
is illustrated in Figure 6 with the (spurious) Bk event in the
upper left area of the flowchart.

3.6. Request Formats. The key to a good performance of the
protocol described in the previous section is the efficient
description of missing blocks in the request packet. We have
implemented two formats of such requests.

With format 1, a request packet is filled with block
numbers, each number occupying three consecutive bytes,
up to the maximum of 16 values (48 bytes). A simple trick
is played to describe individual blocks as well as continuous
ranges. Suppose that c0, . . . , cn−1 is the sequence of block
numbers specified in a request packet. These numbers are
interpreted by the HDL as follows.

(1) Set i = 0.

(2) If i = n, done (all requested blocks have been sent).
Otherwise, set ca = ci and i = i + 1.

(3) If i = n or ci > ca, send block ca. Otherwise, set cb = ci
and i = i+1. Send the blocks cb, . . . , ca. Continue at 2.

Thus, for as long as the block numbers are increasing,
they describe individual blocks, while a decreasing number
together with its preceding number are taken together as the
boundary of a continuous range (chunk) of blocks. Note that
the pair N − 1, 0 (where N is the total number of blocks in
the take) requests the (initial) total window comprising the
entire take.

With format 2, it is possible to use bit maps to
efficiently describe sizable hollow fragments. The collection
of requested blocks is described by a sequence of elements,
which may identify continuous ranges of blocks, as well as
random selections represented by bit maps. Each element
starts with a header, which consists of one (leading) byte
followed by a three-byte block number, as shown in Figure 7.
The most significant bit of the leading byte, labeled T ,
distinguishes between two element types: origin (T = 0) and
chunk (T = 1). An origin type element requests explicitly the
block number ORG to be sent to the CPP, and also sets the
current location within the take to the block number ORG +
1. If ms is nonzero, then ms consecutive bytes following
ORG are interpreted as a bit map requesting selected blocks
from the take fragment starting at block number ORG + 1.
This is the block number corresponding to the first bit in the
map.

The second element type (chunk) describes a contin-
uous range of blocks starting at the current position, as
determined by the previous sequence of elements within the
packet. The three bytes following the header byte encode the
number of blocks falling into the chunk. If the chunk element
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Figure 7: The layout of an element header.

0 9 215 · · · 1 12 33 · · ·

Origin Map 9 bytes Chunk Map 12 bytes

Figure 8: A request fragment.

is the first element of the request, that is, the current position
has not been explicitly defined, it is assumed to be zero. Thus,
the complete take (all blocks) is described by a single element
whose first byte is 0×80 and the following three bytes contain
the total number of blocks in the take.

Similar to an origin element, a chunk element may
specify a map (its ms field may be nonzero). The bits of
such a map apply to blocks immediately following the chunk.
Figure 8 shows a sample request fragment which calls for
block number 215, then uses a bit map to select among blocks
216–287. Note that one byte of the map covers 8 consecutive
blocks; thus, the 9-map bytes describe 72 blocks starting
at block 216. The subsequent chunk element requests the
continuous range of blocks 288–322 (33 blocks total). Finally,
the second map applies to blocks 323–418. The total length
of the request fragment shown in Figure 8 is 29 bytes.

One can think of several ways to generate requests (in
either format). The problem is nontrivial, if we want to do
it in an absolutely optimal fashion. For example, it may be
OK to request some superfluous (already received) blocks,
if the request can be shortened this way. This makes sense
when a request that would not fit into a single packet can be
thus made to fit. Note that the cost of including a superfluous
block in the window (tp) is relatively low compared to the
cost of handling an extra round.

The simple heuristics for format 2 used in our implemen-
tation of the protocol in the CPP work this way.

(i) The first missing block is used as the ORG of the new
request packet.

(ii) Starting from ORG + 1, consecutively numbered
blocks are examined in bunches of 8 (corresponding
to the bytes of the bit map). If at most one block per
8 is present (the map byte contains at most one zero),
the bunch becomes a candidate for a chunk. If five
or more consecutive bunches (at least 40 blocks) are
collected this way, a chunk element is generated and
it covers all the subsequent blocks whose 8 bunches
contain no more than one superfluous block. Note
that such an element takes 4 bytes, that is, less than a
map covering five or more bunches.

(iii) If a bunch is all zeros (all the blocks from the bunch
are already present), it becomes a candidate for a skip,
that is, advancement to a new ORG. A new ORG
element is generated whenever we hit five or more
consecutive bunches with this property.

(iv) Otherwise, a map is built until either a chunk or a
skip is encountered (according to the above criteria),
or the request packet is completely filled up. Note that
such a map can follow a chunk.

(v) This procedure continues until the request packet
is filled completely or there are no more blocks
to request. When the round is over, following the
reception of the requested window, a new request
packet is generated according to the same set of rules.

3.7. Analytical Assessment. The scheme discussed in the
last two sections can be viewed as a modification of the
selective retransmission protocol described at the end of
Section 3.4. The modification consists in making the window
size variable. Except for the first round, in which the window
covers the entire set of blocks, the size of every subsequent
window is determined by the capacity of the request packet
sent by the CPP, understood as the conveyed number of
missing blocks. To estimate that number, suppose, as we
did in Section 3.4, that packet errors are independent events
occurring with probability Pe. Let us begin with format 1.
Assume that we are at the end of the first round and our
objective is to fill a request packet of size u slots, where one
slot accommodates one block number. The question we ask
is as follows : what is the expected number of missing blocks
that will be described by such a packet?

In an asymptotically interesting case, we are looking at
a large (infinite) number of blocks to transmit, and there
are always sufficiently many missing blocks to fill an entire
request packet. Moreover, their configuration is nontrivial,
that is, not all of them are missing (in which case just two
slots would do). Whenever we hit a missing block, there are
two possibilities.

(i) The block is a “singleton,” that is, the next block is not
missing. This event will occur with probability 1 −
Pe. In such a case, we will use exactly one slot of the
packet to describe exactly one block.

(ii) With the remaining probability of Pe, the next block
is missing as well, and we have a continuous range of
two or more missing blocks. In that case, we will use
two slots and the expected number of blocks covered
by them is equal

∞∑

k=2

Pk−2 × k, (5)

where Pk−2 is the probability of exactly k − 2
consecutive errors (note that we already know that
two consecutive blocks are missing).

Thus, the expected capacity of a format 1 request with u
slots is given by the following recurrence relation:

Cu =
(
1− Pe

)(
Cu−1 + 1

)
+ Pe

(
Cu−2 +

(
1− Pe

) ∞∑

i=2

Pi−2
e × i

)
,

(6)
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Figure 9: Estimated capacity of a request packet versus packet error
rate.

which transforms into

Cu =
(
1− Pe

)
Cu−1 + PeCu−2 +

1
1− Pe

, (7)

with the boundary conditions C1 = 1 and C0 = 0.
The capacity of a format 2 request packet is more

difficult to estimate (at least in all circumstances) because
of the multitude of cases. Note, however, that in those
scenarios when that format is expected to bring most help,
the density of missing blocks will result in most of them being
represented as bit maps. Then, the capacity of a format 2
packet can be simply approximated as

C′u = B × Pe, (8)

where B is the maximum number of bits in the packet
available for the bit map. This approximation is going to
work well at least for a medium range of Pe.

Figure 9 compares the two functions forM = 16 and B =
352, which values match the actual parameters of request
packets in our system. format 2 appears to clearly win, except
for very low (less than 4%) and extremely high (larger than
97%) error rate. Note that approximation 6 ceases to work
in those regions. For the low end, that happens when less
than one of every 40 blocks is missing (around Pe = 0.025),
in which case skips will prevail over maps (see Section 3.6),
but we can confidently say that below this “phase transition”
threshold format 2 is going to be slightly worse than format 1,
because its representation of individual blocks is less efficient
(4 bytes per block instead of 3). Needless to say, the other
extreme (error rates approaching 1) is irrelevant. For Pe
between 0.05 and 0.9, the simple formula (8) gives in fact
a very good approximation, at least as long as packet errors
are independent.
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Figure 10: Our scheme versus selective acknowledgments with
fixed window size (analytical comparison).

Using the values produced by formulas (7) and (8), one
can toy with (1) and (4). One simple way to tweak that model
to describe our scheme is to set in (1)

Wc =
⎧
⎨
⎩
N if N = N0,

Cu(or C′u) otherwise,
(9)

where N0 is the total number of blocks in the transmitted
take. As formula (4) requires Wc to be an integer number,
we can restrict the application of (1) to those values of Pe
that generate integer values of Cu (or C′u) and interpolate for
other values.

Figure 10 shows the result of applying the new model
to the case of transmitting 10 000 blocks. The two variants
of our scheme are compared to two instances of the
straightforward selective acknowledgment protocol with a
fixed window size. Our protocols are represented by discrete
points, to emphasize the fact that only certain values of Pe
can be handled by the model. In particular, the expected
window size grows rather slowly for format 1, and only
three integer values (16, 17, 18) show up for Pe < 0.4. The
value for Pe ≈ 0.048 (window size 17) for format 2 has a
question mark, as the point is close to the phase transition
threshold and thus not reliable. Note that a standard selective
acknowledgment scheme with fixed window size is bound to
lose slightly, even when the error rate is zero, because of the
need to interrupt transmission at the window boundary and
momentarily reverse the channel.

4. Empirical Verification

4.1. Packet Losses. In a real-life deployment of an HDL-
CPP system, one can distinguish two scenarios when a
packet can be lost. First, even with the absence of explicit
external interference (e.g., from another RF device), a
packet can be lost “statistically” because of the background
noise. Under normal operating conditions, which assume
the maximum transmission range of 30 meters and the
lack of interference from another simultaneous transmission
(involving a different HDL), the rate of such errors is below
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Figure 11: Normalized duration of transfer versus packet error rate
under “random loss” conditions.

1% and they appear to be random and truly independent
events.

The second scenario type involves an interference from
other HDL/CPP setups operating nearby on the same
channel. Losses in such a case can be longer and correlated,
namely, runs of missed packets are more likely. While such
situations are not representative of normal operation (and
they are avoidable by the application, see Section 5.2), we also
studied them to assess the resilience of our system to explicit
RF interference causing losses in excess of 50% of packets.

4.2. Observed Performance. Table 1 shows the distribution
of error runs under the “random” losses. By intentionally
crippling the system, that is, attenuating the received signal
level beyond normal operating conditions, we pushed the
packet error rate over 30%. The attenuation was accom-
plished by reducing the transmission power, trimming the
antenna, and/or moving the two nodes (HDL and CPP)
further apart until the average observed packet error rate
matched the first column of Table 1. The remaining columns
show the fraction of all observed error runs (a consecutive
sequence of erroneous packets was treated as a single sample
in these statistics). As we can see, there are no long series of
lost packets, which means that attempts at identifying runs
(that would reduce the number of retransmission requests)
will not be very successful.

Figure 11 shows the increase in the time of take transfer
depending on the packet error rate under “random loss”
conditions. The measured value is the ratio of the actual
transfer time to the time with zero losses. The two sets of
points correspond to the two request formats described in
Section 3.6. At each point we also show the average number
of rounds taken by each format (the upper number is format
1) for a 60-second (4000-block) take.

Note that for a low error rate (below 4%), format 1
turns out to be marginally better than format 2, which
trend significantly reverses for higher error rates. This is
explained by the slightly less efficient representation of sparse
missing blocks by format 2 under very low error rates (see
Section 3.7).

HDL0 HDL1

CCP0 CCP1

3 m 3 m
Adjustable

Figure 12: An adjustable configuration of two interfering systems.

Scenarios with short RF interferences, for example,
corresponding to the situation when one HDL is sending
blocks, while some others exchange status messages with
their CPP’s, are not visibly different from the random
scenario, with the appropriately adjusted packet error rate.
Consequently, it is more interesting to look at the cases of
large losses caused by two or more concurrent take transfers.
By adjusting the distance (cross-interference) between the
different setups, and looking at the behavior of a single HDL-
CPP pair, we can obtain error rates above 50% and reaching
90–95%. Note that even in extreme interference scenarios,
the loss is never 100%, which is mostly due to the capture
effect [33, 34]. What we see at those higher loss rates is longer
error runs.

Experiments illustrating the performance of our system
under such large loss rates were carried out using the setup
shown in Figure 12. The two HDL-CPP pairs were constantly
transmitting long takes in parallel. The separation between
the two pairs was adjusted (between 0.5 and 10 m) to match
the prescribed average error rate.

Figure 13 presents the observed distribution of runs for
three different average packet error rates. The length of each
bar tells the percentage of all erroneous (lost) packets that
belonged to runs of the corresponding length (marked on
the x-axis). Runs of length 1 are not shown (their percentage
can be trivially deduced as the difference between 100 and
the length of the first bar). In particular, for the packet error
rate of 0.9, 50% of all lost packets were lost in runs of 17 or
more.

The actual performance of an HDL-CPP pair under
heavy interference conditions is illustrated in Figures 14 and
15. These results were obtained by making one HDL of the
setup in Figure 12 transmit a continuous sequence of samples
(belonging to a dummy infinite take), while the other pair
tried to exchange a sequence of forty 60-second takes. (The
CPP of that pair was irrelevant and completely inactive.)
For each transfer, we measured the total transmission time
(until the arrival of the last missing sample) as well as
the number of rounds needed to accomplish the transfer
(the first transmission in response to the initial request was
counted as round 1). Both measures were averaged over the
40 experiments. As before, the average transmission time
per take is normalized assuming that a completely error-free
transmission lasts one unit.
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Table 1: Percentage of error runs under random loss.

PER RL = 1 RL = 2 RL = 3 RL = 4 RL = 5 RL = 6 RL = 7 RL = 8

0.005 0.9814 0.0173 0.0013 — — — — —

0.010 0.9591 0.0398 0.0012 — — — — —

0.020 0.9253 0.0686 0.0058 0.0003 — — — —

0.040 0.8553 0.1263 0.0166 0.0017 — — — —

0.080 0.7401 0.1954 0.0498 0.0108 0.0028 0.0006 0.0004 —

0.160 0.5945 0.2273 0.1035 0.0420 0.0181 0.0085 0.0033 0.0016

0.320 0.5173 0.2484 0.1257 0.0593 0.0246 0.0135 0.0062 0.0029
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Figure 13: Error run length distribution under heavy losses
incurred by interference.

In terms of rounds, the superiority of the second request
format is clear. Note that under enormously large error
rates, a fewer number of rounds requires fewer request
packets, which begins to positively feed back into the
overall transmission time (the impact of losses among the
request packets is smaller). Naturally, the actual transmission
time of a take grows quite significantly with the increased
interference level. Intuitively, with two independent pairs
operating in parallel, one would be willing to put up with
a twofold increase in the average take transmission time.
Based on Figure 15, this happens around Pe = 0.4, which
was observed for the separation distance of about 5 m.

5. Enhancements and Generalizations

Although the solution discussed in this paper has been
devised as part of a very practical project aimed at the
development of a specific device catering to a specific
application, it addresses a general problem that may be
of relevance in other applications. In particular, we are
currently building a wireless device for a profile matching
application where the role of takes from the HDL is played
by small pictures (photographs) exchanged by the nodes.
The data exchange protocol in the new application has been
copied verbatim from the HDL program.
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Figure 14: The average number of rounds to transmit a 60-second
take under heavy interference.

5.1. Trading Reliability for Complexity. One of the charac-
teristics of good “holistic” software solutions for micro-
controlled devices is their breaking away from the layered
paradigm of large-scale computing and networking. In con-
sequence, some traditional concepts may assume different
roles. This has happened to the concept of transmission
window in our scheme. In contrast to traditional protocols,
where the window counteracts the negative impact of the
bandwidth-delay product, its primary purpose in our system
is to reduce the channel reversal penalty (something that the
traditional protocols have never worried about).

Our scheme can be extended to a scenario where the
transmitted data has the appearance of a continuous stream,
which can only be partially stored at the sending node. Of
course, similar to other schemes [9, 28], it cannot possibly
guarantee in such circumstances that all packets of the stream
will always make it to the destination. But, as we argued
elsewhere [35], all true streams must be prepared to accept
occasional losses. With this allowance, it is easy to modify our
solution to work with a circular buffer at the sender in a way
that will automatically trade the buffer size for the perceived
(effective) loss rate at the destination.

Let M be the size of the circular buffer at the sender,
that is, the buffer can accommodate up to M most recent
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Figure 15: The average normalized amount of transmission time
under heavy interference.

outgoing blocks of data. Let K be the number of the first
block stored in the buffer. The number of the last stored
block is K+M−1. The process responsible for generating the
blocks to be sent to the other party simply fills in the buffer in
the standard way discarding the oldest samples in the natural
FIFO fashion.

The modified scheme operates according to the original
paradigm whereby rounds are triggered by single-packet
requests specifying as many missing blocks as possible. Each
of the outgoing block packets includes in its header the
current value ofK , to tell the recipient the minimum number
of block that it can still request. If a block whose number is
less than K is missing, the recipient knows that it has been
irretrievably lost (it makes no sense to ask for that block).
Otherwise, the protocol executes exactly as before.

The block numbers can be stored in a modular fashion,
such that even huge streams can be accommodated without
overtaxing the short packet format. In order to know which
blocks to request, the recipient must maintain a conceptual
equivalent of the circular buffer, which can be reduced to a
bit map, if the received blocks need not be stored at the node.

5.2. Collision Avoidance. By consistently obeying a simple
set of rules, multiple nodes of the application, including
multiple CPPs, as well as multiple HDLs controlled by the
same CPP, can effectively avoid collisions among simultane-
ous take transfers and make sure that status packets do not
interfere with takes. This can be accomplished in a way that
properly accounts for hidden terminals.

First, consider the case of a single CPP servicing multiple
HDLs. In this setup, only one take transmission can be active
at any given time, as each of them must be initiated by the
CPP. Consider two HDL nodes A and B. Suppose that A
is sending a round of blocks to the CPP. If B is located
within the transmission range of A, it will refrain from
sending a status packet for as long as A is transmitting. This

is because status packets are sent with LBT enabled, which
means that B will listen to the medium for a short while
before transmitting and postpone its transmission when it
senses another activity. To make this work, one has to make
sure that the LBT interval is longer than the tiny interpacket
gap separating two packets in a round. This is analogous to
SIFS/DIFS spacing in 802.11 [21, 22].

In a sense, the back-to-back series of packets sent by
the HDL in one round can be viewed as a single unit of
transmission. The situation is in fact much more favorable,
because even if B damages the first block of the round (LBT
race), it will necessarily yield to the remaining packets. Thus,
the first block packet sent in a round can be viewed as a
bandwidth reservation request addressed to all HDL nodes in
A ’s neighborhood. One may even consider putting a special
(irrelevant) packet in front of a round batch, to make sure
that LBT races never damage actual block packets.

Now suppose that B is out of A’s range, but within the
range of the CPP, that is, it is a hidden terminal from the
viewpoint of A. Then, B has had an opportunity to see the
CPP’s request addressed toA. Note that that request specified
(implicitly) the total number of blocks expected from A.
Nothing stops B from decoding that request (the same way
it would decode a similar request addressed to itself) and
estimating for how long A will be transmitting the blocks.
This estimate can be quite accurate, as round transmissions
are highly deterministic. Consequently, B will be able to hold
back its traffic until the CPP has completely received the
round.

In an environment with multiple CPPs, one has to avoid
a situation when two CPPs simultaneously initiate take
transmissions in a way that can make them interfere. Note
that the HDLs involved in those transmissions can be allowed
to interfere, as long as the reception at their CPPs is clear.
Let us denote the two CPPs by C1 and C2, with H1 and H2

being their respective HDLs. The problem only occurs if H1

is within the range of C2 or H2 is in the range of C1. Suppose
we have the first scenario (the other is obviously symmetric).
Being within the range of C2, H1 will have an opportunity to
hear C2’s request addressed to H2. Consequently, it will not
be responding to the requests of its CPP (C1) for the amount
of time inferred from the overheard request packet. This way,
H1 will not start a round transmission for as long as H2 is
handling the request of its CPP.

Notably, the nature of traffic in our application automat-
ically takes care of the exposed terminal problem as well.
The only rule to be added to the discussed scheme is that
once an HDL decides that it is safe to transmit (according
to the above rule), it will respond to a round request from
its CPP blindly, that is, without employing LBT for the first
packet. We mention this explicitly (even though we agreed
that packets within a round are to be sent without LBT),
because one might be tempted to send the first packet of a
round with LBT enabled (in the spirit of treating the round as
a logically single activity), but if the HDL knows of no foreign
CPP requests in its neighborhood, it need not be polite to the
neighbors with the transmission of its round. This is because
any collision of that round will be purely local; both CPPs
will be able to receive their blocks.
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This discussion demonstrates that the interference exper-
iments described in Section 4.2 do not pertain to scenarios
expected to haunt real deployments, but were merely aimed
at assessing the performance of our application under
extreme stress. On top of the explicit collision avoidance
techniques, there exist other ways to separate multiple CPP-
HDL setups operating in the same area. First, one can assign
different channels to those setups. Formally, the CC1100
RF module offers up to 256 different channels [11], whose
separation can be improved by reducing their number. When
using only 16 of those channels, that is, with 16 internal
channels separating two adjacent application channels, the
distance separation of 1 m between the two pairs resulted
in the observed error rate below 2%. Creative power
management is another option. In the present application,
the CPP can ask its HDLs to adjust their transmitted power
levels. Note, however, that by varying power levels used
by different nodes, we spoil the approximate symmetry of
neighborhood perception, which in turn affects the perfor-
mance of reciprocity-based collision avoidance schemes.

5.3. Other RF Modules. Our choice of CC1100 for the
project was dictated by its reasonable friendliness in terms of
program interface as well as simplicity in terms of the built-
in functionality. The module is a rather typical representative
of its class. In particular, other variants of the same line by
Texas Instruments, including CC2400, CC2420, and CC2430,
offer essentially the same basic functionality augmented by
on-chip MAC/routing features aimed at ZigBee compliance.
Note that those modules operate in the 2.4 GHz band, which
was considered unacceptable for the application for formal
reasons. Even if the RF frequency was not an issue, the
extra features of those modules would be useless for the
application; consequently, they would essentially operate in
a CC1100-compatible mode.

Note that the efficiency of take transmissions in our
project hinges on exploiting the largest possible fraction
of the raw bandwidth offered by the RF module. Thus,
any advanced built-in features aimed at collision avoidance,
bandwidth policing, and so on, would only get in the way.
This property of our solution essentially puts all RF modules
into the same basket.

In some of our other projects we have been using
even simpler RF modules, for example, TR8100 form RF
Monolithics [36], which, despite drastic differences in the
interface, offers essentially the same functionality as CC1100.
The primary difference is the absence of an on-chip LBT
mechanism in TR8100, which, however, as we have verified
elsewhere [8], can be effectively and efficiently emulated in
software. Consequently, one should expect about the same
results with other RF devices, as long as they offer similar
transmission rates, which is the dominating factor affecting
the overall performance of our scheme.

6. Conclusions

We have presented and analyzed a simple protocol for reli-
ably transmitting file-like chunks of data between low-cost
wireless devices. Our objective, dictated by the constraints

of the application for which the protocol was specifically
designed, was to maximize the bandwidth available to such
transfers. The primary factor making the problem different
from its classical formulation was the simplicity of the
wireless channel whose raw capacity was tightly matched
to the transmission bandwidth required by the application.
By identifying and understanding the limitations of the
platform, we were able to accomplish our goal and make
the best use of its small (albeit sufficient) resources. Despite
its stimulation by a very specific application, the problem
appears to be quite general; our solution can be used to
transmit reliably any file-like objects.

As a side effect of our presentation, we have demon-
strated how good solutions in the embedded world can be
arrived at by employing a holistic approach to the problems.
Our data transmission scheme is a holistic derivative of
some exotic properties of the RF module, flash memory,
the limited amount of RAM, as well as the application-
level demands. On the one hand, one may feel disappointed
by this interference of the various apparently unrelated
“features” into something that should rightfully belong to a
well-established and separated “layer.” On the other hand,
it is reassuring to see this much potential for creativity in
an otherwise routine project. This potential is what makes
the realm of embedded systems challenging in its own highly
attractive sort of way.
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