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In order to enhance the precision of network simulations, the paper proposes an approach to adaptively decide the maximum of
random variables that create the discrete probabilities to generate nodal traffic on simulated networks. In this paper, a statistical
model is first suggested to manifest the bound of statistical errors. Then, according to the minimum probability that generates
nodal traffic, a formula is proposed to decide the maximum. In the formula, a precision parameter is used to present the degree
of simulative accuracy. Meanwhile, the maximum adaptively varies with the traffic distribution among nodes because the decision
depends on the minimum probability generating nodal traffic. In order to verify the effect of the adaptive maximum on simulative
precision, an optical network is introduced. After simulating the optical network, the theoretic average waiting time of nodes on
the optical network is exploited to validate the exactness of the simulation. The proposed formula deciding the adaptive maximum
can be generally exploited in the simulations of various networks. Based on the precision parameter K, a recursive procedure will
be developed to automatically produce the adaptive maximum for network simulations in the future.
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1. Intoduction

Simulations are an important technique for the design of
systems, the estimation of performance, and the main-
tenance of systems [1, 2]. It is widely used in various
fields. For the simulation of complex systems, how to save
computing time is an important topic. Moreover, it is also
worthwhile to discuss how to reach acceptable simulative
precision. In general, to promote simulative precision will
lower simulative efficiency. Therefore, in order to enhance
the simulative precision of complex systems, it is very
important to take appropriate tradeoff between precision
and efficiency.

For example, DQDB networks are systems with asyn-
chronous transfer mode (ATM) and time-division multiple
access (TDMA) [3]. Its medium access control (MAC)
protocol is so complex that the performance analysis of
the network is very difficult [4, 5]. To make an exact
analysis on the performance of the network is almost
impossible [5]. Most papers estimate the performance of the

network by simulations [6–20]. Thus, it only depends on the
precision of simulations to exactly comprehend the behavior
of the complex system. However, if simulative precision
is overpromoted, simulative efficiency will be suppressed.
Therefore, how to reach the acceptable simulative precision
and meanwhile take good tradeoff between precision and
efficiency is an important problem for simulating complex
systems. It is worthwhile to explore, but there are few papers
discussing the problem.

In simulations, random variables are used to create
various distribution functions of probabilities. These prob-
abilities are applied to direct the input amplitude of signals
or noise as simulating communication systems [1, 2]. For
network simulations, probabilities are exploited to control
the generation of nodal traffic. The probabilities assigned
to represent nodal traffic are continuous. However, the
probabilities created from random variables are discrete.
Due to the inherent difference between the continuous
and discrete probabilities, simulative errors will take place
absolutely.
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In order to take precise simulations, this paper suggests a
statistical model. Based on the model, it is obvious that sim-
ulative precision only depends on the maximum of random
variables controlling the generation of network traffic. Based
on the perception, a simple formula is proposed to decide
the feasible lower bound of maximums of random variables.
In the formula, the feasible lower bound is dependent on
a precision parameter, denoted by K , and the minimum
probability generating nodal traffic. The larger the precision
parameter, the more the simulative precision. Then, a prime
number that is slightly greater than the lower bound can be
chosen as the maximum of random variables. The chosen
maximum can adapt to the traffic distribution of simulated
networks. So, the adaptive maximum cannot only result in
acceptable simulative precision but also take desired effi-
ciency. In practice, due to the approach deciding the adaptive
maximum, simulative systems can make optimal tradeoff
between reaching high precision and saving computing time.

So as to understand the effect of the adaptive maximum
on simulative precision, an optical TDMA network is intro-
duced. The MAC protocol of the optical TDMA network
implements traffic control. The average waiting time of a
node on the network is in inverse proportion to the traffic of
the node [21]. Due to the quantitative analysis of the optical
TDMA network, the root-mean-square (rms) difference
between the simulative and theoretic average waiting times of
nodes is calculated to validate the exactness of simulations.

In Section 2, the suggested statistical model exhibits the
relationship between the statistical error and the maximum
of random variables. The discussion for deciding the adaptive
maximum of random variables will also be shown in this sec-
tion. The MAC protocol performing traffic control and some
working conditions assumed for simulating optical TDMA
networks are presented in Section 3. Section 4 illustrates
the effect of the adaptive maximum on the performance
estimated by simulations. The validation of simulations
will also be shown in this section. Section 5 includes
conclusions.

2. The Decision of Adaptive Maximums

Before simulations, a set of continuous probabilities is
assigned to predefine the distribution of nodal traffic. In
simulations, a set of discrete probabilities, which corresponds
to the set of continuous probabilities, controls the generation
of nodal traffic. The difference between continuous and
discrete probabilities is used to manifest the influence of
the maximum of integral random variables on simulative
precision. Then the minimum probability in the set of
continuous probabilities is exploited to decide the adaptive
maximum of integral random variables.

In simulated networks, every node has one queue.
Queues consist of cell (packet) buffers. Queues provide first-
in-first-out (FIFO) service. The first cell buffer in a queue
is attached to the transmission system of the simulated
network. When an available slot on the transmission system
is passed through, the contents of the first cell buffer will be
written into the available slot.

The number of cells temporarily storing in queues is
dependent on the traffic generated by nodes. The heavier the
nodal traffic, the longer the queuing delay. According to the
complex MAC protocol of most networks, an available slot
on transmission systems appears for some node randomly.
Hence, the prediction of the queuing delay of a specified
cell is difficult. In order to estimate performance, most
simulations assume that networks are with heavy load [4,
6, 11, 21]. This assumption will lengthen queues so that
the theoretic analysis of the queuing delay of a specified
cell will become more difficult. Therefore, how to enhance
the accuracy of queuing delays is a key topic for network
simulations. In order for taking precise simulations, a
statistical model must be first introduced. Based on the
model, the data resulted from simulations can be applied
to calculate the nodal mean of queuing delays. The queuing
delay is defined as the period for which a cell stays in queues.

For a node within networks, every cell generated by
disassembling procedures is first stored in queues. Before
the cell is transferred to transmission systems, it must be
sequentially shifted into the first cell buffer of nodal queues.
When the cell is within the first cell buffer, the MAC protocol
will be exploited to decide the moment after that the node
can write the cell out. In above operations, there are two
moments relative to the queuing delay. The first moment is
the instant that a cell enters queues. The second one is the
flash that the cell is sent onto transmission systems. Let IMi, j

and OMi, j in sequence denote the first and second moments
of the ith cell generated by the jth node, where i and j are the
ordinal number of cells and nodes, respectively. The queuing
delay of the ith cell generated by the jth node is designated
by Ci, j . Then Ci, j can be represented as

Ci, j = OMi, j − IMi, j , 1 ≤ i ≤ Max(R, j), 0 ≤ j ≤ N − 1,
(1)

where Max(R, j) is the ordinal number of the last cell
generated by the jth node, R is the maximum of the
integral random variable used to create the set of discrete
probabilities, andN is the number of nodes within networks.

Let PI denote the probability that the Ith node generates
traffic. These probabilities, PIs, are chosen in accordance
with interested simulative scenarios. The chosen probabilities
are continuous, but their corresponding probabilities gen-
erated by an integral random variable are discrete. When a
discrete probability corresponds to a continuous probability,
both probabilities must be equal theoretically. But, in
practice, the discrete probability is inherently different from
its corresponding continuous probability. If the difference
between them is large, statistical delays could not converge
on the precise level that is acceptable.

Let X represent an integral random variable that uni-
formly distributes over [0, R]. Its probability density function
fX(x) can be presented by

fX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
R

, 0 ≤ x < R,

0, otherwise.

(2)
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The random variable X is applied to create PIs for simu-
lations. Let P̂I denote the discrete probability corresponding
to PI . The difference between P̂I and PI can be represented as

∣
∣PI − P̂I

∣
∣ ≤ fX(x) = 1

R
, where P̂I = Max(R, I)

R
. (3)

From (3), if R theoretically approaches infinite, the
difference will become zero. Therefore, (3) can be rearranged
as

lim
R→∞

P̂I = PI . (4)

If a simulation is with a precise-probability set {P̂I =
PI , I = 0, . . . ,N − 1}, the statistical delays of network
simulations will also be precise. In a word, when R theo-
retically approaches infinite, the statistical queuing delay will
converge precisely.

After discussing the enhancement of statistical precision,
statistics of the queuing delay are presented. According to
(1), the {Ci, j} is a set of positive random numbers. Let μ( j)
denote the mean of {Ci, j}. Then μ( j) can be calculated by

μ( j) = 1
Max(R, j)

Max(R, j)
∑

i=1

Ci, j . (5)

The mean μ( j) represents the average queuing delay of the
jth node.

If R is theoretically infinite, the computing time taken in
simulations is also infinite. In practice, R can be chosen in
accordance with PIs. If PIs is small, Rmust be large enough to
ensure statistical precision. In other words, Rmust adaptively
vary with PIs to promote simulative precision.

Let Pmin represent the minimum probability among PIs.
Pmin must be greater than the inverse of R for minimum
precise requirement in simulations, that is,

Pmin >
1
R
. (6)

In order to guarantee that the precise degree is acceptable,
R must be chosen so that

Pmin ≥ K

R
, (7)

where K > 1 is a positive real number.
Then, R, the adaptive maximum, can be represented by

the equation

R ≥ K

Pmin
. (8)

In (8), the value K is a precision parameter. To enlarge
K will result in higher precision. On the other hand,
if simulative procedures are with overlarge K , they will
consume more computing time but promote little precision.
Thus, the decision of the value K is dependent on the
acceptable degree of precision.

Because the recursive formula of the power-residue
method is computationally very efficient [1, 22], it is widely

adopted for generating random variables with uniform
distribution. As the power-residue method is exploited to
generate the uniform-distribution random sequence, the
maximum of the integral random variable must be a prime
number. Therefore, the lower bound of R, indicated by RLB,
must be first taken with the following equation:

RLB = K

Pmin
. (9)

Then, a prime number that is slightly greater than RLB

can be assigned as the adaptive maximum R. The adaptive
maximum can result in the optimal tradeoff between simu-
lative precision and efficiency.

3. Optical TDMA Networks

In order for comprehending the effect of adaptive maximums
of random variables on the precision of network simulations,
an optical TDMA networks is introduced. Before depicting
the structure of the network, the deduction for the average
waiting time of nodes on the network (the waiting mean)
is presented. The waiting time of a cell is the queuing delay
that the cell waits in the first cell buffer of queues for an
available slot on transmission systems. Based on the structure
of the network, several working conditions are assumed
for simulations. Due to these working conditions, an MAC
protocol implementing traffic control is described.

For TDMA networks, a node must send requests to
preserve empty slots when it is going to transmit messages.
More requests preserve more slots. As the number of
preserved slots of a node becomes large, the waiting mean
of the node will be reduced. Therefore, if a node has more
traffic, its waiting mean will be decreased. The relationship
between the waiting mean and the traffic of the Ith node [21]
can be presented as

μ(I) =
[

1−(1−T(I))S(1−T(I))+1

(1+(S(1−T(I))+1)T(I))

]

T(I)
, (10)

where μ(I) and T(I) are the waiting mean and traffic of the
Ith node, respectively, and S is the slot rate of the optical
TDMA networks.

Because optical TDMA networks are high-speed net-
works, the slot rate can approach infinite. Therefore, μ(I) can
be rearranged as

lim
S→∞

μ(I) = lim
S→∞

⎧
⎪⎨

⎪⎩

[
1−(1−T(I))S(1−T(I))+1

(1+(S(1−T(I))+1)T(I))

]

T(I)

⎫
⎪⎬

⎪⎭

= 1
T(I)

.

(11)

In (11), μ(I) is a function of T(I). It exhibits that the
waiting mean of a node on an optical TDMA network is in
inverse proportion to the traffic of the node. The theoretic
waiting mean will be exploited to validate simulations in
Section 4. The structure of the optical TDMA network is
shown in Figure 1.
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Figure 1: The structure of optical TDMA networks.

In Figure 1, the medium between the slot generator and
the slot terminator is an optical fiber. The slot flow on
optical fibers is sent by slot generators and sinks into slot
terminators. The number of nodes within the network is N .
Nodes are numbered from 0 to (N − 1) in sequent order.
The ordinal number of every node also relates to the nodal
position in the topology. The period that the slot generator
just completely sends a slot onto optical fibers is called a
slot time. A slot length is the distance that a slot spreads on
the optical fiber. Other working conditions concerning the
space between adjacent nodes, the length of messages, and
the traffic distribution among nodes are described as follows.

For all interested simulative scenarios, the space between
adjacent nodes is one slot length. Messages are similar in
length. Every message can be contained in the payload of a
slot.

The traffic distribution among nodes affects the opera-
tion of traffic control in the MAC protocol. For the benefit of
easily performing traffic control, a basic traffic denoted by TB
is introduced. The amount of TB is dependent on the defined
distribution of traffic. In a scenario, the traffic of some node
can be several times the amount of TB. In order to obviously
present the influence of the adaptive maximum on simulative
precision, it is assumed that traffic is uniform distribution
among nodes in every simulative scenario. Hence, the traffic
of every node in a simulative scenario is equal to one TB.
Because the optical fiber is a one-way bus, and all messages
are not transmitted out of the network, the (N − 1)th node
does not generate any traffic. Let TN denote the network
traffic. Then TN can be presented by

TN =
N−2∑

I=0

T(I) = (N − 1)TB. (12)

Therefore, the TB in simulations can be shown as

TB = TN
(N − 1)

. (13)

Based on the introduction of TB, the approach of traffic
control can be described as follows.

In this paper, slot frames are used to implement traffic
control. The slot flow on optical fibers is partitioned into
frames. There are 1/TB slots in a frame. When a frame is
passed to the Ith node, the node can only write one message
into an empty slot within the frame when its queue is not
empty. After the operation, the node must immediately stop
writing messages out regardless of whether its queue is empty
or not. After the moment, the node waits for the arrival of the
next frame to restart the controlling process.

Table 1: Relative parameters in two scenarios.

TN N Pmin = TB K RLB R

0.25

40 0.006411
300 46800 46807

3000 468000 468001

30000 4680000 4680001

50 0.005102
300 58800 58831

3000 588000 588011

30000 5880000 5880023

4. Simulations

The simulation is applied to present the influence of the
adaptive maximum of a random variable on simulative preci-
sion. The waiting mean of optical TDMA nodes manifests the
precise degree caused by different adaptive maximums. The
simulative efficiency is dependent on the size of the adaptive
maximum. The larger the maximum of the random variable,
the lower the efficiency of the simulative system. On the other
hand, the theoretic waiting mean calculated by (11) will be
used to validate simulative data. The rms difference between
the simulative and theoretic data, denoted byDrms, is defined
as

Drms =
(

1
N − 1

N−2∑

I=0

(
μs(I)− μ(I)

)2
)1/2

, (14)

where μs (I) and μ(I) are the simulative and theoretic waiting
means of the Ith node, respectively.

Two parameters must be chosen before simulations. The
parameters are the number of nodes N and the network
traffic TN . The chosen Ns and TN s are based on interested
scenarios. After the choice of Ns and TN s, (13) can be
exploited to calculate the basic traffic TB. Because messages
are one slot in length, the basic traffic TB can be regarded
as the minimum probability Pmin. In order for clearly
distinguishing between precise degrees corresponding to
different adaptive maximums, small Pmin is necessary. So, the
chosen TN in all interested scenarios is equal to 0.25.

In simulations, two scenarios are interested. In order to
certainly manifest the effect of adaptive maximums, the Ns
in two scenarios are 40 and 50, respectively. On account of
sufficiently exhibiting the influence of precision parameters
on simulative precise degrees, three Ks are assigned in every
scenario. The three Ks in every scenario are 300, 3000,
and 30 000, respectively. Then, (9) is used to calculate the
corresponding RLB of every K parameter. In accordance with
the power-residue method, the adaptive maximum R, which
is a prime number and slightly greater than its corresponding
RLB, can be finally found. According to the description above,
those relative parameters derived from the TN , Ns, and Ks
are listed in Table 1.

For traffic control, the number of slots in a frame, which
is equal to 1/TB, must vary with scenarios. Due to (13), the
number of slots in a frame, denoted by NSF, can be presented
as

NSF = (N − 1)
TN

. (15)
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Figure 2: Waiting means of 40-node optical TDMA networks.

Table 2: Drmss corresponding to Ks and Ns.

N
K

300 3000 30000

40 27.40495 5.489945 2.63133

50 40.48827 8.349287 3.369718

Hence, the NSF of the scenario with 40 nodes is 156 and
that of the scenario with 50 nodes is 196. Because uniform
traffic distribution is assumed, the traffic of every node is
equal to the TB in each scenario. Consequently, the theoretic
waiting mean calculated by (11) is the same as theNSF in each
scenario.

In the following figures that show simulative results, the
horizontal axis is the ordinal number of nodes. Because the
ordinal number of nodes is discrete, all curves in figures
consist of piecewise lines. The waiting mean of nodes on the
vertical axis is expressed in slot times.

After simulations, (5) is used to calculate the simulative
waiting mean of nodes. Figures 2 and 3 show the variation of
waiting means corresponding to two scenarios, respectively.
In every figure, the horizontal solid line represents the
theoretic waiting mean. Other three curves are relative to
simulative data corresponding to three precision parameters.
In two figures, it is obviously exhibited that curves will
become smoother when the precision parameter K is
enlarged.

Based on the theoretic waiting mean, Drmss calculated
by (14) is used to validate the simulations. Table 2 presents
theseDrmss. EveryDrms represents the rms difference between
the horizontal solid curve and a simulative curve in each
figure. Observing Table 2, larger precision parameter K and
smaller N will result in smaller Drms. Therefore, a simulative
curve will approach the horizontal solid line if precision
parameterK is consecutively enlarged. However, the decrease
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Figure 3: Waiting means of 50-node optical TDMA networks.

of Drmss does not linearly correspond to the increase of
K parameters. Consequently, simulative procedures with
overlargeK will consume more computing time but promote
little precision. To adjust K to a proper value can take
an adaptive maximum to result in an acceptable precise
level with relative high efficiency. In a word, network
simulations with appropriate adaptive maximums can take
optimal tradeoff between simulative precision and effi-
ciency.

5. Conclusions

The paper discusses tradeoff between simulative precision
and efficiency. Based on the statistical model of queuing
delays, the difference between continuous and discrete
probabilities is used to manifest the effect of the maximum
of random variables on the statistical error. Then a simple
method with precision parameterK is proposed to decide the
maximum of random variables. The maximum adapts to the
minimum probability among PIs. The adaptive maximum
must be enlarged as the minimum probability of PIs becomes
smaller.

In order to manifest the effect of the adaptive maximum
on the simulative precision, an optical TDMA network
whose MAC protocol performs traffic control is simulated.
The average waiting time of some optical TDMA node is in
inverse proportion to the traffic of the node. The theoretic
average waiting time is exploited to calculateDrmss to validate
the exactness of simulations. Simulative results exhibit that
the adaptive maximum can take optimal tradeoff between
simulative precision and efficiency.

In network simulations, the adaptive maximum not only
results in the acceptable degree of precision but also suitably
saves computing time. Based on the precision parameter
K , a recursive procedure will be developed to automatically
generate the adaptive maximum in future.
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