
Hindawi Publishing Corporation
Journal of Computer Systems, Networks, and Communications
Volume 2009, Article ID 190579, 11 pages
doi:10.1155/2009/190579

Research Article

Traces Synchronization in Distributed Networks

Eric Clément and Michel Dagenais

Department of Computer Engineering, École Polytechnique de Montréal, P. O. Box 6079, Downtown,
Montreal, QC, Canada H3C 3A7

Correspondence should be addressed to Eric Clément, eric.clement@polymtl.ca

Received 28 September 2008; Revised 6 January 2009; Accepted 9 June 2009

Recommended by S. Sun

This article proposes a novel approach to synchronize a posteriori the detailed execution traces from several networked computers.
It can be used to debug and investigate complex performance problems in systems where several computers exchange information.
When the distributed system is under study, detailed execution traces are generated locally on each system using an efficient
and accurate system level tracer, LTTng. When the tracing is finished, the individual traces are collected and analysed together.
The messaging events in all the traces are then identified and correlated in order to estimate the time offset over time between
each node. The time offset computation imprecision, associated with asymmetric network delays and operating system latency
in message sending and receiving, is amortized over a large time interval through a linear least square fit over several messages
covering a large time span. The resulting accuracy is such that it is possible to estimate the clock offsets in a distributed system,
even with a relatively low volume of messages exchanged, to within the order of a microsecond while having a very low impact on
the system execution, which is sufficient to properly order the events traced on the individual computers in the distributed system.

Copyright © 2009 E. Clément and M. Dagenais. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

Society increasingly relies on sophisticated computer sys-
tems for numerous applications from search engines (e.g.,
google.com, yahoo.com) to eCommerce systems. Such sys-
tems have stringent performance requirements to achieve
a good response time because of the volume of data and
the number of simultaneous users. Achieving the desired
level of performance assumes proper interaction between
several software programs, and the operating system, dis-
tributed over several networked computers. Furthermore, it
is increasingly common to have several processors in each
computer.

A popular technique to attribute CPU usage to specific
programs, functions and even source code statements is
profiling [1]. By collecting executable code address samples
at regular time intervals, it provides a fairly accurate picture
of CPU usage, at a relatively low cost, thus identifying quickly
computation bottlenecks.

Unfortunately, these simple and efficient tools have
a fairly narrow scope. Different techniques are required
to understand distributed system behavior when it does

not perform as expected, either because the result or the
performance differs from the expected behavior. System
tracing has proven extremely effective for obtaining a
detailed picture of a system execution [2]. While a system
is under study, all the important system level events, along
with a timestamp, are collected and written to a trace.
Typical events include system calls, interrupts, traps, faults
and input/output operations on disks and the network.
Additional events may be collected like specific function
entries or samples of the execution code address. Thus,
tracing can be seen as a most general information collection
mechanism, collecting a superset of the information gathered
by profiling tools. No analysis is performed online so the
impact of data collection is minimized. This processing is
performed offline, after tracing is finished.

The information collected is represented by a sequence
of events corresponding to a physical or logical activity (e.g.,
the entry to a function). This sequence of events is saved in
a file named trace or events trace. Typically, the information
associated with an event is an identifier of the event, the time
when the event occurred and some information related to
the event. Therefore, events tracing may be used to obtain

2 Journal of Computer Systems, Networks, and Communications

profiling information plus the description of the application
behavior according to time.

In a distributed system, traces can easily be obtained for
each of the computers involved. However, although events in
each trace are timestamped with a very fine granularity cycle
counter (e.g., each cycle corresponds to 0.25 millisecond
on a 4 GHz system), the clocks in each computer are
running asynchronously and may easily exhibit offsets of
1 milliseconds or more (i.e., 4000000 cycles). It is therefore
necessary to approximate as closely as possible the value of
the offset over time between the different computers in a
distributed system, for the whole duration of the interval
studied (for which traces were recorded). It then becomes
possible to display coherently, along a global reference time
axis, the events from several computers to system engineers,
and to perform various analysis on the traces. For instance,
the trace analysis system could compute the time budget
for each step of an eCommerce transaction which involves
several computers in a high performance high reliability
cluster (load balancing frontend dispatching, Web request
processing, database server transaction...).

This paper proposes a new approach to collect detailed
traces on individual computers in a distributed system and
to correlate all the interaction events (message exchanges) in
order to estimate accurately the clock offset between each
system as a function of time. While there are similarities
with time synchronization algorithms, the context also
differs because much more can be done with a posteriori
synchronisation, where all the information is available from
all systems and for the whole period. On the other hand,
special additional time synchronization messages can be
avoided to help minimize perturbations on the system under
study.

In the next section, previous work is reviewed. This is
followed by a description of the proposed approach and its
implementation, and a discussion.

2. Previous Work

This section presents existing techniques to synchronize
traces in a distributed system. A first class of techniques,
discussed in the next subsection, synchronize the clocks of
each node in the network while the system is running and is
being traced. Thereafter, traces from several computers with
synchronized clocks can be merged for analysis without any
time adjustment.

In the following subsection, a second class of techniques,
trace synchronization algorithms, are presented. These algo-
rithms perform a posteriori time synchronization using net-
work messages exchanges during the tracing. The advantage
of these algorithms is that they are not intrusive, unlike clock
synchronization algorithms, since they do not require that
a special mechanism be running for clock synchronization.
There is, however, a computing cost associated with the a
posteriori synchronization of traces.

3. Clock Synchronization Algorithms

One of the simplest clock synchronization algorithms is
Cristian’s [3]. A client sends a request to a time server

for its current value of the UTC time (TUTC). The client
stores the time at which its request was sent (T0) and the
answer received (T1). The client then replaces its current
time at T1 by the value received from the server plus its
estimation of the delay in receiving this value, the total
time needed to send the request and receive the answer
(T1 − T0) divided by 2. The new time value is thus TUTC +
(T1 − T0)/2. The underlying hypothesis is that on average
the communications are symmetrical and thus that the time
to receive the answer (new time value) is half the total
request and reception time. The time server will typically be
connected to a dependable source of UTC time (e.g., a very
precise clock, a receiver for a very precise clock signal, or
another time server). Some recent GPS receivers, optimized
for time instead of location, offer an accuracy well under 1
microsecond [4].

Berkeley’s algorithm was proposed by [5] for a computer
network using the Berkeley Software Distribution (BSD)
Unix. It adds to Cristian’s algorithm when several somewhat
equally accurate sources of time are available. An elected time
synchronization server polls the other time sources, possibly
using Cristian’s algorithm to compensate for network delays.
It then looks at the time offset between each system and its
own internal time, in order to compute a time offset for each
time source. The values from systems with a suspiciously
high difference may be discarded as faulty. The other offset
values are averaged and this average becomes the reference
time. Each time source is then sent a time correction value
based on the average offset, and the offset between this
computer and the synchronization server.

As part of the of the Open Software Foundation (OSF)
Distributed Computing Environment (DCE), Distributed
Time Services (DTS) [6] are offered. It represents time
values as intervals to account for uncertainties. Each client
in DTS estimates the reliability of its internal time source
and accordingly decides when to resynchronize to avoid
exceeding the configured inaccuracy threshold.

The Network Time Protocol (NTP) [7–9] is a widely used
standard (RFC 1305) of the Internet Engineering Task Force
(IETF) (RFC 1305). Primary servers are directly connected
to an accurate and reliable UTC time source. They form
the roots of a hierarchical time service where more and
more servers are available as we go further from the roots.
The typical setup is UTC connected time servers in large
government laboratories at stratum 1, institutional time
servers or Internet providers time servers at stratum 2, and
most clients connecting to institutional time servers and at
stratum 3.

NTP can be used to synchronize computers under three
modes: the client-server, multicast and symmetrical (peer)
modes. In the client-server mode, the client sends requests at
startup, and periodically thereafter, to the server. It records
the time at which the request and the answer are sent
and received in order to factor out the network delay as
much as possible, in a manner similar Cristian’s algorithm.
The multicast mode often is more efficient since the server
multicasts its time value periodically. Instead of requiring
two messages per client for a time resynchronization, it can
be done in a single message on a local area network with

Journal of Computer Systems, Networks, and Communications 3

multicast support (e.g., Ethernet). However, to estimate the
network delay and compensate for it, the clients must initially
perform a few requests in client-server mode. Nonetheless, if
the network characteristics vary over time, the accuracy of
the multicast mode will not be as good as that of the client-
server mode.

In the NTP symmetrical mode, several peer servers
exchange their time value, compute an average value and
synchronize on that value. It is typically used to keep
synchronized a cluster of time servers in an institution.
Multiple servers can support more clients, provides fault
tolerance and can average out the clock drift of the individual
systems.

Variations on these systems have been presented, such as
[10] which uses the network card processor timestamp to
relieve the CPU and minimize the latency between the arrival
on the network and the timestamping. IEEE 1588 Precision
Time Protocol (PTP) [11] is a more recent standard that
can also use hardware assistance for synchronizing a local
network.

4. Trace Synchronization Algorithms

A first technique requires each nodes to send a message to
a monitoring node, with their current time when tracing is
started [12]. The offset for each node at trace start can then
be stored along with the monitoring node time and used later
for trace analysis. It assumes that the network delay between
each node and the monitoring node is similar, and also that
the offset remains mostly constant throughout the tracing.

In [13], the messages exchanged during a time interval
of a few minutes are examined. The difference between the
departure and arrival time for a message is the time offset
plus the network delay. Since the offset is assumed constant
for a time interval of a few minutes, the message with the
smallest time difference is the one for which the network
delay was minimal. The message in each direction with the
smallest time is thus retained to compute the roundtrip time
and then the time offset and error margin between the two
nodes. This insures that the inaccuracy associated with the
network delay is minimized.

Once all the offsets and error margins are known, it is
necessary to find a node to act as time reference. The machine
which will be elected as reference must be one that has an
accurate path to all other nodes. A graph is constructed with
the computers as vertices and the time differences between
two nodes as edge weight. For any given node, the shortest
paths to every other node are computed and summed. The
chosen time reference will be the machine having the smallest
summation of all these smallest paths. This method has the
advantage of functioning well independently of the network
architecture.

Other tracing approaches have been developed for the
MPI library [14], a library standard for message-passing.
(MultiProcessing Environment) MPE [15] is a tracing and
performance analysis environment for MPI. It intercepts
function calls to the MPI library. Thus, for each function call
to the MPI library, an event is sent to the main server and

is added to the trace along with a microsecond resolution
timestamp. It is also possible to personalize events. Thus, the
events are sorted by the order of arrival to the server. This
order is thus influenced by the communication times which
can be misleading for events very close in time.

Prism [16] is a multiprocess program debugger for MPI
including tools for performance analysis and visualization.
The performance analysis is based on events tracing. Each
MPI process generates a trace file. This voluminous file
resides in the process memory and it is used like a circular list.
This file is handled in the initialization phase of the process
in order to put it in cache, thus decreasing the impact of
the first writing. The advantage of using a circular list is to
limit the size of the traces and to decrease the disturbance
caused by the disk accesses if the whole file is present in
memory. The events synchronization of the traces is carried
out when the tracing is completed. To this end, a program
to estimate the drift every three minutes or so is executed in
parallel with the program traced. It is a MPI program having
a process executing on each node. Periodically, each process
calculates the offset with each node according to Cristian’s
method. Thus, each process collects offsets values to every
other node at a given moment. Once tracing is finished,
the offset information can be used when assembling several
traces into one. Linear interpolation is used to determine the
offset within the three minutes intervals.

Another technique [17] benefits from hardware support
in the network switch. The IBM SP switch contains a precise
internal clock which can timestamp network packets or be
queried by computers connected to it. Thus, each node
generates a trace using the local time but the switch global
(G) time is read at trace start and periodically and saved in
the trace along with the corresponding local (L) time [18]. To
later analyze the events with the global time reference, [17]
proposes to evaluate the ratio R between the clock frequency
of the switch and the local clock with this formula:

R =
√∑N

i=1 ((Gi −Gi−1)/(Li − Li−1))2

N
. (1)

Thus, a local time t is adjusted by t∗R (global time) and
a duration d by d∗R. They also propose two alternatives.
The first is to use only the last couple (G, L) to calculate the
ratio R if the duration of the tracing is relatively long. The
second is to calculate the ratio for each couple (G, L), thus
segmenting the adjustment of the local clock with a ratio
value per segment.

5. Strategy and Implementation

Linux Trace Toolkit Next Generation (LTTng) [2, 19] is
the high precision, low overhead, tracer used. The tracer
is installed and run on each node in the Linux-based
distributed system during the time interval of interest. Once
tracing is finished, the trace generated on each node is copied
to a central system for a posteriori analysis. As a first step, all
the network packets exchanged by nodes in the distributed
system are identified by linking sending and receiving events
in the traces. The clock offset between two nodes can then

4 Journal of Computer Systems, Networks, and Communications

be estimated using the packets exchanged, and the linear
variation of the offset with time (clock drift) is computed
with a linear regression. As a second step, once the offset
between any two nodes is estimated, a well-connected node is
selected as time reference based on its time offset uncertainty
with the other nodes. The following sections provide details,
beginning with the mechanism for pairing network packets.

6. Packets Pairing

In time synchronization protocols, special packets are sent
with time values to compute the clocks offset. In a system
trace, timestamped events are already available for all packets
sent and received. The main difference is that, in general,
packets do not contain time values, however the events
in the traces do. The difficulty lies in finding the events
corresponding to sending and receiving a given packet. A
packet may be sent but dropped and never received, or a
packet may be received from the outside and thus never sent
by one of the traced computers.

To obtain the best possible precision, the events must be
taken just before sending to the wire or just after receiving the
packets from the wire. Indeed, the time spent in the operating
system just adds to the perceived network delay and directly
adds to the offset computation imprecision. Furthermore,
the latency in the operating system can be highly variable
because of interrupts and high load, leading to potentially
asymmetric delays and skewing the offset computation.
Thus, it is preferable to record these events in the interrupt
routine of the network peripheral. This, however, presents
a number of problems. Firstly, each peripheral has its own
interrupt routine, thus preventing a generic version for
tracing network events. Secondly, the network peripheral
driver may use the NAPI approach [20] where some packets
may be received without a corresponding interrupt. Thirdly,
limited information is available since at that point the
network packets are not yet decoded; a second event is
therefore traced for packet reception once the packet is
decoded and its source and destination addresses, among
other fields, are available.

7. TCP versus IP

The choice of the network layer used for the network packets
pairing must allow a unique identification of each message. It
should also be transparently applicable to the largest possible
number of packet types. The IP protocol layer would be
the ideal choice. Unfortunately, it does not provide enough
information to ensure proper network packets pairing. First
of all, the value of the identification field is often re-
used even for a given protocol and source-destination. This
field is sufficient to help in the reassembly of IP packet
fragments closely spaced in time, but not for pairing packet
events stored in large, hour long, traces from computers
with significant clock offsets. Furthermore, this mechanism
does not allow identifying the datagrams retransmissions. A
retransmitted packet has the same information but not the
same timing.

The transport layer protocols, UDP and TCP, provide
more information. The UDP protocol header does not
add enough information to mitigate the problems. The
connection oriented protocol TCP, on the other hand, more
uniquely identifies each packet, containing sequence and
acknowledgement numbers. The retransmission detection is
possible by seeking a duplicate datagram between the first
network packet (sent or received) and the acknowledgement.
Moreover, it is necessary to check the presence of acknowl-
edgement duplicates in the maximum period window that
the TCP protocol specifies to generate a retransmission.
Because of the difficulties in pairing non TCP packets (e.g.,
UDP, ICMP...), the pairing and time offset computation
is only performed for TCP packets. Fortunately, the TCP
protocol is largely used, including in the MPI library.

8. Kernel Instrumentation

Three events are used for identifying the synchronizations
points in the traces. Messages transmissions are traced in the
kernel function dev queue xmit() in file net/core/dev.c. For
the reception of network packets, two events are used: the
first, at the beginning of the reception in kernel function
netif receive skb() in file net/core/dev.c for the reception time,
and the second where the network packets are decoded at
TCP level in function tcp v4 rcv() of file net/ipv4/tcp ipv4.c.
It is important to note that the time associated with each
event is taken from the TSC. Indeed, a lot of information
is written to the trace for each packet receive and transmit
(see Table 1). However, the LTTng tracer imposes a minimal
overhead since it performs any analysis a posteriori and uses
atomic, nonlocking, operations, extensive per CPU buffering
and zero copy writing to the trace file.

At the beginning of each trace, the state of the network
IP interfaces is extracted using module statedump. This
LTTng module stores in the trace the state of the kernel
at tracing start. This module traverses the global variable
dev base, pointer of type struct net device, where all network
peripherals are listed. All IP addresses associated with
each peripheral are written to the trace. It is possible
that IP addresses change during tracing. However, network
peripherals activation and deactivation are traced along with
the associated IP addresses, in function inetdev event() in file
net/ipv4/devinet.c.

9. Clock Drift Computation

The clock frequency in each computer is assumed to be
fairly stable over short periods (e.g., one hour) but slightly
different from the nominal frequency and thus from one
node to the next. As a consequence, the clock offset between
two nodes changes linearly with time. Once the roundtrip
times are computed between two nodes, by measuring
the offset associated with successive outgoing and ingoing
packets in the traces, the clock drift is evaluated using a linear
least squares regression:

Dij(t) = Xij · t +Dij(0), (2)

Journal of Computer Systems, Networks, and Communications 5

Table 1: Information traced for each event.

Type of information
Event

Transmission event First reception event Second reception event

General TSC
TSC TSC

Address of the sk buff∗ pointer Address of the sk buff∗ pointer

IP

IP source address IP source address

IP destination address IP destination address

Total length Total length

IHL IHL

TCP

TCP source port TCP source port

TCP destination port TCP destination port

Sequence number Sequence number

Acknowledgement number Acknowledgement number

Data offset Data offset

ACK ACK

SYN SYN

FIN FIN
∗

sk buff is the data structure use by Linux to represent every packet sent or received.

where the clock difference between two nodes at a given time
can beestimated with (3), as seen in Figure 1, and used in
both NTP and PTP,

Dij at T1 = (T2 − T1) + (T3 − T4)
2

, (3)

where, Dij is the offset between the nodes i and j at time t,
with Xij the clock drift and Dij(0) the initial offset between
the nodes i and j if they had begun their tracing exactly
at the same time. The identification of packet send and
receive events, and the pairing of outgoing and ingoing
packets in the traces from nodes i and j provides offsets
values (Dij) for different values of time (t). The linear
regression evaluates the unknown values Xij and Dij(0) and
the standard deviation with the following formulas:

Xij = n
∑n

k=1 TkDk −
∑n

k=1 Tk
∑n

k=1 Dk

n
∑n

k=1 T
2
k −

(∑n
k=1 Tk

)2 , (4)

Dij(0) =
∑n

k=1 T
2
k

∑n
k=1 Dk −

∑n
k=1 Tk

∑n
k=1 TkDk

n
∑n

k=1 T
2
k −

(∑n
k=1 Tk

)2 , (5)

Er =
√√√√ 1
n− 2

n∑
k=1

(
Dk − XijTk −Dij(0)

)2
, (6)

Ei j = Er

√√√√ ∑n
k=1 T

2
k

n
∑n

k=1 T
2
k −

(∑n
k=1 Tk

)2 , (7)

ED0
i j
= Er

√
n

n
∑n

k=1 T
2
k −

(∑n
k=1 Tk

)2 , (8)

where Er corresponds to the residual standard deviation,
estimating how close each sample is from the resulting line.

T1 T4

T2 T3
t j

ti

Toutbound = T1 − T2 and Tinbound = T4 − T3

Figure 1: Round trip time between two nodes i and j.

10. Time Reference

When events from traces recorded on several nodes are to
be viewed simultaneously, a common time base is required.
The messages exchanged between communicating nodes are
used to compute the graph of all nodes, with edges between
communicating nodes having the time offset inaccuracy (Er)
as distance (weight). The reference time node is selected as
the one such that the sum of time inaccuracies between each
node and this one is minimal. Thus, for each node in the
graph, the shortest paths to other nodes are found using
Dijkstra’s algorithm and summed.

The complexity for this computation is O(|V |(|E| +
|V |) log |V |). While the complexity grows rapidly with the
number of nodes, it is worth noting that the number of
nodes is generally several orders of magnitude smaller than
the number of events in the traces. The reference may also be
manually selected as being, for example, the node where the
parallel application starts (the server). The reference being
found, a time offset is computed for each node, for each time
interval. The events from several nodes can then be displayed
simultaneously in the same window using a common time
base.

In some cases, it is possible that certain nodes do not
communicate directly or indirectly with other nodes, thus
forming a disconnected graph. It may then be preferable
to look at each connected subgraph separately, finding

6 Journal of Computer Systems, Networks, and Communications

a common time base in each. One can assume that they are
completely independent since they are not communicating.
Nevertheless, it is possible that untraced correlated events
are present, other than network messages. For example,
with computers sharing an untraced SAN [21], the time
ordering of their events could be important to diagnose an
abnormal behavior. In that case, some other synchronization
mechanism would be required (e.g., tracing the SAN events
or adding traced network messages).

11. Results

This section presents the results of four different test cases
designed to evaluate different aspects of the proposed tracing
system. In the first three, a simple two computers setup is
used while in the fourth, an eight computers cluster is used.
In the first test, the impact of message exchange frequency
on the clock drift approximation accuracy is assessed. Then,
the impact of the tracing duration is studied in the second
test. The objective of this study is to determine the ideal
tracing duration for which we can consider that the clocks
drift linearly with time. For longer tracing durations, is it
possible to segment the clock drift calculation in several time
intervals?

Thereafter, the precision sensitivity of the clock drift
approximation for systems under various loads is studied.
Different loads induce a variability of the systems response
time and are likely to influence time measurements when
tracing network messages. Finally, the fourth test is con-
cerned with the impact of the time reference node selection
on the precision of the clock drift approximation when the
nodes are distant. Indeed, it is possible that two nodes never
communicate directly. In this case, the clock drift calculation
must be carried out by using one or more intermediate nodes
creating a logical path connecting these two nodes. The loss
of precision is estimated when two nodes are connected
indirectly through a varying number of intermediate nodes.

12. Communication Frequency Impact

The messages exchange is the central element for the
synchronization of the proposed distributed tracing system.
Thus, it is important to determine the acceptable commu-
nication frequency to obtain precise events synchronization.
The objective is to measure the precision of the traces
synchronization between two nodes for different frequencies
of exchanges. The exchanges are generated using a TCP
client-server setup (one node is the client and the other is
the server). The client communicates with the server at a
fixed frequency. For each exchange, the clock drift and error
margin are computed (Ei j = |(Toutbound − Tinbound)/2|, see
Figure 1). Each test case lasts ten minutes and is repeated ten
times.

When a message is sent across a local area network,
most messages will be delivered with the same minimal
delay. A few messages might be queued, or not be processed
immediately upon arrival in the destination node because

Table 2: Confidence interval determination according to a confi-
dence level.

Confidence level Confidence interval

90% x − 1, 64σx < μ < x + 1, 64σx
95% x − 1, 96σx < μ < x + 1, 96σx
99% x − 2, 58σx < μ < x + 2, 58σx
x: whole samples average. σx : whole samples standard deviation

0 100 200 300 400 500 600

Time (s)

40

45

50

55

60

65

E
ij

(μ
s)

Confidence level 100%
Confidence level 90%

Figure 2: Error margin for each round trip time for a confidence
interval of 90 and 100%.

interruptions are temporarily disabled. These delayed mes-
sages have a higher delay and error margin and should be
excluded from the clock drift computation if possible [22].
This is clearly seen in Figure 2, showing the error margin
distribution for each round trip time. We observe a group
of dots around an average with few distant larger values.

Since the number of tests samples is large, the distri-
bution of the Ei j follows approximately a normal law. A
confidence interval is thus obtained according to the values
of Table 2 where x, is the average over all samples and σx, is
the standard deviation. The confidence interval is then used
to exclude delayed messages which would degrade the clock
drift computation. Thus, with a confidence level of 90%, 10%
of message exchanges are withdrawn, getting rid of almost all
unreliable delayed messages.

The first test uses the maximum frequency, that is,
the TCP client continuously transmits messages as fast as
possible. For the other tests, the delay between two messages
sent by the client is indicated. According to the results
presented in Table 3, the error margin average is around
45 μs. This is plausible given the variability of the one-way
latency of a Fast Ethernet link and the response time.

Table 3 shows the results of the clock drift calculation for
each test case. The drift approximation is carried out using
the linear least squares regression from (2) to (8). This calcu-
lation is achieved for the 90% confidence level. Thus, each
value Ei j outside the confidence interval is not considered

Journal of Computer Systems, Networks, and Communications 7

Table 3: Clock drift approximation according to several different
frequencies.

Period Confidence level Xij (s/s) Er (s) Eij (s)

≈0
100% −2.07E-004 3.29E-006 4.42E-005

90% −2.07E-004 2.82E-006 4.39E-005

1 s
100% −2.07E-004 1.55E-006 4.54E-005

90% −2.07E-004 1.01E-006 4.52E-005

10 s
100% −2.07E-004 1.55E-006 4.68E-005

90% −2.07E-004 1.03E-006 4.65E-005

20 s
100% −2.07E-004 1.80E-006 4.69E-005

90% −2.07E-004 1.24E-006 4.65E-005

30 s
100% −2.07E-004 1.51E-006 4.66E-005

90% −2.07E-004 8.46E-007 4.61E-005

1 m
100% −2.07E-004 1.65E-006 4.65E-005

90% −2.07E-004 1.46E-006 4.58E-005

during the calculation of the linear regression. The residual
standard deviation (Er) is highest (approximately 2.5 μs) in
this table when the client continuously transmits (period ≈0
second). In the other cases, the residual standard deviation
is approximately 1 μs. We can thus conclude that a very high
communication rate degrades slightly the results. However, a
low communication frequency does not influence much the
accuracy. Indeed, we notice no degradation with a period of
one minute between two message round trips, even if only
ten offset measurements are taken.

13. Tracing Duration Impact

The objective of the second test is to determine the ideal
interval length over which the clock drift rate can be con-
sidered constant. This duration will be used to decompose
the long traces into segments with a fixed initial offset and
drift. As in the preceding test, round trip messages are
exchanged periodically, in this case once per second. This is
performed for increasingly long intervals in order to measure
the accuracy as a function of the interval length.

The results are presented in Table 4. We observe that
error margins are relatively similar for each duration. This
is normal since the load is identical in each case. Moreover,
we note that the clock drift (Xij) approximation is almost
the same one in each situation. On the other hand, the
approximation precision does vary. Indeed, the residual
standard deviation (Er) is relatively stable for a duration
of up to 30 minutes, and it increases progressively for a
tracing duration of more than 45 minutes. This increase
of the residual standard deviation can be explained by the
variability of the clock drift in time due to the Allan deviation
[23] and possibly due to thermal or supply voltage variations
on the clock generation circuit.

We thus propose to split up the clock drift calculation
in 30 minutes segments. This time period proves to be a
good compromise between the precision obtained and the
computational load to analyze the traces. It is a conservative
choice since the clock drift value appears unchanged even for

12 hours intervals, only on the residual standard deviation,
Er , increases noticeably.

14. Load Impact

The objective of this test is to evaluate the system load
impact on the traces synchronization accuracy. The same test
configuration is used with a round trip message exchange
every second for 30 minutes. Table 5 presents the various
procedures used to vary the load on the client and server
nodes. The first test executes a program performing calcu-
lations on large matrices (causing intensive virtual memory
swapping on disk), a script which archives continuously
the Linux kernel code using bzip2, and another script
compiling the Linux kernel; this saturates both the CPU,
memory and disk subsystems. The three other tests each
stress a specific subsystem to study their influence on the
clock drift approximation accuracy. The second test saturates
the CPU with a program executing an infinite loop. The
third test continuously issues system calls to create (fork)
and destroy (kill) processes, thus involving a large number
of scheduling events. The fourth test stresses the disk
subsystem, reading and writing to disks, and thus generating
numerous interruptions. While tests 1 to 4 run with the load
applied to both nodes, tests 5 to 8 are identical except that the
load is only applied to the client node, the server node being
mostly idle.

The real-time response, or interrupt latency, is also
measured in order to correlate this result with the clock
drift approximation accuracy. It is measured using program
Realfeel2, written by [24] from the original version Realfeel
made by [25]. This program is executed in user space and
programs the Real-Time Clock (RTC) to generate inter-
rupts periodically. Since the programmed clock frequency
is known, it is possible to evaluate the response time by
evaluating the difference between the programmed period
and the measured period (the possibly delayed moment
when the application receives the interrupt signal). Time
measurements are taken from the TSC for a million samples.

Results for tests 1 to 4 are presented in Table 6. Figure 3
compares the response time for the tests 2 to 4 with an idle
system. For tests 1, we observes an error margin increase
of approximately 20 μs compared to an inactive system,
and about 10 μs and 25 μs for tests 3 and 4 respectively.
Thus, extensive disk reading and writing has the highest
impact on the clock drift calculation, presumably because
of the interference between the disk controller (reading and
writing) and network adapter (message exchange) interrupts.
Test 1 involves a lighter reading and writing load and thus
exhibits a noticeable but smaller impact. Test 3 carries
a much smaller impact. Each system call generates an
exception which interferes with the treatment of network
packets. The interrupt service routine dedicated to this
exception is very short, thus the impact of system call is
practically caused only by the context switching time, which
is constant in kernel 2.6 (complexity O(1)).

The error margin Ei j variation is not reflected directly
in the residual standard deviation Er . Other factors must be

8 Journal of Computer Systems, Networks, and Communications

Table 4: Clock drift approximation according to several different duration.

Time Confidence level Xij (s/s) Er (s) Eij (s)

10 m
100% 1.13E-004 1.54E-006 4.54E-005

90% 1.13E-004 9.54E-007 4.52E-005

30 m
100% 1.13E-004 1.69E-006 4.54E-005

90% 1.13E-004 1.24E-006 4.53E-005

45 m
100% 1.13E-004 2.79E-006 4.53E-005

90% 1.13E-004 2.49E-006 4.52E-005

1 h
100% 1.13E-004 3.28E-006 4.54E-005

90% 1.13E-004 3.01E-006 4.53E-005

2 h
100% 1.13E-004 5.74E-006 4.50E-005

90% 1.13E-004 5.61E-006 4.48E-005

5 h
100% 1.13E-004 3.47E-005 4.54E-005

90% 1.13E-004 3.47E-005 4.53E-005

12 h
100% 1.13E-004 8.29E-005 4.50E-005

90% 1.13E-004 8.28E-005 4.48E-005

Table 5: Description of tests used in order to vary the system load.

Tests Description

No. Name

1 swap + bzip2 + make Program generating several swap + a script archiving a kernel sources + a script compiling a kernel

2 while(1) Program doing an infinite loop

3 syscall Program doing infinite process creation/destruction

4 r/w Program doing reading/writing of a large disk file

5 — Test 1 execute by one node

6 — Test 2 execute by one node

7 — Test 3 execute by one node

8 — Test 4 execute by one node

Table 6: Clock drift approximation according to several different loads.

Test Confidence level Xij (s/s) Er (s) Eij (s)

1
100% 9.54E-05 2.78E-05 6.36E-05

90% 9.54E-05 2.69E-05 6.26E-05

2
100% 9.47E-05 4.02E-06 4.59E-05

90% 9.47E-05 3.72E-06 4.57E-05

3
100% 9.50E-05 9.99E-06 5.47E-05

90% 9.50E-05 9.09E-06 5.39E-05

4
100% 9.50E-05 1.21E-05 7.29E-05

90% 9.50E-05 7.62E-06 7.17E-05

5
100% 9.65E-05 6.32E-03 5.24E-05

90% 9.60E-05 2.42E-05 5.14E-05

6
100% 9.59E-05 1.39E-03 4.61E-05

90% 9.58E-05 4.84E-06 4.59E-05

7
100% 9.65E-05 1.63E-05 4.89E-05

90% 9.65E-05 1.56E-05 4.82E-05

8
100% 9.54E-05 2.03E-05 5.36E-05

90% 9.54E-05 1.70E-05 5.27E-05

Journal of Computer Systems, Networks, and Communications 9

Table 7: Comparison of the clock drift approximation between direct and indirect links.

Link Direct Indirect Confidence interval Xij (s/s) Er (s)

N1 → N2

Direct
100% −4.85E-06 2.74E-06

90% −4.85E-06 6.72E-07

1 jump
100% — —

90% — —

N1 → N3

Direct
100% 1.44E-05 2.97E-06

90% 1.44E-05 1.15E-06

2 jumps
100% 1.44E-05 5.84E-06

90% 1.44E-05 1.83E-06

N1 → N4

Direct
100% 1.25E-06 2.86E-06

90% 1.25E-06 8.35E-07

3 jumps
100% 1.25E-06 7.93E-06

90% 1.25E-06 2.61E-06

N1 → N5

Direct
100% 1.67E-04 2.26E-06

90% 1.67E-04 1.51E-06

4 jumps
100% 1.67E-04 2.13E-05

90% 1.67E-04 9.99E-06

N1 → N6

Direct
100% 3.09E-06 2.69E-06

90% 3.09E-06 7.01E-07

5 jumps
100% 3.12E-06 3.57E-05

90% 3.10E-06 1.18E-05

N1 → N7

Direct
100% 6.10E-06 1.22E-06

90% 6.10E-06 6.64E-07

6 jumps
100% 6.13E-06 3.76E-05

90% 6.11E-06 1.26E-05

N1 → N8

Direct
100% −4.155E-05 1.26E-06

90% −4.155E-05 7.81E-07

7 jumps
100% −4.151E-05 4.27E-05

90% −4.154E-05 1.34E-05

considered such as the variation of the processor response
time. However, we note, for tests involving intensive reading
and writing, a more important increase of the error margin,
approximately 25 μs, but with a smaller residual standard
deviation, of approximately 8 μs. In these cases, the response
time is high, but it remains constant throughout the tracing.
Finally, test 1 unsurprisingly exhibits the highest Er . In this
test, all the major subsystems (CPU, memory, disk) are
completely saturated, thus bringing a greater inaccuracy in
time measurements of the events collected in the trace.

In summary, the variability of the transmission time and
the response time are the factors influencing the clock drift
approximation precision. Indeed, the load on the processor
produces a variation of the response time. However, a
variable response time induces much more inaccuracy in the
clock drift evaluation than a systematically slow response
time.

The analysis of tests 5 to 8 (see Table 6), where a machine
is inactive and the other is subjected to a load, shows a larger
error margin Ei j as compared to the results of tests 1 to
4. These results were expected since one machine is slow
while the other has a fast response time. Since the clock
drift calculation is based on the hypothesis that the delays

are symmetrical in the message exchange, the precision of
the clock drift evaluation is worse and correspondingly the
residual standard deviations are more important.

15. Distance Impact

To study the impact of the distance (number of jumps)
on the clock drift approximation precision, a cluster is
used, as described in Figure 4. Thus, eight nodes are at our
disposal for this test (the server being unavailable). Each
node contains two processors but no disk, which limits
the size of the traces. Each node can communicate directly
with its neighbours through either of two switches. During
tracing, client-server pairs are configured to generate TCP
message exchanges at a fixed frequency between all nodes.
Each node communicates with each other.

Figure 5 illustrates the paths used in order to evaluate
the measurements precision according to the number of
jumps. Since each node communicates with every other
node, it is possible to compare the results obtained from a
direct link with those from an indirect link passing through
several nodes. The indirect link would normally be used only
when two nodes do not communicate directly. For example,

10 Journal of Computer Systems, Networks, and Communications

10−6 10−5 10−4 10−3 10−2

Response time (s)

100

102

104

106

O
cc

u
rr

en
ce

s

Idle
While(1)

Syscall
r/w

Figure 3: Idle versus processor load (test 2) versus syscall load (test
3) versus read/write load (test 4).

Server

Node8Node7Node6

Switch1 Switch2

Node1 Node2 Node3 Node4 Node5

Figure 4: Network structure of the cluster.

Indirect links

Direct links

1 2 43 5 6 7 8

Figure 5: Direct and indirect paths between the node1 and other
nodes.

the clock drift between node1 and node8 is calculated in
two different ways. The first corresponds to the direct link,
node1-node8, and the second to the indirect link, node1-
node2-node3 . . .-node8, thus requiring seven jumps. All the
indirect paths are designed in the same way, from the source
node towards the destination node, traversing an increasing
number of nodes (in numeral order). With (2), the direct

clock drift is obtained:

D1,3(t) = X1,3(t) +D1,3(0). (9)

The following equation presents the indirect clock drift
calculation between node1 and node3:

D1,3(t) = D1,2(t) +D2,3(t),

D1,3(t) = X1,2(t) +D1,2(0) + X2,3(t) +D2,3(0).
(10)

The residual standard deviation (Er) corresponds to the sum
of each Er obtained for the intermediate nodes.

Table 7 compares the results obtained by the direct link
and the indirect link. Each result corresponds to the average
of ten tests of 30 minutes duration, with a round trip
messages exchange every second. The inaccuracy increases
with the path length (Er). Thus, it is important to choose the
best path between two nodes in order to evaluate the clock
drift. With seven jumps, the residual standard deviation Er
remains lower than 20 μs for an inactive system. It is similar
to the degradation seen on a direct link when nodes are
subjected to a high load. Consequently, it is important to
choose the best link connecting the node with the reference.
This is performed with Dijkstra’s algortihm. Altogether, the
precision of the evaluation of the clock drift Xij remains
excellent, even if the residual standard deviation increases.

16. Summary and Conclusions

The use of sophisticated performance analysis tools is
essential in the context of fast response time, high volume,
distributed software systems (e.g., search engines, eCom-
merce, web services). This article proposes a novel approach
to synchronize execution traces from several networked com-
puters that can be used to examine complex performance
problems in distributed systems.

With hardware assisted clock synchronization, for exam-
ple with a GPS device, it is theoretically possible to reach
an accuracy of about 50 millisecond [4] and also with the
standard IEEE 1588 Precision Time Protocol [26]. Without
hardware, this standard can achieve accuracy of 10 to
200 μs. The proposed approach, in the best cases, provides
a precision of about 1 μs and about 40 μs when the nodes
are exposed to a very high load. However, the proposed
approach has the important advantage of not requiring the
use of specific hardware. Besides, it has a very low impact
on the system execution and no special communication is
needed for clock synchronization. However, it is strongly
recommended to have the same hardware and software
configurations for all studied nodes for obtaining round trip
time with similar delay on the outbound packet and the
inbound packet. On the other hand, if more accuracy is
necessary, nothing prevents the user from adding a sophis-
ticated clock synchronization mechanism. Nonetheless, our
technique proves to be a much better choice than a simple
use of NTP, because if NTP guarantees an average deviation
from 1 to 5 milliseconds [4], it may exceed 50 milliseconds
[27] when the source is a secondary server available on the
Internet.

Journal of Computer Systems, Networks, and Communications 11

References

[1] gprof, GNU gprof, 1998, http://sourceware.org/binutils/
docs/gprof/index.html.

[2] Linux Trace Toolkit Next Generation Home Page, 2006 April,
http://ltt.polymtl.ca.

[3] F. Cristian, “Probabilistic clock synchronization,” Distributed
Computing, vol. 3, no. 3, pp. 146–158, 1989.

[4] S. Ubik and V. Smotlacha, “Precise Measurement of One-Way
Delay and Analysis of Synchronization Issues,” CESNET, 2002.

[5] R. Guselle and S. Zatti, “The accuracy of the clock snchroniza-
tion achieved by TEMPO in berkeley UNIX 4.3BSD,” IEEE
Transactions on Software Engineering, vol. 15, pp. 847–853,
1989.

[6] IBM, “Distributed Computing Environment Version 3.2
for AIX� and Solaris: introduction to DCE,” 2001,
http://www-01.ibm.com/software/network/dce/library/
publications/dceintro/html/DCEINT02.HTM.

[7] D. L. Mills, “Internet time synchronization: the network time
protocol,” IEEE Transactions on Communications, vol. 39, no.
10, pp. 1482–1493, 1991.

[8] D. L. Mills, “Improved algorithms for synchronizing computer
network clocks,” IEEE/ACM Transactions on Networking, vol.
3, no. 3, pp. 245–254, 1995.

[9] D. L. Mills, Computer Network Time Synchronization: The
Network Time Protocol, CRC Press, Boca Raton, Fla, USA,
2006.

[10] C. Liao, M. Martonosi, and D. W. Clark, “Experience with an
adaptive globally-synchronizing clock algorithm,” in Proceed-
ings of the 11th Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 106–114, 1999.

[11] IEEE 1588, December 2008, http://ieee1588.nist.gov.
[12] C. Steigner and J. Wilke, Multi-Source Performance Analysis of

Distributed Software, University of Koblenz-Landau, 2001.
[13] R. Hofmann and U. HilGers, Theory and Tool for Estimating

Global Time in Parallel and Distributed Systems, University of
Erlangen, Erlangen, Germany, 1998.

[14] MPI The Message Passing Interface (MPI) standard, April
2006, http://www.mcs.anl.gov/research/projects/mpi.

[15] MPE MultiProcessing Environment, April 2006,
http://www-unix.mcs.anl.gov/mpi/www/www4/MPE.html.

[16] S. D. Sistare, E. Dorenkamp, N. Nevin, and E. Loh, “MPI sup-
port in the Prism programming environment,” in Proceedings
of the ACM/IEEE Conference on Supercomputing, 1999.

[17] C. E. Wu, A. Bolmarcich, M. Snir, et al., “From trace
generation to visualization: a performance framework for
distributed parallel systems,” in Proceedings of the ACM/IEEE
Conference on Supercomputing, 2000.

[18] MHPCC, IBM SP Hardware/Software Overview, 2003,
http://www.mhpcc.edu/training/ workshop/ ibmhwsw/ MAIN
.html.

[19] M. Desnoyers and M. Dagenais, Low Disturbance Embedded
System Tracing with Linux Trace Toolkit Next Generation CE
Linux Technical Conference, Ecole Polytechnique de Montreal,
Montreal, Canada, 2006.

[20] C. Benvenuti, Understanding Linux Network Internals, O’Reilly
Media, Sebastopol, Calif, USA, 2005.

[21] J. Tate, R. Kanth, and A. Telles, “Introduction to Storage Area
Networks: IBM Redbooks International technical support
organization,” 2005.

[22] T. H. Dunigan, “Hypercube clock synchronization,” Concur-
rency Practice and Experience, vol. 4, pp. 257–268, 1992.

[23] NIST Time and Frequency from A to Z., December 2008,
http://tf.nist.gov/general/glossary.htm.

[24] A. Morton, Realfeel2 Performance test, 2002, http://www
.zip.com.au/∼akpm/linux/schedlat.html#amlat.

[25] M. Hahn, Realfeel, 2001, http://brain.mcmaster.ca/∼hahn/
realfeel.c.

[26] A. Dreher and D. Mohl, 2006, Precision Clock Synchron-
ization—IEEE 1588. Hirschmann Automation and Control
GmbH.

[27] D. L. Mills, “NTP Performance Analysis,” University of
Delaware, Newark, Del, USA, 2004, http://www.eecis.udel
.edu/∼mills.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

