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This paper extends a recent theoretical study that was previously presented in the form of a brief communication (Zimont, C&F, 192,
2018, 221-223), in which we proposed a simple splitting method for the derivation of two-fluid conditionally averaged equations of
turbulent premixed combustion in the flamelet regime, formulatedmore conveniently for applications involving unclosed equations
without surface-averaged unknowns. This two-fluid conditional averaging paradigm avoids the challenge in the Favre averaging
paradigmofmodeling the countergradient scalar transport phenomenon and the unusually large velocity fluctuations in a turbulent
premixed flame. It is a more suitable conceptual framework that is likely to be more convenient in the long run than the traditional
Favre averaging method. In this article, we further develop this paradigm and pay particular attention to the problem of modeling
turbulent premixed combustion in the context of a two-fluid approach.We formulate and analyze the unclosed differential equations
in terms of the conditions of the Reynolds stresses 𝜏𝑖𝑗,𝑢, 𝜏𝑖𝑗,𝑏 and the mean chemical source 𝜌𝑊, which are the only modeling
unknowns required in our alternative conditionally averaged equations. These equations are necessary for the development of
model differential equations for theReynolds stresses and the chemical source in the advancedmodeling and simulation of turbulent
premixed combustion. We propose a simpler approach to modeling the conditional Reynolds stresses based on the use of the two-
fluid conditional equations of the standard “𝑘 − 𝜀” turbulence model, which we formulate using the splitting method. The main
problem arising here is the appearance in these equations of unknown terms describing the exchange of the turbulent energy 𝑘
and dissipation rate 𝜀 in the unburned and burned gases. We propose an approximate way to avoid this problem. We formulate
a simple algebraic expression for the mean chemical source that follows from our previous theoretical analysis of the transient
turbulent premixed flame in the intermediate asymptotic stage, in which small-scale wrinkles in the instantaneous flame surface
reach statistical equilibrium, while the large-scale wrinkles remain in statistical nonequilibrium.

1. Introduction

We use the term ‘paradigm’ in the title of this article
to emphasize that the two-fluid approach is a conceptual
framework for analyzing and modeling turbulent premixed
combustion in the flamelet regime. Paradigms in turbulent
combustion research, with their basic conceptual viewpoints
and principles of theory and modeling, have been dis-
cussed in the literature (see, for example, the paper entitled
“Paradigm in Turbulent Combustion Research” by Bilger
et al. [1], which contains relevant citations). In this paper,
we primarily analyze turbulent premixed combustion in the
context of “Damköhler’s paradigm” [1], which implies that
instantaneous combustion takes place in a strongly wrinkled

laminar flame, and we touch only briefly upon the thickened
flamelet regime. Bray,Moss, and Libby proposed the progress
variable 𝑐 for use in the description of premixed combustion
of a single quantity and developed BML formalism, which
forms the basis of the BML model developed using the
Favre ensemble averaging method [2]. This more elaborate
Damköhler’s laminar flamelet paradigm can be referred to
as the “BML Favre averaging paradigm”. We remind readers
that this paradigm leads to the emergence of a funda-
mental difficulty in the theory and modeling of turbulent
premixed combustion involving the adequate prediction of

the unknown mean flux of the progress variable 𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠
and stress tensor 𝜌󳨀→𝑢 󸀠󸀠󳨀→𝑢 󸀠󸀠, which appear in the unclosed
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of the problem. The point is that the scalar flux 𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠 is
predominantly (but not always) countergradient (sometimes
called ‘countergradient turbulent diffusion’), and the stress

tensor𝜌󳨀→𝑢 󸀠󸀠󳨀→𝑢 󸀠󸀠 strongly depends on abnormally large velocity
fluctuations observed in the turbulent premixed flame. The
gas dynamic (nonturbulent) nature of these phenomena was
clearly explained by Pope in [3]:

“As well as looking at the detail structure of
a turbulent premixed flame, we can examine
mean quantities. Here too, in comparison to
other turbulent flows, there are some unusual
observations, the most striking being counter-
gradient diffusion. Within the flame there is a
mean flux of reactants due to the fluctuating
component of the velocity field. Contrary to
normal expectations and observations in other
flows, it is found that this flux transports reac-
tants up themean-reactants gradient, away from
the products (hence countergradient diffusion).
A second notable phenomenon is the large
production of turbulent energy within the flame:
Behind the flame the velocity variance can be 20
times its upstream value. Both these phenomena
result from the large density difference between
reactants and products and from the pressure
field due to volume expansion [. . .] From the
Euler equations it is readily seen that a given
pressure gradient accelerates the light products
more than the heavier reactants. This mech-
anism is responsible both for countergradient
diffusion and for turbulent energy production”.

Many articles have been devoted to theoretical and exper-
imental studies of these phenomena. More advanced theo-
retical and modeling approaches in the context of the BML
Favre averaging paradigm use the Favre-averaged unclosed
equations in terms of the components of the scalar flux𝜌𝑢󸀠󸀠𝑖 𝑐󸀠󸀠 and stress tensor 𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑗 , and further approximation
of the unknowns appears within turbulence theories (see, for
example, [4]). To justify the need for our study, we emphasize
that the countergradient scalar flux and abnormally large
velocity fluctuations cannot be described adequately in the
context of the BML Favre averaging paradigm (as we will
illustrate below using as an example the results obtained in
[4]). The reason for this is that these phenomena are caused
by the large difference in the conditional mean velocities󳨀→𝑢 𝑢 and 󳨀→𝑢 𝑏, due to the different pressure-driven acceleration
of the heavier unburned and lighter burned gases. These
velocities, which cannot be predicted by the Favre-averaged
equations, are at the same time described directly by the two-
fluid conditional equations. It would be appropriate here to
quote a statement made by Forman Williams in his Hottel
lecture entitled “The Role of Theory in Combustion Science”
[5]:

“It is relevant to distinguish between the science
and the technology of the subject. The march

of technology has never hesitated. It uses sci-
ence whenever possible but often, especially in
combustion, forges ahead by trial and error, or
fortuitously by application of scientific miscon-
ception, but without scientific understanding”.

In this context, the use of Favre averaging in themodeling
of turbulent premixed combustion in the flamelet regime
is, strictly speaking, the “application of scientific miscon-
ception”, in contrast to two-fluid conditional averaging,
which is conceptually adequate. Hence, two fundamental
modeling problems arise in the turbulent combustion theory
developed in the framework of the Favre averaging paradigm:
the issue of adequate prediction in the premixed flame of
both phenomena (“countergradient turbulent diffusion” and
“unusually large generation of turbulence”) disappears in the
framework of the two-fluid conditional average paradigm.

As far as we know, the pioneers of the theoretical
two-fluid approach to turbulent premixed combustion were
Spalding [6] and Weller [7]. In [6], Spalding also analyzed
some previous papers related to the two-fluid approach. In
[7], Weller presented conditionally averaged two-fluid equa-
tions that in fact were model equations. The exact, unclosed,
two-fluid conditionally averagedmass andmomentum equa-
tions, which served as a starting point for our study, were
obtained in [8]. This paper extends our recent theoretical
development of the two-fluid theory of turbulent premixed
combustion described in [9] in the format of a brief commu-
nication, in which we proposed a simple and physically clear
splitting method for the derivation of the unclosed two-fluid
conditional equations of turbulent premixed combustion.
This method made it possible to rederive the conditional
equations obtained in [8] and to understand the reason for
the appearance of surface-averaged variables in these, the
impossibility of the well-founded modeling of which is one
of the obstacles to using this approach in applications; in
addition, this allowed us to indicate a way of excluding
their appearance. The only required modeling unknowns
appearing in the original alternative two-fluid conditional
equations formulated in [9] are the conditional Reynolds

stress tensors 𝜏𝑢 = −𝜌𝑢(󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢 and 𝜏𝑏 = −𝜌𝑢(󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑏 in the
unburned and burned gases, and the mean chemical source𝜌𝑊.

This paper makes the following contributions:
(i) We describe in more detail the splitting method and

the derivation of the unclosed two-fluid conditionally
averaged equations, both those described in the liter-
ature and the alternative versions.

(ii) We obtain the unclosed equations in terms of the
conditional moments (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 and (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏, by splitting
the known unclosed equations in terms of the Favre
average (𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑗 ), and present the unclosed equation
for the mean chemical source 𝜌𝑊, which can be used
for advanced modeling of the unknowns in the two-
fluid conditionally averaged equations.

(iii) We formulate simple models for estimating the
unknown chemical source 𝜌𝑊 in the laminar and
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thickened flamelet combustion regimes, based on
our previous theoretical studies of transient turbulent
premixed flames in the intermediate asymptotic stage,
which were published elsewhere.

(iv) We reformulate the equations for the classical “𝑘 − 𝜀”
turbulence model in terms of the conditional turbu-
lent energy and dissipation rate using the slipping
method and estimate the potentialities and problems
arising from the use of the obtained two-fluid “𝑘 −𝜀” model to model turbulent characteristics and the
conditional Reynolds stresses 𝜏𝑢 and 𝜏𝑏.

We consider the two-fluid approach to the theory andmodel-
ing of turbulent premixed combustion in the flamelet regime
as a promising alternative in the long run to traditional
methods based on Favre ensemble averaging. The two-fluid
conditionally averaged equations adequately describe the
hydrodynamic (due to the different pressure-driven accel-
eration of the unburned and burned gases) and turbulent
(using the corresponding two-fluid unclosed equation and
corresponding two-fluid turbulence model) effects and their
interaction in the turbulent premixed flame.This allows us to
eliminate the necessity of modeling the mean scalar flux and
stress tensor, which presents a challenge in the context of the
Favre averaging framework.

A strong argument in favor of the two-fluid approach is
provided by a review [10] of many studies of the structure
of the instantaneous combustion zone in turbulent mixed
flames, which showed that combustion occurs in thin,
strongly wrinkled flamelet sheets: “Thin flamelets are found
to occur even when the Karlovitz number greatly exceeds
unity. The preheat zone average thickness is no larger than
the laminar value in many studies, while in some cases it
is 2–4 times larger.” The two-fluid approach is applicable
for modeling not only premixed combustion in the laminar
flamelet regime, but also flames in the thickened flamelet
regime. We draw the reader’s attention to the paper [11]
quoted in [10], where the local flame structure of a premixed
swirl-stabilized gas turbine burner has been investigated. We
consider the result obtained in [11] that the flamelet thermal
thickness in the investigated highly turbulent lean premixed
flames is close to the thermal thickness of the laminar flame
as a significant argument in favor of the use of the two-fluid
approach.

The two-fluid conditionally averaged unclosed equations

directly describe the conditional mean velocities
󳨀→󳨀→𝑢 𝑢 and

󳨀→𝑢 𝑏,
the conditional mean pressures 𝑝𝑢 and 𝑝𝑏, the mean progress
variable 𝑐, and hence the probabilities of unburned gas 𝑃𝑢 =1−𝑐 and burned gas𝑃𝑏 = 𝑐.These can be used to calculate the
mean density 𝜌 and pressure 𝑝, the Favre-averaged progress
variable 𝑐 = 𝜌𝑐/𝜌, the Reynolds- and Favre-averaged veloci-

ties󳨀→𝑢 and󳨀→𝑢 , and themean scalar flux 𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠. In conjunction
with the corresponding combustion and turbulence models,
these equations also describe the mean chemical source 𝜌𝑊,
the conditional Reynolds stresses 𝜏𝑢𝑖𝑗 = −𝜌𝑢(𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 and 𝜏𝑏𝑖𝑗 =−𝜌𝑢(𝑢󸀠𝑖𝑢󸀠𝑗)𝑏, the Favre-averaged stresses 𝜏𝑖𝑗 = −𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑗 , and
some other turbulent characteristics.

In our study, together with the conditional mean vari-
ables, we also use the Reynolds- and Favre-averaged ones,
which are useful in the interpretation of the results of
numerical simulations and comparison with experimental
data. However, the chemical source 𝜌𝑊, which depends
on curtain statistical characteristics of randomly wrinkled
instantaneous flame, is not a conditional mean characteristic.
The source term 𝜌𝑊 represents the production rate per unit
volume of the product. The rate per unit mass is a Favre-
averaged characteristic 𝑊̃ = 𝜌𝑊/𝜌. The unclosed equation
for the chemical source, which is considered in this paper, was
formulated in [12] in terms of 𝑊̃. We express the variables 𝜌
and 󳨀→𝑢 appearing in this equation using 𝑐, 󳨀→𝑢 𝑢, and 󳨀→𝑢 𝑏, which
are directly described by the two-fluid conditional equations.

The paper is organized as follows:
Section 2: The two-fluid mathematical model and the

conditions of its applicability to premixed combustion in the
laminar and thickened flamelet regimes are described.

Section 3: The potentialities and limitations of the Favre
and two-fluid conditional averaging frameworks are dis-
cussed, and the aim of the study is formulated.

Section 4: A splitting method for the derivation of
unclosed two-fluid conditional equations is presented; it
explains the origin of surface-averaged unknowns and
demonstrates how to avoid them.

Section 5: Two statistical concepts of premixed com-
bustion in the flamelet regime are described in the form
of a three-stage and a global one-stage process, resulting
in equations with and without surface-averaged unknowns,
respectively.

Section 6: An alternative system is presented for the two-
fluid unclosed equations, in which the only unknowns that
need to bemodeled are the conditional Reynolds stresses and
the chemical source.

Section 7: Unclosed equations are obtained for the condi-
tional Reynolds stress using the splitting method.

Section 8: Unclosed equations for the mean chemical
source are presented and analyzed.

Section 9: Equations for the conditional mean turbulent
energy and dissipation rate are obtained by splitting the
Favre-averaged equations of the classical “𝑘 − 𝜀” turbulence
model.

Section 10: The chemical source is modeled for transient
flames in the laminar and thickened regimes.

Section 11: A summary of this work and a conclusion are
presented.

Appendix: The hydrodynamic/hydraulic analytical the-
ory of the countergradient scalar flux is described in detail,
and its applications for impinging and Bunsen flames and
criteria for transition of the scalar flux are discussed.

The preliminary results of the current paper have been
presented at three conferences (Zimont, V.L., Gas Dynamics
in Turbulent Premixed Combustion: Conditionally Aver-
aged Unclosed Equations and Analytical Formulation of
the Problem, the 23rd International Colloquium on the
Dynamics of Explosions and Reactive System, University of
California, Irvine, USA, July 24-29, 2011, pp. 1-6. Zimont, V.L.,
An Alternative Approach to Modeling Turbulent Premixed
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Figure 1: Laminar flamelet (a) and microturbulent (thickened)
flamelet (b) combustion mechanisms.

Combustion, the Seventh Mediterranean Combustion Sym-
posium, Chia Laguna, Cagliari, Sardinia, Italy, September 11-
15, 2011, pp. 1-11. Zimont, V.L., An Approach in Turbulent
Premixed Combustion Research Based on Conditional Aver-
aging, Joint Meeting of the British and Scandinavian-Nordic
Section of the Combustion Institute, Cambridge, UK, March
27-28, 2014, pp. 67-68.).

2. The Two-Fluid Mathematical Model and Its
Applicability to Premixed Combustion

In this section, we consider the conditions for applicability of
the two-fluid mathematical model (in which it is postulated
that instantaneous combustion takes place in a wrinkled
flame of zero thickness) to combustion in the flamelet regime
(where instantaneous combustion takes place in a strongly
wrinkled laminar flame) and to combustion in the thickened
(microturbulent) flamelet regime, where eddies smaller than
the laminar flame thickness penetrate and thicken the preheat
zone of the instantaneous flame (Figure 1).

2.1.The Two-FluidMathematical Model. The two-fluidmath-
ematical model corresponds to the limiting case in which
the width of the instantaneous laminar flame 𝛿𝐿 is zero; i.e.,
instantaneous combustion takes place in a strongly wrinkled
flame surface that propagates in a direction normal to itself
with speed 𝑆𝐿. Thus, the turbulent flame in the “flame
surface regime” consists of two fluids: entirely unburned and
completely burned gases.

This model corresponds to a limiting case of the laminar
flame, in which the molecular transfer coefficient 𝜒 and
chemical time 𝜏𝑐ℎ in the known expressions for the speed𝑆𝐿 ≈ (𝜒/𝜏𝑐ℎ)1/2 and width 𝛿𝐿 ≈ (𝜒 ⋅ 𝜏𝑐ℎ)1/2 tend to zero,𝜒 󳨀→ 0, 𝜏𝑐ℎ 󳨀→ 0, while their ratio tends to a constant(𝜒/𝜏𝑐ℎ) 󳨀→ 𝑐𝑜𝑛𝑠𝑡. These conditions are as follows:

lim
𝐷𝑎󳨀→∞,Re

𝑡
󳨀→∞

(𝐷𝑎
Re𝑡

) = 𝑐𝑜𝑛𝑠𝑡, (1a)

lim
𝐷𝑎󳨀→∞,Re

𝑡
󳨀→∞

(𝛿𝐿𝜂 ) = 0, (1b)

where Re𝑡 = 𝑢󸀠𝐿/] is the turbulent Reynolds number (in
which the kinematical viscosity coefficient ] and molecular
transfer coefficient 𝜒 are of the same order, ] ∼ 𝜒), 𝐷𝑎 =𝜏𝑡/𝜏𝑐ℎ is the Damköhler number (where 𝜏𝑡 = 𝐿/𝑢󸀠 is
the turbulent time), and 𝜂 = 𝐿Re−3/4𝑡 is the Kolmogorov
microscale (the size of the minimal eddies). Equation (1b)
shows that close to the limit, the size of the minimal eddies𝜂 remains much larger than the width of the flame 𝛿𝐿. This
indicates that the influence of the stretch and curvature of
the flame on its structure and speed caused by turbulence is
negligible; i.e., in this limiting case, the speed 𝑆𝐿 = 𝑐𝑜𝑛𝑠𝑡 is
not an assumption, but an exact result.

In this case, the probability density function (PDF) of the
progress variable is bimodal: 𝑝(𝑐) = 𝑃𝑢𝛿(𝑐)+𝑃𝑏𝛿(1−𝑐), where𝑃𝑢 = 1 − 𝑐 and 𝑃𝑏 = 𝑐 are the probabilities of unburned and
burned gases, respectively. The symbol 𝛿 denotes the Dirac
generalized function, and the values of the progress variable
are 𝑐 = 0 for unburned and 𝑐 = 1 for burned gases.

2.2. The Two-Fluid Mathematical Model and Premixed Com-
bustion in the Laminar Flamelet Regime. The laminar flamelet
regime arises in the case of developed turbulence (Re𝑡 >> 1),
when the thickness of the laminar flame is much less than
the size of the smallest eddies, 𝛿𝐿 << 𝜂. Since 𝐿 >> 𝛿𝐿
in this case, instantaneous combustion occurs in a highly
wrinkled, thin laminar flame, and the application of the
two-fluid mathematical model is justified. We rewrite the
inequality 𝜂/𝛿𝐿 >> 1 using the expressions for 𝛿𝐿, 𝜂 and the
definition of the Damköhler number, as follows:

𝐷𝑎1/2Re−1/4𝑡 >> 1. (2)

This inequality shows that in order for the instantaneous
flame to be laminar, the Damköhler number must be very
large, even in the case of smaller Reynolds numbers. For
example, for values of Re𝑡 = 102 and Re𝑡 = 103 the LHS
inequalities become 𝐷𝑎1/2 >> 3 and 𝐷𝑎1/2 >> 6. At smaller
Damköhler numbers, the laminar flamelet regime does not
exist, and the question of the applicability of the two-fluid
approach and the corresponding criteria need special consid-
eration.

2.3. The Two-Fluid Mathematical Model and Combustion in
the Microturbulent Flamelet Regime. In the case of smaller
Damköhler numbers for which the width of the laminar
flame becomes larger than the sized of minimal turbulent
eddies, 𝛿𝐿 > 𝜂, the smaller eddies penetrate the flame,
intensifying the transport processes and thickening the flame.
If this thickening is not very large, so that the instantaneous
microturbulent flame remains strongly curved and the prob-
ability of the intermediate states 0 < 𝑐 < 1 is small, a two-
fluid mathematical model will be applicable to this case. We
now obtain the necessary conditions using our theoretical
results for the parameters of the thickened (microturbulent)
flame, as reported in [16]. These results served as the basis
for the TFC turbulent premixed combustion model [17],
which we use in this paper to model the mean chemical
source appearing in the two-model conditionally averaged
equations.
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The speed 𝑈𝑓, width 𝛿𝑓, and microturbulent transfer
coefficient 𝜒𝑓 of the thickened flamelet are described by the
following expressions (Eq. (1.6) in [16] and Eq. (3) in [17]):

𝑈𝑓 ∼ 𝑢󸀠 ⋅ 𝐷𝑎−1/2, (3a)

𝛿𝑓 ∼ 𝐿 ⋅ 𝐷𝑎−3/2, (3b)

𝜒𝑓 ∼ 𝐷𝑡 ⋅ 𝐷𝑎−2, (3c)

which were obtained on the assumption that the microtur-
bulent transport inside the thickened flame is controlled by
turbulence at statistical equilibriumwith a “𝑘−5/3” spectrum.

The speed of the turbulent flame is 𝑈𝑡 = 𝑈𝑓(𝑆/𝑆0)𝑓,
where (𝑆/𝑆0)𝑓 is the dimensionless area of the thickened
flamelet sheet. Since (𝑆/𝑆0)𝑓 >> 1 (meaning that the flamelet
sheet is strongly wrinkled) and 𝑈𝑡 ∼ 𝑢󸀠 (the speed of the
developed turbulent premixed flame is of an equal order
of magnitude to the characteristic velocity fluctuation), it
follows that 𝑈𝑓 << 𝑢󸀠. From this and the inequality𝛿𝑓 >> 𝜂,
we can derive a criterion for the existence of a combustion
regime in which the microturbulent flamelet sheet remains
relatively thin (𝛿𝑓 << 𝐿) and strongly wrinkled (𝑈𝑡 >> 𝑈𝑓)
(Eqs. (1.10) and (1.11) in [16] and Eq. (7) in [17]):

𝐷𝑎1/2 >> 1 >> 𝐷𝑎3/2Re−3/4𝑡 . (4)

We now modernize this criterion slightly, keeping in mind
that thickening of the instantaneous flame takes place when𝛿𝐿/𝜂 > 1, i.e., when (𝛿𝐿/𝜂)2 = 𝐾𝑎 >> 1, where 𝐾𝑎 is the
Karlovitz number. When the condition for strong wrinkling
of the thickened flamelet sheet by large-scale eddies, 𝐿/𝛿𝑓 ∼𝐷𝑎1/2 >> 1, is added, the altered criterion is as follows:

𝐷𝑎1/2 >> 1 >> 𝐾𝑎−1 ∼ 𝐷𝑎 ⋅ Re−1/2𝑡 . (5)

These two criteria for the existence of a strongly wrinkled
thickened flamelet sheet are similar in meaning and are
satisfied at large Reynolds and moderately large Damköhler
numbers.

Example. For = 10, Re𝑡 = 103, (4) and (5) become 3 >> 1 >>0.2 and 3 >> 1 >> 0.2; for 𝐷𝑎 = 30, Re𝑡 = 104, (4) and (5)
become 5.5 >> 1 >> 0.016 and 5.5 >> 1 >> 0.3.

We now estimate the probability of the intermediate
states, 0 < 𝑐 < 1. We assume that the speed and width of
the turbulent flame are 𝑈𝑡 ≈ 𝑢󸀠 and 𝛿𝑡 ≈ 10𝐿, and hence(𝑆/𝑆0) = 𝑈𝑡/𝑈𝑓 ≈ 3. The ratio of the volume per unit area
of the flamelet sheet and the turbulent flame is (𝑆/𝑆0)𝛿𝑓 ≈
3𝐿 ⋅ 𝐷𝑎−3/2 and ≈ 10𝐿, giving a small characteristic value
of the probability of finding a flamelet sheet in the flame:𝑃𝑓 ≈ 3 ⋅ 𝐷𝑎−3/2 ≈ 10−2.

We see that the two-fluid approach is approximately
applicable to the thickened flamelet combustion regimewhen
the values of the Damköhler number are sufficiently large,𝐷𝑎 >> 1. For smaller Damköhler numbers, 𝐷𝑎 ≥ 1, at
which the preheat zone becomes thicker and less wrinkled,
and especially for small numbers, 𝐷𝑎 < 1, direct application
of the two-fluid approach becomes less suitable.

In [16], a physical explanation was given for why the
thickened flamelet, which occurs when 𝜂 < 𝛿𝐿, remains thin,
meaning that there is no successive involvement of turbulent
eddies of all sizes in the instantaneous flame and a distributed
combustion regime is achieved. When its structure reaches
statistical equilibrium, flamelet thickening reaches a limit in
which “the heat fluxes in the front because of heat conduction
and convection, and heat liberation because of chemical
reaction have one order of magnitude” (see Eq. (1.7) in [16]).

Even in the case of premixed flames subjected to extreme
levels of turbulence studied in a recent paper [18], the
instantaneous reaction layer remains thin, continuous, and
strongly wrinkled:

“Unlike the preheat zones, which grew exponen-
tially with increasing values of 𝑢󸀠/𝑆𝐿 (up to ∼10
times their laminar value), the reaction layers in
all 28 cases study here remained relatively thin,
not exceeding 2 times their respective measured
laminar values, even though the turbulence level
(𝑢󸀠/𝑆𝐿) increased by a factor of ∼60 [. . .] The
reaction layers are also observed to remain
continuous; that is, local extinction events are
rarely observed”.

These experimental data show that a distributed reaction
zone is not observed and that accounting for pressure-driven
effects can be important for a proper description of the
flame even in cases of very strong turbulence. The reaction
layers in all 28 cases studied here remained relatively thin,
not exceeding two times their respective measured laminar
values, even though the turbulence level (𝑢󸀠/𝑆𝐿) increased
by a factor of “∼60”. We notice that the preheat zones
were investigated in [18] using laser induced fluorescence
of formaldehyde. Obtained images of the preheat zones
do not allow us to find the density gradient that is the
relevant quantity for the estimation of a characteristic width
of the instantaneous flame. The characteristic width can be
significantly smaller than what the images show keeping in
mind the very small thickness of the instantaneous reaction
zone. The applicability of the two-fluid approximation to
the turbulent premixed flames subjected to extreme levels of
turbulence remains an open question.

3. Unclosed Favre-Averaged and
Two-Fluid Conditional Equations:
Formulation of the Problem

In this section, we consider two systems of unclosed equa-
tions for a turbulent premixed flame in the context of
the Favre averaging and two-fluid conditional averaging
frameworks; compare their potentialities and limitations; and
formulate problems arising in the context of the two-fluid
framework.

3.1. Unclosed Favre-Averaged Equations and the Challenge
of Countergradient Turbulent Diffusion. The Favre-averaged
combustion and hydrodynamics equations for premixed
combustion are as follows:𝜕𝜌𝑐𝜕𝑡 + ∇ ⋅ (𝜌󳨀→𝑢𝑐) + ∇ ⋅ 𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠 = 𝜌𝑊, (6a)
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𝜌 = 𝜌𝑢[1 + 𝑐 (𝜌𝑢/𝜌𝑏 − 1)] , (6b)

𝜕𝜌󳨀→𝑢𝜕𝑡 + ∇ ⋅ (𝜌󳨀→𝑢󳨀→𝑢) + ∇ ⋅ 𝜌󳨀→𝑢 󸀠󸀠󳨀→𝑢 󸀠󸀠 = −∇𝑝, (6c)

𝜕𝜌𝜕𝑡 + ∇ ⋅ 𝜌󳨀→𝑢 = 0. (6d)

The Favre-averaged value of a variable 𝑎 is 𝑎 = 𝜌𝑎/𝜌 and
its instantaneous value is 𝑎 = 𝑎 + 𝑎󸀠󸀠, where the notation 𝑎
identifies Reynolds averaging, the mean density 𝜌 = 𝜌𝑢𝑃𝑢 +𝜌𝑏𝑃𝑏 and 𝜌𝑐 = 𝜌𝑐 = 𝜌𝑏𝑃𝑏, 𝑃𝑢 and 𝑃𝑏 are the probabilities
of the unburned and burned gases (𝑃𝑢 + 𝑃𝑏 = 1). The

term 𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠 in the combustion equation (6a) is a scalar flux
for which the 𝑖−component is 𝜌𝑢󸀠󸀠𝑖 𝑐󸀠󸀠. In the momentum

hydrodynamics equations (6c), 𝜌󳨀→𝑢 󸀠󸀠󳨀→𝑢 󸀠󸀠 is a tensor for which
the 𝑖𝑗−component is 𝜌󳨀→𝑢 󸀠󸀠𝑖 󳨀→𝑢 󸀠󸀠𝑗 . In (6b) for themean density, 𝜌𝑢
and 𝜌𝑏 are the densities of the unburned and burned gases.

The variables defined for the system in (6a), (6b), (6c),
and (6d) are the mean density 𝜌 and pressure 𝑝, the Favre-
averaged progress variable 𝑐, and speed 󳨀→𝑢 . The unknowns in
themodeling are the scalar flux (themean flux of the progress

variable) 𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠, the stress tensor 𝜏 = −𝜌󳨀→𝑢 󸀠󸀠󳨀→𝑢 󸀠󸀠, and the
mean chemical source (the mass consumption rate of the
unburned gas per unit volume), which in the case of the flame
surface regime is 𝜌𝑊 = 𝜌𝑢𝑆𝐿Σ𝑓, where 𝑆𝐿 is the speed of the
instantaneous flame relative to the unburned gas and Σ𝑓 is
the flame surface density (the mean area of the instantaneous
flame per unit volume). The mass equation (6d) does not
contain unknown terms.

“The use of Favre averaging was initially introduced to
reduce the system of transport equations to a form equivalent
to the case of constant density flows and then using the same
turbulent closures, for example, gradient transport with eddy
diffusivity modeling of second order transport correlation”.
The challenge of modeling the scalar flux and stress tensor
in the turbulent premixed flame arises from the fact that the
former is unusual in the turbulent diffusion countergradient
direction, and the latter is abnormally large for the turbulent
flow velocity fluctuations described by the diagonal terms
of the tensor. As mentioned in the introduction, the gas
dynamics nature of these phenomena was clearly explained
by Pope in [3].

It is unlikely that the phenomena of the countergradient
scalar flux and abnormally large velocity fluctuations in the
turbulent premixed flame, caused by the different pressure-
driven acceleration of the unburned and burned gases, can
be modeled adequately in the context of the Favre averaging
paradigm, even using an advanced approach based on attract-
ing the unclosed differential equations for the scalar flux and
stresses, and even though these equations involving 𝜌𝑢󸀠󸀠𝑖 𝑐󸀠󸀠
and 𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑖 implicitly contain this hydrodynamic mecha-
nism.Thepoint is that closure approximations for these equa-
tions in the context of the Favre averaging framework, where
the unknowns are expressed in terms of the Favre-averaged

parameters defined by the equations of the problem, do not
provide adequate modeling of the hydrodynamic pressure-
driven effect. This type of closure is performed in the same
manner as that commonly used in turbulence theory; the
scalar flux and stresses are presented in the model equations
as turbulent phenomena. As an illustration of this shortcom-
ing, we will refer to the results of calculations of the scalar
flux on the axis of the impinging premixed flame presented
in [19], in which a model theory of this type was developed
for the mean fluxes and stresses. The results of the numerical
simulations performed in [4] (Figures 5 and 6 in [4]) show a
qualitatively different behavior of the pressure profiles on the
axis of the flame. In the flame close to the wall (Figure 5 in
[4]) the pressure increases slightly across the flame due to the
strong influence of the wall on the pressure profile, meaning
that in this case, the scalar flux cannot be countergradient.
In the free-standing impinging flame, where influence of the
wall is small, the strong pressure drops across the flamewhere0 < 𝑐 < 1 (Figure 6 in [4]) can yield a countergradient
scalar flux. At the same time, the numerically simulated
scalar fluxes presented in these figures are in both cases
countergradient and close in value, suggesting that the Favre
averaging paradigmdoes not provide a theoretically adequate
description of the effects caused by the different pressure-
driven acceleration of the unburned and burned gases.

The reason for this drawback is that the closure of these
equations is performed in the context of the Favre averaging
framework, in which the unknowns are expressed in terms
of the Favre-averaged parameters described by the equations
of the problem, and does not adequately model the hydrody-
namic pressure-driven effect described without modeling in
the context of a conditional averaging paradigm.This type of
closure is performed in the same way as that commonly used
in the turbulence theory; that is, the scalar flux is interpreted
as a turbulent phenomenon. The closure used in [4] allowed
the authors to show agreement between their results (using a
corresponding empirical constant) and known experimental
data for the free-standing flame where the scalar flux was
countergradient (Figure 4 in [4]). However, the results of
numerical modeling with these empirical constants for the
impinging flame close to the wall were not physically feasible,
even in a qualitative sense.

The results of numerical simulations of the impinging
flame presented in [19] show a gradient scalar flux in the
flame close to the wall, and a predominantly countergradient
flux in the free-standing flame. In these simulations, the
mean scalar flux was estimated as a sum of the terms that
describe the countergradient hydrodynamic contribution
due to the differences in pressure-driven acceleration of the
heavier unburned and lighter burned gases, and the gradient
contribution due to turbulent diffusion. We discuss these
results in the appendix.

3.2. The Two-Fluid Equations and Modeling Challenges. The
conservation equations for the unclosed two-fluid mass (7a),
(7b), momentum (7c), (7d), and progress variable were for-
mulated in [8] (Eqs. (23)-(26a) and (26b)) and (17), as follows:

𝜕 [𝜌𝑢 (1 − 𝑐)]𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢] = −𝜌𝑢𝑆𝐿𝑢Σ𝑓, (7a)
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𝜕 (𝜌𝑏𝑐)𝜕𝑡 + ∇ ⋅ (𝜌𝑏𝑐󳨀→𝑢 𝑏) = 𝜌𝑏𝑆𝐿𝑏Σ𝑓, (7b)

𝜕 [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢]
𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢󳨀→𝑢 𝑢)] + ∇

⋅ [𝜌𝑢 (1 − 𝑐) (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)
𝑢

] = −∇ [(1 − 𝑐) 𝑝𝑢]
− 󳨀→𝑢 𝑠𝑢𝜌𝑢𝑆𝐿𝑢Σ𝑓 + (𝑝󳨀→𝑛)

𝑠𝑢
Σ𝑓,

(7c)

𝜕 [𝜌𝑏𝑐󳨀→𝑢 𝑏]
𝜕𝑡 + ∇ ⋅ [𝜌𝑏𝑐󳨀→𝑢 𝑏󳨀→𝑢 𝑏)] + ∇
⋅ [𝜌𝑏𝑐 (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)

𝑏

] = −∇ (𝑐 ⋅ 𝑝𝑏) + 󳨀→𝑢 𝑠𝑏𝜌𝑏𝑆𝐿𝑏Σ𝑓
− (𝑝󳨀→𝑛)

𝑠𝑏
Σ𝑓,

(7d)

𝜕𝑐𝜕𝑡 + 󳨀→𝑢 𝑠𝑢 ⋅ ∇𝑐 = (󳨀→𝑢 󸀠𝑠𝑢󳨀→𝑛 󸀠)𝑠𝑢 Σ𝑓 + 𝑆𝐿𝑢Σ𝑓, (7e)

where the indexes “𝑢” and “𝑏” refer to the unburdened and
burned gases, respectively; 𝑆𝐿𝑢 and 𝑆𝐿𝑏 are the displacement
speeds of the instantaneous flame surface relative to the
unburned and burned gases (𝑆𝐿𝑢 = 𝑆𝐿 using a common
notation); Σ𝑓 is the flame surface density (FSD), the mean
area of the instantaneous flame per unit volume; and 󳨀→𝑛
is the unit normal vector on the flame surface toward the
unburned side. The mean progress variable 𝑐 is equal to the
probability of the burned gas 𝑃𝑏 : 𝑐 = 𝑐𝑢𝑃𝑢 + 𝑐𝑏𝑃𝑏, where
the values of the progress variable are 𝑐𝑢 = 0 and 𝑐𝑏 = 1, i.e.,𝑃𝑏 = 𝑐.

In our analysis, we will use the mean chemical source𝜌𝑊(󳨀→𝑥, 𝑡) = 𝑚̇Σ𝑓(󳨀→𝑥, 𝑡) rather than the FSD Σ𝑓(󳨀→𝑥, 𝑡), where𝑚̇ = 𝜌𝑢𝑆𝐿𝑢 = 𝜌𝑏𝑆𝐿𝑏 is the mass flux per unit area of the
instantaneous flame. We can therefore designate the RHS
terms in (7a) and (7b) as −𝜌𝑊 and +𝜌𝑊, the second RHS
terms in (7c) and (7d) as as −󳨀→𝑢 𝑠𝑢𝜌𝑊 and +󳨀→𝑢 𝑠𝑏𝜌𝑊, and the
final RHS term in (7e) as 𝜌𝑊/𝜌.

The system in (3a), (3b), and (3c) describes the variables 𝑐,󳨀→𝑢 𝑢,󳨀→𝑢 𝑏,𝑝𝑢, 𝑝𝑏.Theunknowns that need to bemodeled are the

conditional tensors (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢 and (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢 (or the conditional
Reynolds stress tensors 𝜏𝑖𝑗,𝑢 = −𝜌𝑢(󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢 and 𝜏𝑖𝑗,𝑏 =
−𝜌𝑏(󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢), themean chemical source 𝜌𝑊, and the surface-

averaged variables 󳨀→𝑢 𝑠𝑢, (𝑝󳨀→𝑛 )𝑠𝑢, 󳨀→𝑢 𝑠𝑏, (𝑝󳨀→𝑛 )𝑠𝑏, and (󳨀→𝑢 󸀠𝑠𝑢󳨀→𝑛 󸀠)𝑠𝑢
defined on the surfaces in the unburned and burned gases
adjacent to the instantaneous flame, respectively.

In contrast to the Favre averaging paradigm, the mean

scalar flux 𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠 does not need to be modeled, as it is
described by the following closed expression:

𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠 = 𝜌𝑐 (1 − 𝑐) (󳨀→𝑢 𝑏 − 󳨀→𝑢 𝑢) , (8)

where 𝜌 and 𝑐, in terms of the variable 𝑐, are as follows:
𝜌 = 𝜌𝑢 (1 − 𝑐) + 𝜌𝑏𝑐, (9a)

𝑐 = 𝑐[𝑐 + (𝜌𝑢/𝜌𝑏) (1 − 𝑐)] . (9b)

We can see that the phenomenon of the countergradient
scalar flux in the turbulent premixed flame does need to be
modeled, since 󳨀→𝑢 𝑢, 󳨀→𝑢 𝑏, and 𝑐 are described by the unclosed
system in (7a), (7b), (7c), (7d), and (7e).

The components of the tensor 𝜌󳨀→𝑢𝑢 are described by the
following expression:

𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑗 = 𝜌 (1 − 𝑐) (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 + 𝜌𝑐 (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏
+ 𝜌𝑐 (𝑢𝑖,𝑏 − 𝑢𝑖,𝑢) (𝑢𝑗,𝑏 − 𝑢𝑗,𝑢) .

(10)

Eq. (10) shows that the “abnormally large velocity fluctuations
in the turbulent premixed flame” mentioned above, which
are described by the diagonal terms of the tensor 𝜌󳨀→𝑢𝑢,
are controlled by the differences in the mean conditional
velocities described directly by the unclosed system in (7a),
(7b), (7c), (7d), and (7e).

We proceed on the premise that the conditional averaging
framework is likely to be more convenient in the long
run than the Favre averaging framework, since the two-
fluid equations more adequately describe the pressure-driven
hydrodynamic processes in the premixed flame caused by
a large difference in the densities of unburned and burned
gases. Given the possibility of practical use of the two-fluid
approach, we identified a critical obstacle in the fundamental
difficulty of modeling of the surface mean variables, i.e., their
expression in terms of the variables described by the system.
At the same time, we proceeded based on the possibility of
theoretical modeling of the unknown conditional Reynolds
stresses and mean chemical source by modifying existing
modeling approaches in the turbulence and combustion
theories for our case.

Our formulation of the problem for this theoretical study
follows from these considerations.

3.3. Formulation of the Problem. When we began to address
this problem, we noticed a connection between the structures
of the Favre-averaged mass and moment equations (6d) and
(6c), and the two-fluid conditionally averaged mass and
moment equations (7a), (7b) and (7c), (7d), which influenced
the formulation of the problem. By comparing the mass
equations (6d) and (7a), (7b), we can see that the LHS of
each conditional mass equation for the unburned (7a) and
burned (7b) gases has the structure of the Favre-averaged
equation (6d), but is expressed in terms of the conditional
variables. The LHS of each conditional equation is weighted
by the probabilities of the unburned (𝑃𝑢 = (1 − 𝑐)) and
burned (𝑃𝑏 = 𝑐) gas, respectively. Each equation has sink
and source terms on the RHS, which are denoted as −𝜌𝑊
and +𝜌𝑊, where the chemical source 𝜌𝑊 is the same as in
the Favre-averaged equation (6a). A similar connection exists
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between the structures of the momentum equations (6c) and
(7c), (7d), where the sink and source represented by the two
last terms in (7c), (7d) express the impulse exchange between
the unburned and burned gases.

In the derivation proposed by Lee and Huh [8], general-
ized functionswere used in intermediate, rather cumbersome
mathematical manipulations and disappeared in the final
conditional equations. The authors used zone averaging (as
reflected in the title of the article) and did not actually rely
on the two-fluid mathematical model. Since cumbersome
calculations using an intermediate value of the progress vari-
able that is nonexistent in the two-fluid mathematical model,1 < 𝑐∗ < 1, led to the physically obvious result mentioned
above, a simple method for obtaining these equations by
splitting the Favre-averaged mass and momentum equations
must therefore exist.

We therefore formulate the research problems considered
in this paper as follows:

(1) A simple and physically insightful slipping method
for the derivation of the two-fluid conditional mean
equations, which allows us to formulate alternative
unclosed two-fluid conditionally averaged momen-
tum equations (using sound physical reasoning) that
do not contain the surface-averaged unknowns; to
formulate unclosed two-fluid equations for the condi-
tional Reynolds stresses; and to reformulate the Favre-
averaged equations of the “𝑘− 𝜀” turbulence model in
terms of the mean conditional variables.

(2) A derivation using an analysis of the splitting method
of the two-fluid conditional equation in terms of the
conditional Reynolds stresses and their analysis.

(3) An unclosed equation for the mean chemical source
in the context of the two-fluid approach.

(4) Practical approaches to modeling turbulence in the
unburned and burned gases in the context of a two-
fluid version of the standard “𝑘−𝜀” turbulencemodel,
and the mean chemical source using a hypothesis of
statistical equilibrium of the small-scale structures.

In preparation for analyzing and resolving the listed tasks
in further sections, we aim to do the following:

(i) To remind readers of the two-fluid one-dimensional
analytical theory of the countergradient phenomenon
developed by the present authors in [15] and to formu-
late a criterion for the transition fromcountergradient
to gradient scalar flux in the premixed flame.

(ii) To illustrate these results using the examples of
impinging and Bunsen flames considered in [19] and
[15], respectively.

Consideration of these results yields strong arguments in the
favor of the two-fluid conditional averaging framework. We
present these materials in the appendix, since although they
are not required in order to read the subsequent sections of
this article, they not only can help the reader to understand
the problem more deeply, but also may be of interest in their
own right.

4. A Splitting Method and
Alternative Derivation of the Known
Conditional Equations

In this section, we consider the original derivation splitting
method proposed in [9] and demonstrate its effectiveness
by rederiving the known zone conditionally averaged mass
and momentum equations reported in [8]. We notice that
the derivation in [8] is rather cumbersome due to the use of
generalized functions and a particular value of the progress
variable 0 < 𝑐∗ < 1 in the intermediate mathematical
manipulations, which disappear from the final unclosed
conditionally averaged equations. Our derivation is more
direct and simple.

In the next section, we derive alternative conditionally
averaged momentum equations using the splitting method,

in which the only unknowns are (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢, (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑏, and 𝜌𝑊.

4.1. The Original Splitting Method. The central idea of this
approach is simple: we split the Favre-ensemble-averaged
mass (6d) and momentum (6c) equations into averaged two-
fluid mass and momentum equations for the unburned and
burned gases, respectively, using the obvious identity

𝜌𝑎 = 𝜌𝑢𝑎𝑢𝑃𝑢 + 𝜌𝑏𝑎𝑏𝑃𝑏 = 𝜌𝑢𝑎𝑢 (1 − 𝑐) + 𝜌𝑏𝑎𝑏𝑐 (11)

(where 𝑎may be a constant, scalar, vector, or tensor variable).
We then use the conservation laws for the instantaneous
flame to determine the sink and source terms appearing in
the two-fluid conditional mass and momentum equations.

4.2. Conditionally Averaged Mass Equations. To transform
(6d) using (11), we use 𝑎 = 1 and 𝑎 = 󳨀→𝑢 . This results in the
following equation:

{𝜕 [𝜌𝑢 (1 − 𝑐)]𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢]}
𝑢

+ {𝜕 (𝜌𝑏𝑐)𝜕𝑡 + ∇ ⋅ (𝜌𝑏𝑐󳨀→𝑢 𝑏)}
𝑏

= 0,
(12)

where the expressions in the brackets { }𝑢and { }𝑏 refer to
reactants and products, respectively. We can easily check
whether the expression in the second braces is equal to { }𝑏 =𝜌𝑊̃. To do this, wemust eliminate󳨀→𝑢 from (1a) using (6a) and
the obvious expressions:

𝜌𝑐 = 𝜌𝑐 = 𝜌𝑏𝑐, (13a)

󳨀→𝑢 = 󳨀→𝑢 𝑢 (1 − 𝑐) + 󳨀→𝑢 𝑏𝑐. (13b)

Using (12) then gives { }𝑢 = −𝜌𝑊, and the conditional mass
equations are as follows:

𝜕 [𝜌𝑢 (1 − 𝑐)]𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢] = −𝜌𝑊, (14a)

𝜕 (𝜌𝑏𝑐)𝜕𝑡 + ∇ ⋅ (𝜌𝑏𝑐󳨀→𝑢 𝑏) = 𝜌𝑊. (14b)
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(14a), (14b) are identical to the two-fluid mass equations (23)
and (24) in [8].

4.3. Conditionally Averaged Momentum Equations. In a sim-
ilar way to the analysis in the previous subsection, we present
the Favre-averaged momentum equations (6c) as a sum of
two groups of terms, which contain conditionally averaged
parameters referring to the unburned and burned gases. To
obtain these, we insert into (6c) the expressions yielded by
(11) with 𝑎 = 󳨀→𝑢 and 𝑎 = 󳨀→𝑢󳨀→𝑢 . This results in the following
equation:

{{{{{
𝜕 [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢]

𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢󳨀→𝑢 𝑢)] + ∇

⋅ [𝜌𝑢 (1 − 𝑐) (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)
𝑢

]}}}}}𝑢

+ {𝜕 (𝜌𝑏𝑐 𝑢𝑖,𝑏)𝜕𝑡 + ∇

⋅ (𝜌𝑏𝑐󳨀→𝑢 𝑏󳨀→𝑢 𝑏) + ∇ ⋅ (𝜌𝑏𝑐 (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)
𝑏

)}
𝑏

= −∇ [(1 − 𝑐) 𝑝𝑢] − ∇ (𝑐𝑝𝑏) ,

(15)

where (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢, (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑏 and 𝑝𝑢, 𝑝𝑏 are conditionally aver-
aged moments and pressures. Splitting the equation in (15)
yields the following two-fluid momentum equations:

𝜕 [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢]
𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢󳨀→𝑢 𝑢)] + ∇

⋅ [𝜌𝑢 (1 − 𝑐) (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)
𝑢

] = −∇ [(1 − 𝑐) 𝑝𝑢] + 󳨀→𝐹𝑢,
(16a)

𝜕 [𝜌𝑏𝑐󳨀→𝑢 𝑏]
𝜕𝑡 + ∇ ⋅ [𝜌𝑏𝑐󳨀→𝑢 𝑏󳨀→𝑢 𝑏)] + ∇
⋅ [𝜌𝑏𝑐 (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)

𝑏

] = −∇ (𝑐𝑝𝑏) + 󳨀→𝐹 𝑏,
(16b)

where 󳨀→𝐹𝑢 and
󳨀→𝐹 𝑏 are equal in value and oppositely directed

(󳨀→𝐹𝑢+󳨀→𝐹 𝑏 = 0) terms that express the impulse sink and source
due to the mass exchange between the unburned and burned
gases, and the inequality of the pressure on the different sides
of the instantaneous flame surface. The equation 󳨀→𝐹𝑢 + 󳨀→𝐹 𝑏 =0 expresses the conservation of the averaged impulse on the
instantaneous flame surface. The equation

󳨀→𝑢 𝑠𝑢𝜌𝑊 − (𝑝󳨀→𝑛)
𝑠𝑢
Σ𝑓 = 󳨀→𝑢 𝑠𝑏𝜌𝑊 − (𝑝󳨀→𝑛)

𝑠𝑏
Σ𝑓 (17)

follows from the instantaneous impulse conservation law

󳨀→𝑢 𝑠𝑢𝑚̇ − 𝑝𝑠𝑛󳨀→𝑛 = 󳨀→𝑢 𝑏𝑢𝑚̇ − 𝑝𝑠𝑏󳨀→𝑛 , (18)

where 󳨀→𝑛 is the unit vector normal to the instantaneous flame
surface. As we shall see below, the left-hand side and right-
hand side of the equation (18) are equal, respectively, to 󳨀→𝐹𝑢

and 󳨀→𝐹 𝑏.
We represent the RHS of (6c) as follows:

− ∇𝑝 = −∇ ((1 − 𝑐) 𝑝𝑢) − ∇ (𝑐𝑝𝑏)
+ {(󳨀→𝑢 𝑠𝑏𝜌𝑊 − (𝑝󳨀→𝑛)

𝑠𝑏
Σ𝑓)

− (󳨀→𝑢 𝑠𝑢𝜌𝑊 − (𝑝󳨀→𝑛)
𝑠𝑢
Σ𝑓)}

(19)

where the expression in the brackets { } is equal to zero in
accordancewith (17). After splitting the two-fluidmomentum
equations, (6c) with the RHS presented by (19) yields

𝜕 [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢]
𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢󳨀→𝑢 𝑢)] + ∇

⋅ [𝜌𝑢 (1 − 𝑐) (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)
𝑢

] = −∇ [(1 − 𝑐) 𝑝𝑢]
− 󳨀→𝑢 𝑠𝑢𝜌𝑊 + (𝑝󳨀→𝑛)

𝑠𝑢
Σ𝑓,

(20a)

𝜕 [𝜌𝑏𝑐󳨀→𝑢 𝑏]
𝜕𝑡 + ∇ ⋅ [𝜌𝑏𝑐󳨀→𝑢 𝑏󳨀→𝑢 𝑏)] + ∇
⋅ [𝜌𝑏𝑐 (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)

𝑏

] = −∇ (𝑐𝑝𝑏) + 󳨀→𝑢 𝑠𝑏𝜌𝑊
− (𝑝󳨀→𝑛)

𝑠𝑏
Σ𝑓,

(20b)

which are identical to the conditional averaged momentum
equations (25) and (26) in [8] that were derived using
generalized functions (see (7c) and (7d) above).

A comparison of (16a), (16b), (20a), and (20b) shows that
the sink and source terms in (16a) and (16b) are as follows:󳨀→𝐹𝑢 = −󳨀→𝑢 𝑠𝑢𝜌𝑊 + (𝑝󳨀→𝑛)

𝑠𝑢
Σ𝑓, (21a)

󳨀→𝐹 𝑏 = +󳨀→𝑢 𝑠𝑏𝜌𝑊 − (𝑝󳨀→𝑛)
𝑠𝑏
Σ𝑓. (21b)

To avoid misunderstanding, we should emphasize that the
splitting method uniquely determines the conditionally aver-
aged mass equations (14a) and (14b) and momentum equa-
tions (20a) and (20b).

The alternative conditional momentum equations with-
out the surface-averaged unknowns, which we formulate in
the next section, are based on an original concept of a one-
step statistical interpretation of instantaneous combustion
and an alternative averaged impulse conservation law corre-
sponding to this concept.

5. Original Statistical Concept of Premixed
Combustion in the Flame Surface Regime

The surface-averaged terms in (21a) and (21b) describe the
momentum exchange between the unburned and burned
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Figure 2: Instantaneous parameters in the flow and on the adjacent surfaces.

gases. To avoid the use of the surface-averaged variable, we
must express the momentum exchange between the gases
in terms of the conditional mean variables. We do this
within the framework of the original statistical concept of an
instantaneous flame, and we consider this below.

5.1. Statistical Concepts of the One- and Three-Step Processes
in Flame Surface Combustion. We consider two statistical
concepts of the combustion process in the turbulent pre-
mixed flame in the flame surface regime. In accordance
with the first concept, the combustion is considered as a
global one-step process in which unburned gas with parame-
ters 𝜌𝑢, 𝑝𝑢(󳨀→𝑥, 𝑡), 󳨀→𝑢 𝑢(󳨀→𝑥, 𝑡) transforms into burned gas with
parameters 𝜌𝑏, 𝑝𝑏(󳨀→𝑥, 𝑡), 󳨀→𝑢 𝑏(󳨀→𝑥, 𝑡), with a rate of transforma-
tion equal to 𝜌𝑊(󳨀→𝑥, 𝑡). This global one-step process can be
represented schematically as follows:

𝜌𝑢, 𝑝𝑢, 󳨀→𝑢 𝑢 𝜌𝑊󳨐⇒ 𝜌𝑏, 𝑝𝑏, 󳨀→𝑢 𝑏. (22)

In accordancewith the second concept, the global process
is split into three subprocesses; these correspond to three
successive stages and are represented as follows:

𝜌𝑢, 𝑝𝑢, 󳨀→𝑢 𝑢 󳨐⇒1 𝜌𝑢, 𝑝𝑠𝑢, 󳨀→𝑢 𝑠𝑢 󳨐⇒2 𝜌𝑏, 𝑝𝑠𝑏, 󳨀→𝑢 𝑠𝑏 󳨐⇒3 𝜌𝑏, 𝑝𝑏, 󳨀→𝑢 𝑏. (23)

The second stage corresponds to the stepwise transfor-
mation of the unburned gas, located on the surface adjacent
(infinitely close) to the instantaneous flame, to burned gas,
appearing on the infinitely close adjacent surface on the other
side of the flame. In the first and third stages, the change in the
averaged variables takes place in the unburned and burned
gases, respectively.

It is important to keep in mind that the averaged
parameters 𝑝𝑢, 󳨀→𝑢 𝑢, 𝑝𝑠𝑢, 󳨀→𝑢 𝑠𝑢 and 𝑝𝑏, 󳨀→𝑢 𝑏, 𝑝𝑠𝑏, 󳨀→𝑢 𝑠𝑏 are defined
at every point (󳨀→𝑥, 𝑡) of the turbulent premixed flame, while
the instantaneous parameters 𝑝𝑢, 󳨀→𝑢 𝑢 and 𝑝𝑏, 󳨀→𝑢 𝑏, are defined
in the unburned and burned gases, respectively, and the
instantaneous parameters 𝑝𝑠𝑢, 󳨀→𝑢 𝑠𝑢 and 𝑝𝑠𝑏, 󳨀→𝑢 𝑠𝑏 are defined
on the corresponding surfaces adjacent to the instantaneous
flame, as shown in Figure 2.

In the general case, the conditional and surface-averaged
variables in the unburned and burned gases are not equal,
i.e., 𝑝𝑢 ̸= 𝑝𝑠𝑢, 󳨀→𝑢 𝑢 ̸= 󳨀→𝑢 𝑠𝑢 and 𝑝𝑏 ̸= 𝑝𝑠𝑏, 󳨀→𝑢 𝑠𝑏 ̸= 󳨀→𝑢 𝑏.
The surface-averaged velocity 󳨀→𝑢 𝑠𝑏 of the products directly
generated by the instantaneous flame is not necessarily equal
to the conditional mean velocity of the burned gas 󳨀→𝑢 𝑏. Thus,
the interaction of these “newborn” volumes of products with
the main flow of the products generates the pressure gradient
in the rear zone adjacent to the instantaneous flame surface,
giving rise to the equalization of the velocities 󳨀→𝑢 𝑠𝑏 󳨐⇒ 󳨀→𝑢 𝑏
in the third stage. Similarly, the velocities 󳨀→𝑢 𝑢 and 󳨀→𝑢 𝑠𝑢 are
not necessarily equal due to the pressure gradient generated
by combustion in the front zone, which yields the transition󳨀→𝑢 𝑢 󳨐⇒ 󳨀→𝑢 𝑠𝑢.

The flamelet sheet separates the gases with conditional
mean parameters 󳨀→𝑢 𝑢, 𝑝𝑢 and 󳨀→𝑢 𝑏, 𝑝𝑏; that is, this sheet
includes the instantaneous flame surface and several adjacent
layers of unburned and burned gases in which the transitions󳨀→𝑢 𝑢 󳨐⇒ 󳨀→𝑢 𝑠𝑢 and 󳨀→𝑢 𝑠𝑏 󳨐⇒ 󳨀→𝑢 𝑏 take place. In our mathematical
analysis, the width of this flamelet sheet is assumed to be zero.

We draw the reader’s attention to an analogy between the
two statistical concepts of the flamelet combustion described
above and two classical theoretical concepts of a detonation
wave:

(i) In the Zel’dovich-Neumann-Doering (ZND) theory, a
detonation wave is a shock wave followed by a com-
bustion front, i.e., a global process of transformation
of cold reactants into hot products that involves two
stages: compression of the unburned gas in the shock
wave and its chemical transformation into burned
gas at the combustion front. Thus, the intermediate
parameters of the compressed reactants appear in the
equations of the ZND theory.

(ii) In the Chapman-Jouguet (C-J) theory, a detonation
wave is considered to be a surface that divides the
unburned and burned gases. This surface includes
the shock wave and combustion front. Hence, the
intermediate parameters of the gas do not appear in
the equations of the C-J theory, which include only
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the initial parameters of the reactants and the final
parameters of the products.

Using this analogy, we can say that the momentum equations
containing intermediate surface-averaged variables (derived
by Lee and Huh in [8]) correspond conceptually to the ZND
theory, whereas our alternative momentum equations, which
do not contain intermediate surface-averaged variables (see
(27a) and (27b) below), correspond to the C-J theory.

5.2. Impulse Conservation Law Corresponding to the Two
Concepts of the Flame Sheet. The impulse conservation law
(17) that was used for formulation of the sink and source
terms on the LHS of (20a) and (20b) corresponds to the
second concept of the flamelet sheet. It refers to the second
stage in (23), in which the unburned gas flow crossing the
instantaneous flame becomes the burned gas. The problem
of estimating the unknown surface-averaged parameters
appearing in this case is reduced to one of modeling the
effects of the hydrodynamic mechanisms in the unburned
and burned gases that control the transformations of the gas
parameters 󳨀→𝑢 𝑢, 𝑝𝑢 󳨐⇒ 󳨀→𝑢 𝑠𝑢, 𝑝𝑠𝑢 and 󳨀→𝑢 𝑠𝑏, 𝑝𝑠𝑏 󳨐⇒ 󳨀→𝑢 𝑏, 𝑝𝑏 in
the first and third stages.

We formulate the impulse conservation law for this sheet
as follows:

󳨀→𝑢 𝑢𝜌𝑊 − 𝑝𝑢󳨀→𝑛Σ𝑓 = 󳨀→𝑢 𝑏𝜌𝑊 − 𝑝𝑏󳨀→𝑛Σ𝑓, (24)

where 󳨀→𝑛 (󳨀→𝑥, 𝑡) is the averaged unit vector normal to the
instantaneous flame surface. The terms 󳨀→𝑢 𝑢𝜌𝑊 and 󳨀→𝑢 𝑏𝜌𝑊
describe the sink and source of the impulse per unit volume
caused by transformation of the unburned gas (with mean
speed 󳨀→𝑢 𝑢) into the burned gas (with mean speed 󳨀→𝑢 𝑏),
while the terms −𝑝𝑢󳨀→𝑛Σ𝑓 and −𝑝𝑏󳨀→𝑛Σ𝑓 describe the sink and
source due to differences between the mean pressures 𝑝𝑢
and 𝑝𝑏 in the unburned and burned gases. Eq. (24) does
not contain a term describing the correlation between the
instantaneous pressures 𝑝𝑢 and 𝑝𝑏 and the unite vector 󳨀→𝑛 ,
since these pressures refer to the unburned and burned gases,
while the unit vector 󳨀→𝑛 shows the local orientation of the
instantaneous flame surface. We remind the reader that this
correlation is significant in (17), since the pressures 𝑝𝑠𝑢 and𝑝𝑠𝑏 are defined on adjacent surfaces that are infinitely close to
the instantaneous flame with local orientations described by
the unit vector 󳨀→𝑛 .

In essence, the originality of our theoretical analysis
consists of using a novel concept of a one-step conversion of
unburned gas with conditional mean parameters 󳨀→𝑢 𝑢, 𝑝𝑢 into
burned gas with parameters 󳨀→𝑢 𝑏, 𝑝𝑏. This allows us to avoid
the appearance of intermediate unknown surface-averaged
parameters in the conditionally averaged momentum equa-
tions.

It seems that it is impossible to exclude surface-averaged
parameters from the exact equation (17), meaning that there
is no mathematical equivalence between (17) in terms of
surface-averaged parameters and (24) in terms of condi-
tional mean parameters. We therefore consider (24) as an

approximation till a possible more rigorous proof. It should
be noted that (24) retains original physical meaning also
in the case of the thickened flamelet regime, in contrast to
(17), where the surface-averaged variables that are defined
on the surfaces adjacent to the instantaneous flame surface
may cease to be strictly defined. Below we shall validate
this equation against a result, known in the literature, from
direct numerical simulation (DNS) of the one-dimensional
premixed flame. In answer to possible objections from
purists, we note that full mathematical strictness of the
unclosed equations is not obligatory, since any turbulence
and combustion model that could be used for estimation
of the unknown conditional Reynolds stresses and mean
chemical source appearing in the unclosed equations would
inevitably be approximate.

In order to better understand the relationship between
these equations, we use an analogy based on the result from
turbulence theory that gives an exact formula for the mean
dissipation rate 𝜀 = (𝜌]/2)∑𝑖,𝑗 (𝜕𝑢󸀠𝑖/𝜕𝑥𝑗 + 𝜕𝑢󸀠𝑗/𝜕𝑥𝑖)2 in terms
of the velocity derivatives. This result is controlled by small-
scale turbulence; the formula for the dissipation rate in strong
turbulence (Re𝑡 >> 1) expressed in terms of the large-
scale turbulent parameters 𝜀 = 𝐴𝑢󸀠3/𝐿 (where𝐴 ∼ 1 is
an empirical constant) does not follow from the previous
formula, but is a consequence of Kolmogorov’s hypothesis
of statistical equilibrium in the small-scale structure of
turbulence. Although the exact formula and its approximate
treatment cannot be mathematically equivalent, the scientific
community consider Kolmogorov’s expression for the dissi-
pation rate to be a theoretical result of turbulence mechanics.

Analogously, we consider the approximation in (24),
which fortunately does not contain an empirical constant, as
an approximate impulse conservation law for the instanta-
neous flame in the turbulent region at high Reynolds num-
bers (i.e., developed turbulence), large Damköhler numbers𝐷𝑎 >> 1 (i.e., fast chemistry), and large density ratios𝜌𝑢/𝜌𝑏 >> 1 (i.e., a strong pressure-driven effect). In contrast
to the exact equation in (17), this equation is expressed
in terms of the conditionally averaged parameters that are
described by the conditional mass equations (14a) and (14b)
and formulated in the alternativemomentum equations (27a)
and (27b) below.

5.3. Accuracy of the Alternative Impulse Conservation Law.
We have not attempted to estimate the accuracy of (24) with
respect to the global parameters of the turbulent flame. We
do not expect high accuracy at constant density, 𝜌𝑢/𝜌𝑏 =1, where both sides of (17) are identical. At the same time,
the conditional mean speeds in (24) are not equal in the
general case: 󳨀→𝑢 𝑢 ̸= 󳨀→𝑢 𝑏 and 𝑝𝑢 ̸= 𝑝𝑏 (the former difference
controls the scalar flux in (7a) and affects the stresses in (7b)).
Absent DNS results would indicate the extent to which the
difference in the velocities in the case of constant density is
compensated for by the inequality of the conditional mean
pressures, 𝑝𝑢 ̸= 𝑝𝑏. The DNS results obtained in [20] for
a steady-state, planar premixed flame with density ratio 7.53
and Damköhler number 18.1 demonstrate that, in this case,
the exact and approximate equations are fairly close. In order
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to estimate the terms in the exact impulse equation (17), the

pressure fluctuation correlations (𝑝󸀠󳨀→𝑛 󸀠)𝑠𝑢 and (𝑝󸀠󳨀→𝑛 󸀠)𝑠𝑢 are
ignored, and the terms containing pressure are presented in
the forms (𝑝󳨀→𝑛 )𝑠𝑢Σ𝑓 ≈ −𝑝𝑠𝑢∇𝑐 and (𝑝󳨀→𝑛 )𝑠𝑏Σ𝑓 ≈ −𝑝𝑠𝑏∇𝑐.
The authors calculated these expressions, which using our
notation become −(󳨀→𝑢 𝑠𝑢 − 󳨀→𝑢 𝑢)𝜌𝑊− (𝑝𝑠𝑢 − 𝑝𝑢)∇𝑐 and (󳨀→𝑢 𝑠𝑏 −󳨀→𝑢 𝑏)𝜌𝑊−(𝑝𝑠𝑏−𝑝𝑏)∇𝑐.These formulas approximately express
the differences in the RHS and LHS terms of (17) and (24),
respectively. The graph for the former expression, given in
Figure 4 of [20] for the range 𝑐 = (0.1 − 0.65), shows that
the value of this expression is close to zero over the whole
range. The graph in Figure 6 of [20] for the latter expression
presented for the range 𝑐 = (0.3 − 0.98) shows that the value
of this expression is nearly zero in the range 𝑐 = (0.3 − 0.5),
becomes negative and decreases relatively slowly in the range𝑐 = (0.5 − 0.85), and then increases to zero in the range 𝑐 =(0.85 − 0.98). In general, these results support the conclusion
that the exact and approximate equations (17) and (23) are
close.

We note that the authors of [20] proposed the use of
approximation described above for the terms (𝑝󳨀→𝑛 )𝑠𝑢Σ𝑓 and

(𝑝󳨀→𝑛 )𝑠𝑏Σ𝑓 in modeling conditionally averaged momentum
equations that do not contain unknown surface-averaged
terms. The pressure-related terms in these equations differ
from the corresponding terms in the momentum equations
that are obtained in the next section, using a statistical one-
step model for transformation in the premixed flame of the
unburned gas (with parameters 𝜌𝑢, 󳨀→𝑢 𝑢, 𝑝𝑢) into burned gas
(with the parameters 𝜌𝑏, 󳨀→𝑢 𝑏, 𝑝𝑏).

It should be mentioned that this DNS has been per-
formed for the turbulent premixed flame with a relatively
low Reynolds number. We have no numerical data for the
validation of (24) in the case of much higher Reynolds
number where the interaction between hot and cold volumes
can be more significant and the difference in the conditional
mean velocities lower.

6. Alternative Momentum Equations and
Complete System of Unclosed Equations

In this section, we obtain conditionally averaged momentum
equations without unknown surface-averaged terms and
formulate the complete system of unclosed equations as a
basis for modeling, as used in further sections.

6.1. Formulation of the Alternative Conditional Momentum
Equations. To find 󳨀→𝐹𝑢 and

󳨀→𝐹 𝑏 in (16a) and (16b), which yield
the alternative momentum equations, we represent the RHS
of (6a) as follows:

− ∇𝑝
= −∇ ((1 − 𝑐) 𝑝𝑢) − ∇ (𝑐𝑝𝑏)
+ {(󳨀→𝑢 𝑏𝜌𝑊 − 𝑝𝑏󳨀→𝑛Σ𝑓) − (󳨀→𝑢 𝑢𝜌𝑊 − 𝑝𝑢󳨀→𝑛Σ𝑓)} ,

(25)

where the expression in the braces is equal to zero in
accordance with (24). After splitting the expressions for 󳨀→𝐹𝑢

and 󳨀→𝐹 𝑏, (25) yields󳨀→𝐹𝑢 = −(󳨀→𝑢 𝑢𝜌𝑊 − 𝑝𝑢󳨀→𝑛Σ𝑓)
sin 𝑘

, (26a)

󳨀→𝐹 𝑏 = (󳨀→𝑢 𝑏𝜌𝑊 − 𝑝𝑏󳨀→𝑛Σ𝑓)
𝑠𝑜𝑢𝑟𝑐𝑒

. (26b)

Hence, the desired alternative momentum equations are as
follows:

𝜕 [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢]
𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢󳨀→𝑢 𝑢)] + ∇

⋅ [𝜌𝑢 (1 − 𝑐) (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)
𝑢

] = −∇ [(1 − 𝑐) 𝑝𝑢]
− 󳨀→𝑢 𝑢𝜌𝑊 + 𝑝𝑢󳨀→𝑛Σ𝑓,

(27a)

𝜕 [𝜌𝑏𝑐󳨀→𝑢 𝑏]
𝜕𝑡 + ∇ ⋅ [𝜌𝑏𝑐󳨀→𝑢 𝑏󳨀→𝑢 𝑏)] + ∇
⋅ [𝜌𝑏𝑐 (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)

𝑏

] = −∇ (𝑐𝑝𝑏) + 󳨀→𝑢 𝑏𝜌𝑊
− 𝑝𝑏󳨀→𝑛Σ𝑓.

(27b)

We eliminate the variable Σ𝑓(󳨀→𝑥, 𝑡) using the expressionΣ𝑓 = 𝜌𝑊/𝑚̇, where 𝑚̇ = 𝜌𝑢𝑆𝐿. In order to eliminate the unit

vector 󳨀→𝑛 from (26a) and (26b), we use (24) to obtain 󳨀→𝑛 ∼󳨀→𝑢 𝑢−󳨀→𝑢 𝑏; i.e., the averaged unit vector󳨀→𝑛 is described by (28a):

󳨀→𝑛 = (
󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (28a)

𝑝𝑢 − 𝑝𝑏 = 𝑚̇ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (28b)

Combining (28a) with (24) and using the expression 𝜌𝑊 =𝑚̇Σ𝑓 result in (28b), which we will use below. It follows
from (28b) that the pressure difference becomes equal to the
pressure drop across the laminar flame,Δ𝑝 = 𝜌𝑢𝑆2𝐿(𝜌𝑢/𝜌𝑏−1),
at the points of the turbulent flame where the vectors 󳨀→𝑢 𝑢, 󳨀→𝑢 𝑏,
and 󳨀→𝑛 are collinear.

The reader needs to keep two points in mind: firstly, we
regard the unburned and burned gases as incompressible
fluids; secondly, the structures of the Favre-averaged equation
and corresponding Reynolds-averaged equation of the same
problem (which is associated with the constant density
approximation) are identical. In our case, these are the
momentum equation (6c) and the same equation in which
the density is assumed to be constant.

𝜌𝜕󳨀→𝑢𝜕𝑡 + 𝜌∇ ⋅ (󳨀→𝑢󳨀→𝑢) + 𝜌∇ ⋅ 󳨀→𝑢 󸀠󳨀→𝑢 󸀠 = −∇𝑝 (29)
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Hence, the constant density equation (29) also can be
used for the formulation of two-fluid conditional equations,
leading to (16a) and (16b). We use this consideration in
Section 7 when deriving the unclosed two-fluid conditional
equations (33a) and (33b) for (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 and (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏, proceeding
from the constant density equation (32) for (𝑢󸀠𝑖𝑢󸀠𝑗). This trick
can be useful when deriving other two-fluid conditional
equations.

6.2. Complete System of Unclosed Equations for Turbulent Pre-
mixed Combustion. In this section, we summarize the pre-
vious results and represent the complete system of unclosed
equations, where the unknowns that need to be modeled are
the conditionally averaged Reynolds stresses and the mean
chemical source. (14a), (14b), (27a), (27b), (28a), and (28b)
give the following system of unclosed equations:

𝜕 [𝜌𝑢 (1 − 𝑐)]𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢] = −𝜌𝑊, (30a)

𝜕 (𝜌𝑏𝑐)𝜕𝑡 + ∇ ⋅ (𝜌𝑏𝑐󳨀→𝑢 𝑏) = 𝜌𝑊, (30b)

𝜕 [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢]
𝜕𝑡 + ∇ ⋅ [𝜌𝑢 (1 − 𝑐) 󳨀→𝑢 𝑢󳨀→𝑢 𝑢)] − ∇

⋅ [(1 − 𝑐) 𝜏𝑢] = −∇ [(1 − 𝑐) 𝑝𝑢]
− [[
[
󳨀→𝑢 𝑢 − 𝑝𝑢𝑚̇

−1 (󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]]
]
𝜌𝑊,

(30c)

𝜕 [𝜌𝑏𝑐󳨀→𝑢 𝑏]
𝜕𝑡 + ∇ ⋅ [𝜌𝑏𝑐󳨀→𝑢 𝑏󳨀→𝑢 𝑏)] − ∇
⋅ [𝑐𝜏𝑏] = −∇ (𝑐𝑝𝑏)
+ [[
[
󳨀→𝑢 𝑏 − 𝑝𝑏𝑚̇

−1 (󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]]
]
𝜌𝑊,

(30d)

𝑝𝑢 − 𝑝𝑏 = 𝑚̇ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑢 𝑢 − 󳨀→𝑢 𝑏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (30e)

The system includes three scalar equations, (30a), (30b),
and (30e), and two vector equations, (30c) and (30d). These
describe three scalar variables, 𝑐, 𝑝𝑢, and 𝑝𝑏, and two vector
variables, 󳨀→𝑢 𝑢 and 󳨀→𝑢 𝑏. The unknowns are the conditional
stress tensors 𝜏𝑢 and 𝜏𝑏, with components 𝜏𝑖𝑗,𝑢 = −𝜌𝑢(𝑢󸀠𝑖𝑢󸀠𝑗)𝑢
and 𝜏𝑖𝑗,𝑏 = −𝜌𝑏(𝑢󸀠𝑖𝑢󸀠𝑗)𝑏, and the chemical source 𝜌𝑊.

In the context of the two-fluid approach, the terms that
describe the scalar flux and stress tensor do not appear
in the equations; this means that the challenge of model-
ing the phenomena of the countergradient scalar flux and
abnormal velocity fluctuations in the turbulent flame, which
are artifacts of Favre ensemble averaging, does not arise, as
mentioned above. At the same time, a quantitative estimate

of the mean scalar flux and stresses, and the Reynolds- and
Favre-averaged parameters, may be necessary for physical
interpretation of the results of numerical simulations and
comparison with experimental data. These variables are
described by the following exact expressions:

𝑐 = 𝑐[𝑐 + (𝜌𝑢/𝜌𝑏) (1 − 𝑐)] , (31a)

󳨀⇀𝑢 = 󳨀→𝑢 𝑢 (1 − 𝑐) + 𝑢𝑏𝑐, (31b)

󳨀→𝑢 = 󳨀→𝑢 𝑢 (1 − 𝑐) + 𝑢𝑏𝑐 (31c)

𝜌 = 𝜌𝑢[1 + 𝑐 (𝜌𝑢/𝜌𝑏 − 1)] , (31d)

𝑝 = 𝑝𝑢 (1 − 𝑐) + 𝑝𝑏𝑐, (31e)

𝜌𝑢󸀠󸀠𝑖 𝑐󸀠󸀠 = 𝜌𝑐 (1 − 𝑐) (𝑢𝑖,𝑏 − 𝑢𝑖𝑢) , (31f)

𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑗 = 𝜌 (1 − 𝑐) (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 + 𝜌𝑐 (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏
+ 𝜌𝑐 (𝑢𝑖,𝑏 − 𝑢𝑖𝑢) (𝑢𝑗,𝑏 − 𝑢𝑗𝑢) .

(31g)

(31a), (31b), (31c), (31d), (31e), (31f), and (31g) are not
an inherent part of the system in (30a), (30b), (30c), (30d),
and (30e), as they are not required for a solution of (30a),
(30b), (30c), (30d), and (30e) for given values of 𝜏𝑖𝑗,𝑢, 𝜏𝑖𝑗,𝑏𝑏,
and 𝜌𝑊. (31a), (31b), (31c), (31d), (31e), (31f), and (31g) are
needed to calculate 𝑐, 󳨀→𝑢 , 𝜌, 𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑗 , 𝜌𝑢󸀠󸀠𝑖 𝑐󸀠󸀠, and 𝑝 using the

values of the variables 𝑐, 𝑝𝑢, 𝑝𝑏, 󳨀→𝑢 𝑢, and 󳨀→𝑢 𝑏 described by
the system in (30a), (30b), (30c), (30d), and (30e), which
can be used in the models for the unknown 𝜏𝑖𝑗,𝑢, 𝜏𝑖𝑗,𝑏𝑏, and𝜌𝑊 and for the interpretation of numerical simulations.
We refer to the system that includes (30a), (30b), (30c),
(30d), (30e), (31a), (31b), (31c), (31d), (31e), (31f), and (31g)
as the complete equation system, as it describes the main
Reynolds-, Favre-, and conditionally averaged variables used
in applications. We can add equations, for example, formulas
for 𝑇, 𝜌𝑇󸀠󸀠2, 𝑇󸀠2, and 𝑌𝑖, if the temperatures and species
concentrations 𝑌𝑖 in the unburned and burned gases are
known.

We call attention to the absence from the system in
(30a), (30b), (30c), (30d), and (30e) of a specific combustion
balance equation that is similar to (6a). Eqs. (30a)–(30d) are
hydrodynamic mass and momentum equations containing
the source 𝜌𝑊, meaning that the general problem cannot be
broken down into combustion and hydrodynamics subprob-
lems. This does not contradict the initial formulation of the
problem, in which (6a), (6b) and (6c), (6d) correspond to the
combustion and hydrodynamic subproblems, respectively:
the basic Favre-averaged combustion equation (6a) follows
from the conditionally averaged mass equations (30a), (30b)
and the expression (31f).

In the following two sections, we present unclosed equa-
tions for the unknown conditional Reynolds stresses and the
mean chemical source, which can form the basis for advanced
modeling approaches. In these sections, we propose practical
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approaches for the estimation of these unknowns using a two-
fluid version of the standard “𝑘 − 𝜀” turbulence model and
simple theoretical expressions describing the mean chemical
source in the transient turbulent premixed flame observed in
the experiments.

The obtained system of the two-fluid equations can be
numerically simulated using as a model called “Eulerian
Multifluid Modeling” that is embedded in the commercial
packageAnsys Fluent 6.3 (https://www.sharcnet.ca/Software/
Fluent6/html/ug/node900.htm#sec-multiphase-eulerian).
Fluent’s Eulerian multiphase model does not distinguish
between fluid-fluid and fluid-solid (granular) multiphase
flows. The Fluent solution can be summarized as follows:
(i) momentum and continuity equations are solved for each
phase (in our case, for the unburned and burned gases);
(ii) a single pressure is shared by all phases. The latter
condition means that we must set 𝑝𝑢 = 𝑝𝑏 in the two-fluid
momentum equations (30c) and (30d) and omit (30e),
which is superfluous in this case. This assumption seems
permissible from a physical point of view.

It is necessary to stress that we set 𝑝𝑢 = 𝑝𝑏 only
due to peculiarities of this commercial package; that is,
this assumption is not caused by the essence of the two-
fluid approach. Note that assuming that conditional mean
pressures are equal, strictly speaking, contradicts the basic
idea of modeling the momentum interaction between the
two fluids. A consequence of this assumption is that the con-
ditional equations (30c) and (30d) lose accuracy (although
the Favre-average equation (6d) remains exact while being
the sum of these inaccurate equations) and therefore the
conditional mean speeds as described by those equations
are not quite accurate. However, such inaccuracies may be
insignificant—asmay be indicated indirectly by a comparison
of the results, which follow from the simple hydraulic two-
fluid theory of the countergradient phenomenon—using the
assumption of equality of conditionally averaged pressures,
with known experimental measurements of the counter-
gradient scalar flux in the turbulent premixed flame; see
Appendix A.1.

7. Unclosed Equations in Terms of Moments

In this section, we obtain the two-fluid unclosed equations

for the unknown conditionalmoments (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑢 and (󳨀→𝑢 󸀠󳨀→𝑢 󸀠)𝑏.
We use the splittingmethod to formulate the exact equations,
which inevitably contain surface-averaged unknowns, and
approximate alternative unclosed differential equations that
do not contain these unknowns (this derivation is analogous
to the use of the splittingmethod for the two-fluid conditional
momentum equations).

We start with the constant density unclosed equations for(𝑢󸀠𝑖𝑢󸀠𝑗) that are as follows [21] (molecular viscous terms are
omitted):

𝜕 [𝜌 (𝑢󸀠𝑖𝑢󸀠𝑗)]𝜕𝑡 + 𝜕 [𝜌𝑢𝑘 (𝑢󸀠𝑖𝑢󸀠𝑗)]𝜕𝑥𝑘

= −𝜕 [𝜌 (𝑢󸀠𝑖𝑢󸀠𝑗𝑢󸀠𝑘)]𝜕𝑥𝑘
− [𝜌 (𝑢󸀠𝑗𝑢󸀠𝑘) ⋅ 𝜕𝑢𝑖𝜕𝑥𝑘 + (𝑢󸀠𝑖𝑢󸀠𝑘) ⋅

𝜕𝑢𝑗𝜕𝑥𝑘]

− [𝑢󸀠𝑖 ⋅ 𝜕𝑝
󸀠

𝜕𝑥𝑗 + 𝑢󸀠𝑗 ⋅
𝜕𝑝󸀠𝜕𝑥𝑖] .

(32)

Based on the remark at the end of Section 6.1, (32) leads to
unclosed conditionally averaged equations for (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 and
(𝑢󸀠𝑖𝑢󸀠𝑗)𝑏 as follows:
𝜕 [𝜌𝑢 (1 − 𝑐) (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢]𝜕𝑡 + 𝜕 [𝜌𝑢 (1 − 𝑐) 𝑢𝑘,𝑢 (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢]𝜕𝑥𝑘
= −𝜕 [𝜌𝑢 (1 − 𝑐) (𝑢󸀠𝑖𝑢󸀠𝑗𝑢󸀠𝑘)𝑢]𝜕𝑥𝑘
− 𝜌𝑢 (1 − 𝑐) [(𝑢󸀠𝑗𝑢󸀠𝑘)𝑢 𝜕𝑢𝑖,𝑢𝜕𝑥𝑘 + (𝑢󸀠𝑖𝑢󸀠𝑘)𝑢

𝜕𝑢𝑗,𝑢𝜕𝑥𝑘 ]

− (1 − 𝑐) [(𝑢󸀠𝑗 ⋅ 𝜕𝑝
󸀠

𝜕𝑥𝑖)𝑢

+ (𝑢󸀠𝑖 ⋅ 𝜕𝑝
󸀠

𝜕𝑥𝑗)𝑢

]
− 𝑄𝑢

𝑖,𝑗,

(33a)

𝜕 [𝜌𝑏𝑐 (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏]𝜕𝑡 + 𝜕 [𝜌𝑏𝑐 𝑢𝑘,𝑏 (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏]𝜕𝑥𝑘
= −𝜕 [𝜌𝑏𝑐 (𝑢󸀠𝑖𝑢󸀠𝑗𝑢󸀠𝑘)𝑏]𝜕𝑥𝑘
− 𝜌𝑏𝑐 [(𝑢󸀠𝑗𝑢󸀠𝑘)𝑏 ⋅ 𝜕𝑢𝑖,𝑏𝜕𝑥𝑘 + (𝑢󸀠𝑖𝑢󸀠𝑘)𝑏 ⋅

𝜕𝑢𝑗,𝑏𝜕𝑥𝑘 ]

− 𝑐 [(𝑢󸀠𝑗 ⋅ 𝜕𝑝
󸀠

𝜕𝑥𝑖)𝑏

+ (𝑢󸀠𝑖 ⋅ 𝜕𝑝
󸀠

𝜕𝑥𝑗)𝑏

] + 𝑄𝑏
𝑖,𝑗.

(33b)

Here 𝑄𝑢
𝑖𝑗 and 𝑄𝑏

𝑖𝑗 express the sink and source, 𝑄𝑢
𝑖𝑗 = 𝑄𝑏

𝑖𝑗.

7.1. Exact Equations Containing Surface-Averaged Unknowns.
We first derive exact expressions for 𝑄𝑢

𝑖𝑗 and 𝑄𝑏
𝑖𝑗 in terms of

the surface-averaged parameters, which need to be modeled,
and then avoid modeling by the formulation of approximate
expressions for the sink and source in terms of conditional
mean parameters.

We begin the derivation of the exact expressions for 𝑄𝑢
𝑖𝑗

and 𝑄𝑏
𝑖𝑗 by formulating the following conservation law for

the 𝑖− and 𝑗− components of the impulse, which connect

https://www.sharcnet.ca/Software/Fluent6/html/ug/node900.htm
https://www.sharcnet.ca/Software/Fluent6/html/ug/node900.htm
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the parameters defined on the surfaces adjacent to the
instantaneous flame:

𝑢󸀠𝑖,𝑠𝑢𝑚̇ − (𝑝𝑠𝑢𝑛𝑖) + 𝑝𝑠𝑢𝑛𝑖 = 𝑢󸀠𝑖,𝑠𝑏𝑚̇ − (𝑝𝑠𝑏𝑛𝑖) + 𝑝𝑠𝑏𝑛𝑖, (34a)

𝑢󸀠𝑗,𝑠𝑢𝑚̇ − (𝑝𝑠𝑢𝑛𝑗) + 𝑝𝑠𝑢𝑛𝑗
= 𝑢󸀠𝑗,𝑠𝑏𝑚̇ − (𝑝𝑠𝑏𝑛𝑗) + 𝑝𝑠𝑏𝑛𝑗,

(34b)

which follow from the instantaneous and averaged impulse
equations for the 𝑖− component

(𝑢𝑖,𝑠𝑢 + 𝑢󸀠𝑖,𝑠𝑢) 𝑚̇ − (𝑝𝑠𝑢𝑛𝑖)
= (𝑢𝑖,𝑠𝑏 + 𝑢󸀠𝑖,𝑠𝑏) 𝑚̇ − (𝑝𝑠𝑏𝑛𝑖) ,

(35a)

𝑢𝑖,𝑠𝑢𝑚̇ − 𝑝𝑠𝑢𝑛𝑖 = 𝑢𝑖,𝑠𝑏𝑚̇ − 𝑝𝑠𝑏𝑛𝑖, (35b)

and similar equations for the 𝑗− component. By multiplying
the RHS and RHS of (35a) and (35b) and averaging, we obtain
the conservation law for the surface-averaged conditional
second moments (𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑢 and (𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑏 as follows:

(𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑢 𝑚̇2 − [(𝑝𝑢󸀠𝑖𝑛𝑗)𝑠𝑢 + (𝑝𝑢󸀠𝑗𝑛𝑖)𝑠𝑢] 𝑚̇
+ [(𝑝2𝑛𝑖𝑛𝑗)𝑠𝑢 − (𝑝𝑛𝑖)𝑠𝑢 (𝑝𝑛𝑗)𝑠𝑢]

= (𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑏 𝑚̇2 − [(𝑝𝑢󸀠𝑖𝑛𝑗)𝑠𝑏 + (𝑝𝑢󸀠𝑗𝑛𝑖)𝑠𝑏] 𝑚̇
+ [(𝑝2𝑛𝑖𝑛𝑗)𝑠𝑏 − (𝑝𝑛𝑖)𝑠𝑢 (𝑝𝑛𝑗)𝑠𝑏] .

(36)

When 𝑚̇ = 0 (i.e., there is no combustion), (34a) and (34b)
become the identity 0 = 0, as all of the mean parameters
defined on both adjacent surfaces are equal. For the case𝑚̇ > 0, we divide (36) by 𝑚̇ and then multiply it by Σ𝑓;
remembering that 𝑚̇Σ𝑓 = 𝜌𝑊, we obtain the following
equation:

(𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑢 𝜌𝑊 − [(𝑝𝑢󸀠𝑖𝑛𝑗)𝑠𝑢 + (𝑝𝑢󸀠𝑗𝑛𝑖)𝑠𝑢] Σ𝑓
+ [
[
(𝑝2𝑛𝑖𝑛𝑗)𝑠𝑢𝑚̇ − (𝑝𝑛𝑖)𝑠𝑢 (𝑝𝑛𝑗)𝑠𝑢𝑚̇ ]

]
Σ𝑓

= (𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑏 𝜌𝑊 − [(𝑝𝑢󸀠𝑖𝑛𝑗)𝑠𝑏 + (𝑝𝑢󸀠𝑗𝑛𝑖)𝑠𝑏] Σ𝑓
+ [
[
(𝑝2𝑛𝑖𝑛𝑗)𝑠𝑏𝑚̇ − (𝑝𝑛𝑖)𝑠𝑢 (𝑝𝑛𝑗)𝑠𝑏𝑚̇ ]

]
Σ𝑓.

(37)

Hence, the exact sink and source terms in (33a) and (33b) are
as follows:

𝑄𝑢
𝑖𝑗 = (𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑢 𝜌𝑊

1

− [(𝑝𝑢󸀠𝑖𝑛𝑗)𝑠𝑢 + (𝑝𝑢󸀠𝑗𝑛𝑖)𝑠𝑢] Σ𝑓
2

+ [(𝑝2𝑛𝑖𝑛𝑗)𝑠𝑢 /𝑚̇ − (𝑝𝑛𝑖)𝑠𝑢 (𝑝𝑛𝑗)𝑠𝑢 /𝑚̇] Σ𝑓
3

, (38a)

𝑄𝑏
𝑖𝑗 = (𝑢󸀠𝑖𝑢󸀠𝑗)𝑠𝑏 𝜌𝑊

1

− [(𝑝𝑢󸀠𝑖𝑛𝑗)𝑠𝑏 + (𝑝𝑢󸀠𝑗𝑛𝑖)𝑠𝑏] Σ𝑓
2

+ [(𝑝2𝑛𝑖𝑛𝑗)𝑠𝑏 /𝑚̇ − (𝑝𝑛𝑖)𝑠𝑏 (𝑝𝑛𝑗)𝑠𝑏 /𝑚̇] Σ𝑓
3

. (38b)

The terms marked with ‘1’ describe the sink and source due
to the transformation of the unburned gas into burned gas at
a rate 𝜌𝑊. The terms marked with ‘2’, which do not depend
explicitly on 𝑚̇, represent contributions to the sink and source
due to differences in the velocity fluctuations and pressures
on the “cold” and “hot” surfaces adjacent to the random
instantaneous flame, with an orientation characterized by the
unit vector 󳨀→𝑛 . The terms marked with ‘3’ depend explicitly
on 𝑚̇ and are caused by differences in the pressures on the
isosurfaces. All surface-averaged variables are unknowns.

7.2. Alternative Two-Fluid Conditional Equations without
Surface-Averaged Unknowns. Eq. (37) corresponds to the
second stage in (23). Recall that the processes in stages 1 and
3 do not make contributions to the sink and source terms𝑄𝑢
𝑖𝑗 and 𝑄𝑏

𝑖𝑗, as these processes take place in the nonreacting
unburned and burned gases, meaning that (37) describes the
global one-stage process denoted by (22) for the surface-
averaged parameters. To avoid the appearance of surface-
averaged unknowns, we formulate an approximate one-stage
equation in terms of conditional averaged variables (in a
similar way to the conditional moment equations analyzed
above) as follows:

(𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 𝜌𝑊 − [(𝑝󸀠𝑢󸀠𝑖)𝑢 𝑛𝑗 + (𝑝󸀠𝑢󸀠𝑗)𝑢 𝑛𝑖] Σ𝑓
+ [
[
𝑝󸀠2𝑢 (𝑛𝑖𝑛𝑗 + 𝑛󸀠𝑖𝑛󸀠𝑗)𝑚̇ ]

]
Σ𝑓

= (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏 𝜌𝑊 − [(𝑝󸀠𝑢󸀠𝑖)𝑏 𝑛𝑗 + (𝑝󸀠𝑢󸀠𝑗)𝑏 𝑛𝑖] Σ𝑓
+ [
[
𝑝󸀠2
𝑏
(𝑛𝑖𝑛𝑗 + 𝑛󸀠𝑖𝑛󸀠𝑗)𝑚̇ ]

]
Σ𝑓.

(39)

Hence, the approximate sink and source terms in (33a) and
(33b), 𝑄𝑢

𝑖𝑗 and 𝑄𝑢
𝑖𝑗, are as follows:

𝑄𝑢
𝑖𝑗 = (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢 𝜌𝑊 − [(𝑝󸀠𝑢󸀠𝑖)𝑢 𝑛𝑗 + (𝑝󸀠𝑢󸀠𝑗)𝑢 𝑛𝑖] Σ𝑓

+ [
[
𝑝󸀠2𝑢 (𝑛𝑖𝑛𝑗 + 𝑛󸀠𝑖𝑛󸀠𝑗)𝑚̇ ]

]
Σ𝑓 = 𝑄𝑏

𝑖𝑗

= (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏 𝜌𝑊 − [(𝑝󸀠𝑢󸀠𝑖)𝑏 𝑛𝑗 + (𝑝󸀠𝑢󸀠𝑗)𝑏 𝑛𝑖] Σ𝑓
+ [
[
𝑝󸀠2
𝑏
(𝑛𝑖𝑛𝑗 + 𝑛󸀠𝑖𝑛󸀠𝑗)𝑚̇ ]

]
Σ𝑓.

(40)

The conditional mean unknowns that need to be modeled
are the terms in square brackets, where the unit vector
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󳨀→𝑛 is described by (28a) (𝜌𝑊 obeys the unclosed equation
considered below, and Σ𝑓 = 𝜌𝑊/𝑚̇). In order to develop
model equations for the conditional Reynolds stresses, the
unknowns in (33a), (33b), and (40) must be expressed in
terms of the parameters described by the system (30a), (30b),
(30c), (30d), and (30e).

8. Unclosed Equation in Terms of the Mean
Chemical Source

Themost commonly usedmethod for obtaining the unclosed
equation describing themean chemical source is based on the
equation 𝜌𝑊 = 𝜌𝑢𝑆𝐿Σ, where the flame surface density (FSD)Σ (the mean area of the instantaneous flame per unit volume)
obeys a surface-averaged unclosed Σ−equation. We showed
in [12] that this equation is inconsistent with other Favre-
averaged equations (6a), (6b), (6c), and (6d) for the problem.
Here, we show that the Σ−equation is also inconsistent with
the system of two-fluid conditional equations (30a), (30b),
(30c), (30d), and (30e). In [12], we derived the Favre-averaged
unclosed 𝑊̃− equation, which directly describes the mean
chemical source 𝜌𝑊 = 𝜌𝑊̃ and is consistent with the system
of Favre-averaged equations (6a), (6b), (6c), and (6d). We
reformulate this equation in terms of the conditional mean
variables so that it becomes compatible with the system of
two-fluid conditional equations (30a), (30b), (30c), (30d), and
(30e).

8.1. Incompatibility of the Σ−Equation with Other Equations.
The flame surface density Σ is controlled by turbulence,
which generates wrinkles in the instantaneous flame, and
moves with speed 𝑆𝐿 relative to the unburned gas, which
smoothes these wrinkles. The FSD equations describing the
mean chemical source are as follows:

𝜌𝑊 = 𝜌𝑢𝑆𝐿Σ, (41a)

𝜕Σ𝜕𝑡 + ∇ ⋅ (󳨀→𝑢 𝑠Σ) = [(∇ ⋅ 󳨀→𝑢)𝑠 − (󳨀→𝑛󳨀→𝑛 : ∇󳨀→𝑢)𝑠 Σ − ∇
⋅ [(𝑆󳨀→𝑛)

𝑠
Σ] + (𝑆∇ ⋅ 󳨀→𝑛)

𝑠
Σ ,

(41b)

where 󳨀→𝑛 = −∇𝑐(󳨀→𝑥, 𝑡)/|∇𝑐(󳨀→𝑥, 𝑡)| is the unit vector normal to
the instantaneous flame, which points toward the reactants,
and 󳨀→𝑛󳨀→𝑛 : ∇󳨀→𝑢 = 𝑛𝑖𝑛𝑗𝜕𝑢𝑖/𝜕𝑥𝑗. The “𝑠” symbol represents
surface averaging. This equation is defined on a particular
isosurface inside the instantaneous flame travelingwith speed𝑆. While Σ is almost the same for all isosurfaces 𝜌𝑏 < 𝜌 < 𝜌𝑢,
the surface-averaged velocity 󳨀→𝑢 𝑠 and speed 𝑆 change across
the instantaneous flame, on the “cold” isosurface.

Although correct in itself, the surface-averaged equation
(41b) is inconsistent not only with the Favre-averaged equa-
tions for the problem, as shown in [12], but also with the
two-fluid conditional equations (30a), (30b), (30c), (30d), and
(30e), due to the appearance of differently averaged speeds󳨀→𝑢 𝑢, 󳨀→𝑢 𝑏, and 󳨀→𝑢 𝑠 and other surface-averaged variables that
would result in unnecessary and unjustified difficulties in
modeling.

8.2. Consistent Unclosed Equation for the Mean Chemical
Source. As mentioned in the introduction, the mean chemi-
cal source is not a conditionally averaged characteristic, but a
statistical characteristic of the traveling flame surface divid-
ing the unburned and burned gases. Hence, the unclosed
equation for the mean chemical source, which is compat-
ible with other two-fluid conditional equations, inevitably
contains conditional mean variables referring to both the
unburned and burned gases. We propose to use the unclosed
Favre-averaged equation in terms of 𝑊̃ for the turbulent
premixed combustion in the flamelet regime, as derived in
[12]:

𝜕 (𝜌𝑊̃)
𝜕𝑡 + ∇ ⋅ (𝜌󳨀→𝑢𝑊̃) + ∇ ⋅ (𝜌⟨󳨀→𝑢 󸀠󸀠𝑊󸀠󸀠⟩

𝐹
)

+ 𝜌𝑢𝑆𝐿∇ ⋅ (󳨀→𝑛𝑊)
= 𝜌𝑊̃ ⟨∇𝑡 ⋅ 󳨀→𝑢⟩𝐹 + 𝜌⟨𝑊󸀠󸀠 (∇𝑡 ⋅ 󳨀→𝑢)󸀠󸀠⟩

𝐹

+ 2𝜌𝑢𝑆𝐿𝐾𝑊

(42)

where 𝑊̃ = 𝜌𝑊/𝜌, 𝐾 = 0.5∇ ⋅ 󳨀→𝑛 is the curvature of the
instantaneous flame, and the notations 𝑎 = ⟨𝑎⟩𝐹 and ⟨𝑎󸀠󸀠𝑏󸀠󸀠⟩𝐹
indicate Favre averaging.

The LHS of (42) contains one nonstationary term and
three transport terms describing convection by (i) mean
velocity transport; (ii) turbulent diffusion-type transport
due to the correlation of velocity and combustion rate
fluctuations; and (iii) transport caused by the instantaneous
flame movement. The three terms on the RHS describe
the effects of different physical mechanisms (sources and
sinks) that control the Favre-averaged 𝑊̃: (i) the flame
stretch due to the mean velocity field; (ii) the flame stretch
due to the fluctuation component of the velocity; and (iii)
the effect of the wrinkled flame propagation on the sheet
area.

In the case of the two-fluid mathematical model analyzed
here (i.e., for zero width of the instantaneous flame), there is
no flame stretch, as shown in Section 2.1; hence, the first and
second RHS terms must be omitted. The unclosed equation
for the mean chemical source then becomes

𝜕 (𝜌𝑊)
𝜕𝑡 + ∇ ⋅ (𝜌𝑊󳨀→𝑢) + ∇ ⋅ (𝜌󳨀→𝑢 󸀠󸀠𝑊󸀠󸀠) + 𝜌𝑢𝑆𝐿∇
⋅ (󳨀→𝑛𝑊) = 2𝜌𝑢𝑆𝐿𝐾𝑊.

(43)

where the Favre-averaged velocity 󳨀→𝑢 and mean density 𝜌 are
expressed in terms of 󳨀→𝑢 𝑢, 󳨀→𝑢 𝑏, 𝜌𝑢, 𝜌𝑏, and 𝑐 by (31a), (31b),
and (31d). The unknowns that need to be modeled are in the
third and fourth terms on the LHS and the term on the RHS
and should be expressed in terms of the variables described
by (30a), (30b), (30c), (30d), (30e), (31a), (31b), (31c), (31d),
(31e), (31f), and (31g). Equation (43) was not presented in
[12].
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9. Practical Approaches to Modeling the
Conditional Reynolds Stresses

In this section, we consider this relatively simple approach to
modeling the conditional Reynolds stresses 𝜏𝑖𝑗,𝑢 = −𝜌𝑢(𝑢󸀠𝑖𝑢󸀠𝑗)𝑢
and 𝜏𝑖𝑗𝑏, = −𝜌𝑏(𝑢󸀠𝑖𝑢󸀠𝑗)𝑏 in the context of the classical “𝑘 − 𝜀”
turbulencemodel [21], reformulated in terms of the two-fluid
conditional variables using the splitting method. We present
the conditional mean turbulent stresses as follows:

𝜏𝑖𝑗,𝑢 = −𝜌𝑢 (𝑢󸀠𝑖𝑢󸀠𝑗)𝑢
= ]𝑡,𝑢 (𝜕𝑢𝑖,𝑢𝜕𝑥𝑗 +

𝜕𝑢𝑗,𝑢𝜕𝑥𝑖 ) − (
23) 𝜌𝑢𝑘𝑢𝛿𝑖𝑗,

(44a)

𝜏𝑖𝑗𝑏, = −𝜌𝑏 (𝑢󸀠𝑖𝑢󸀠𝑗)𝑏
= ]𝑡,𝑏 (𝜕𝑢𝑖,𝑏𝜕𝑥𝑗 +

𝜕𝑢𝑗,𝑏𝜕𝑥𝑖 ) − (
23) 𝜌𝑢𝑘𝑏𝛿𝑖𝑗,

(44b)

where ]𝑡,𝑢 = 𝐶𝜇𝑘2𝑢/𝜀𝑢 and ]𝑡,𝑏 = 𝐶𝜇𝑘2𝑏/𝜀𝑏 are the con-
ditional turbulent viscosity coefficients (𝐶𝜇 is an empirical
coefficient) and 𝛿𝑖𝑗 is the Kronecker delta function.
9.1. Two-Fluid Version of the “𝑘 − 𝜀” Turbulence Model. The
conditionally averaged turbulent energies and dissipation
rates 𝑘𝑢, 𝜀𝑢, 𝑘𝑏, 𝜀𝑏 can be described by conditionally aver-
aged equations, which we formulate by splitting the Favre-
averaged equations of the standard “𝑘 − 𝜀” turbulence model
[21]:

𝜕 (𝜌𝑘̃)
𝜕𝑡 + 𝜕 (𝜌𝑢̃𝛼𝑘̃)𝜕𝑥𝛼 = 𝜏𝑖𝑗𝜕𝑢̃𝑗𝜕𝑥𝑖

+ 𝜕 [𝜌 (V𝑡/𝜎𝑘) 𝜕𝑘̃/𝜕𝑥𝑖]𝜕𝑥𝑖
− 𝜌𝜀,

(45a)

𝜕 (𝜌𝜀)
𝜕𝑡 + 𝜕 (𝜌𝑢̃𝑖𝜀)𝜕𝑥𝑖 = 𝐶𝜀1𝜏𝑖𝑗 (𝜀/𝑘̃) 𝜕𝑢𝑗𝜕𝑥𝑖

− 𝐶𝜀2𝜌(𝜀2𝑘̃ )
+ 𝜕 [𝜌 (V𝑡/𝜎𝜀) 𝜕𝜀𝜕𝑥𝑖 ] 𝜕𝑥𝑖,

(45b)

where ]𝑡 = 𝐶𝜇(𝑘̃2/𝜀) is the turbulent viscosity coefficient,𝐶𝜇, 𝐶𝜀1, 𝐶𝜀2, 𝜎𝑘, 𝜎𝜀 are the empirical coefficients of the
standard “𝑘−𝜀” turbulencemodel, and 𝜏𝑖𝑗 are the components
of the stress tensor:

𝜏𝑖𝑗 = − (𝜌𝑢󸀠󸀠𝑖 𝑢󸀠󸀠𝑗 ) = ]𝑡 ( 𝜕𝑢̃𝑖𝜕𝑥𝑗 +
𝜕𝑢̃𝑗𝜕𝑥𝑖 ) − (

23) 𝜌𝑘̃𝛿𝑖𝑗. (46)

These equations are as follows:

𝜕 [𝜌 (1 − 𝑐) 𝑘𝑢]𝜕𝑡 + 𝜕 [𝜌 (1 − 𝑐) 𝑢𝛼,𝑢𝑘𝑢]𝜕𝑥𝛼
= 𝜌 (1 − 𝑐) (𝜏𝑖𝑗,𝑢/𝜌𝑢) 𝜕𝑢𝑖,𝑢𝜕𝑥𝑗 − 𝜌 (1 − 𝑐) 𝜀𝑢

+ 𝜕 [𝜌 (1 − 𝑐) (V𝑡,𝑢/𝜎𝑘) 𝜕𝑘𝑢/𝜕𝑥𝑖]𝜕𝑥𝑖 − 𝑘𝑢𝜌𝑊
+ 𝐾𝑢Σ𝑓,

(47a)

𝜕 (𝜌𝑐𝑘𝑏)𝜕𝑡 + 𝜕 (𝜌𝑐𝑢𝑖,𝑏𝑘𝑏)𝜕𝑥𝑖
= 𝜌𝑐 (𝜏𝑖𝑗,𝑏/𝜌𝑏) 𝜕𝑢𝑖,𝑏𝜕𝑥𝑗 − 𝜌𝑐𝜀𝑏

+ 𝜕 [𝜌𝑐 (V𝑡,𝑏/𝜎𝑘) 𝜕𝑘𝑏/𝜕𝑥𝑖]𝜕𝑥𝑖 + 𝑘𝑏𝜌𝑊 + 𝐾𝑏Σ𝑓,

(47b)

𝜕 [𝜌 (1 − 𝑐) 𝜀𝑢]𝜕𝑡 + 𝜕 [𝜌 (1 − 𝑐) 𝑢𝑖,𝑢𝜀𝑢]𝜕𝑥𝑖
= 𝐶𝜀1𝜌 (1 − 𝑐) (𝜀𝑢/𝑘𝑢) (𝜏𝑖𝑗,𝑢/𝜌𝑢) 𝜕𝑢𝑖,𝑢𝜕𝑥𝑗
− 𝐶𝜀2𝜌 (1 − 𝑐) ( 𝜀2𝑢𝑘𝑢)

+ 𝜕 [𝜌 (1 − 𝑐) (V𝑡,𝑢/𝜎𝑘) 𝜕𝑘𝑢/𝜕𝑥𝛼]𝜕𝑥𝛼 − 𝜀𝑢𝜌𝑊
+ 𝐸𝑢Σ𝑓

(47c)

𝜕 (𝜌𝑐𝜀𝑏)𝜕𝑡 + 𝜕 (𝜌𝑐𝑢𝑖,𝑏𝜀𝑏)𝜕𝑥𝑖
= 𝐶𝜀1𝜌 (1 − 𝑐) (𝜀𝑏/𝑘𝑏) (𝜏𝑖𝑗,𝑏/𝜌𝑏) 𝜕𝑢𝑖,𝑏𝜕𝑥𝑗
− 𝐶𝜀2𝜌𝑐( 𝜀2𝑏𝑘𝑏) +

𝜕 [𝜌𝑐 (V𝑡,𝑢/𝜎𝑘) 𝜕𝑘𝑏/𝜕𝑥𝛼]𝜕𝑥𝛼
+ 𝐸𝑏Σ𝑓 + 𝜀𝑏𝜌𝑊.

(47d)

The underlined terms in the balance equations (47a), (47b),
(47c), and (47d) obey the following conditions:

−𝑘𝑢𝜌𝑊 + 𝐾𝑢Σ𝑓 = +𝑘𝑏𝜌𝑊 + 𝐾𝑏Σ𝑓, (48a)

−𝜀𝑢𝜌𝑊 + 𝐸𝑢Σ𝑓 = +𝜀𝑏𝜌𝑊 + 𝐸𝑏Σ𝑓. (48b)

The sink terms −𝑘𝑢𝜌𝑊, −𝜀𝑢𝜌𝑊 and source terms +𝑘𝑏𝜌𝑊,+𝜀𝑏𝜌𝑊 are caused by transformation of the unburned gas
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with turbulent parameters 𝑘𝑢 and 𝜀𝑢 into burned gas with
turbulent parameters 𝑘𝑏 and 𝜀𝑏. The unknown exchange
terms, which are symbolically represented as𝐾𝑢Σ𝑓, 𝐾𝑏Σ𝑓 and𝐸𝑢Σ𝑓, 𝐸𝑏Σ𝑓, describe the effects of the volume expansion of
the gas due to combustion on the mean conditional kinetic
energies and dissipation rates.

9.2. A Simple Method to Avoid Modeling the Unknown
Exchange Terms. To avoid modeling these exchange terms,
we took into account the fact that the influence of the
expansion due to combustion on turbulence of the unburned
gas is relatively small in comparison with its influence on tur-
bulence of the burned gas due to effect of strong turbulization
of the gas when it crosses the wrinkled instantaneous flame.
Our proposed approach involves the following:

(i) Omission of the terms 𝐾𝑢Σ𝑓 and 𝐸𝑢Σ𝑓 in (47a) and
(47c) as negligible.

(ii) Using the equations of the standard “𝑘−𝜀” turbulence
model instead of conditionally averaged equations
(47b) and (47d).

(iii) Estimation of the conditional means 𝑘𝑏 and 𝜀𝑏 using
two algebraic expressions that involve 𝑘̃, 𝑘𝑢, 𝑘𝑏 and𝜀, 𝜀𝑢, 𝜀𝑏, respectively.

These simplifications lead to the following system of equa-
tions:

𝜕 [𝜌 (1 − 𝑐) 𝑘𝑢]𝜕𝑡 + 𝜕 [𝜌 (1 − 𝑐) 𝑢𝛼,𝑢𝑘𝑢]𝜕𝑥𝛼
= 𝜌 (1 − 𝑐) (𝜏𝑖𝑗,𝑢/𝜌𝑢) 𝜕𝑢𝑖,𝑢𝜕𝑥𝑗
+ 𝜕 [𝜌 (1 − 𝑐) (V𝑡,𝑢/𝜎𝑘) 𝜕𝑘𝑢/𝜕𝑥𝑖]𝜕𝑥𝑖 − 𝜌 (1 − 𝑐) 𝜀𝑢
− 𝑘𝑢𝜌𝑊,

(49a)

𝜕 [𝜌 (1 − 𝑐) 𝜀𝑢]𝜕𝑡 + 𝜕 [𝜌 (1 − 𝑐) 𝑢𝑖,𝑢𝜀𝑢]𝜕𝑥𝑖
= 𝐶𝜀1𝜌 (1 − 𝑐) (𝜀𝑢/𝑘𝑢) (𝜏𝑖𝑗,𝑢/𝜌𝑢) 𝜕𝑢𝑖,𝑢𝜕𝑥𝑗
+ 𝜕 [𝜌 (1 − 𝑐) (V𝑡,𝑢/𝜎𝑘) 𝜕𝑘𝑢/𝜕𝑥𝛼]𝜕𝑥𝛼 − 𝐶𝜀2𝜌 (1 − 𝑐)
⋅ ( 𝜀2𝑢𝑘𝑢) − 𝜀𝑢𝜌𝑊,

(49b)

𝜕 (𝜌𝑘̃)
𝜕𝑡 + 𝜕 (𝜌𝑢̃𝛼𝑘̃)𝜕𝑥𝛼 = 𝜏𝑖𝑗𝜕𝑢̃𝑗𝜕𝑥𝑖
+ 𝜕 [𝜌 (V𝑡/𝜎𝑘) 𝜕𝑘̃/𝜕𝑥𝑖]𝜕𝑥𝑖 − 𝜌𝜀,

(49c)

𝜕 (𝜌𝜀)
𝜕𝑡 + 𝜕 (𝜌𝑢̃𝑖𝜀)𝜕𝑥𝑖 = 𝐶𝜀1𝜏𝑖𝑗 (𝜀/𝑘̃) 𝜕𝑢𝑗𝜕𝑥𝑖
+ 𝜕 [𝜌 (V𝑡/𝜎𝜀) 𝜕𝜀𝜕𝑥𝑖 ] 𝜕𝑥𝑖 − 𝐶𝜀2𝜌(𝜀2𝑘̃ )] ,

(49d)

𝑘̃ = 𝑘𝑢 (1 − 𝑐) + 𝑘𝑏𝑐, (49e)

𝜀 = 𝜀𝑢 (1 − 𝑐) + 𝜀𝑏𝑐, (49f)

which allow us to avoid estimating the turbulization of the
burned gas using the conditional turbulent energy 𝑘𝑏 and
dissipation rate 𝜀𝑏. This turbulization in terms of 𝑘̃ and 𝜀 is
described to some extent by the Favre-averaged equations
(49c) and (49d), and the effect on the values of the conditional𝑘𝑏 and 𝜀𝑏 is described by (49e) and (49f). It should be
emphasized that the empirical constants in this modeling
approach are the same as in the standard “𝑘 − 𝜀” turbulence
model [21].

10. Simple Modeling of the Mean
Chemical Source

To model the mean chemical source 𝜌𝑊, we proceed from
the following assumptions:

(1) This source is the same in both the set of unclosed
Favre-averaged equations (6a), (6b), (6c), and (6d)
and the set of unclosed two-fluid conditional equa-
tions (30a), (30b), (30c), (30d), and (30e).This means
that we can use models obtained in the context of
the Favre averaging framework and only reformulate
them in terms of the conditional mean variables
described by the two-fluid equations.

(2) The model for the chemical source depends on the
combustion regime. We consider the laminar and
thickened flamelet regimes, since a distributed regime
is not observed in experiment. In these regimes,
instantaneous combustion takes place in thin and
strongly wrinkled flame sheets, which can be consid-
ered as random ones.

(3) The chemical source model also depends on the stage
of the turbulent flame. Real turbulent flames are
transient, meaning that complete statistical equilib-
rium is not achieved in strongly wrinkled, random
flamelet sheets. We model the chemical source for a
transient flame in the intermediate asymptotic stage,
where small-scale wrinkles in the flamelet sheet reach
statistical equilibrium, while the large-scale wrinkles
remain in nonequilibrium. This concept allows us to
obtain theoretical results that we will use to formulate
valid models of the chemical source.

Following [16, 17, 22], we show that the flame in the
intermediate asymptotic stage is characterized by a constant
turbulent speed 𝑈𝑡 and increasing width 𝛿𝑡. We assume that
the one-dimensional turbulent flame travels along the 𝑥−axis
and that the wrinkled surface, which shows the configuration
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of the flamelet sheet, is described by a random single-valued
function 𝑥 = ℎ(𝑦, 𝑧, 𝑡) with a continuous power spectral
density (PSD) 𝐹(𝑘). The density is constant, the turbulence
is uniform and stationary, and the mean velocity of the
medium is zero. The speed of the flame is 𝑈𝑡 = 𝑆𝐿(𝐴/𝐴0),
where (𝐴/𝐴0) >> 1 is the dimensionless mean area of the
instantaneous flame. The area in terms of the spectrum is
estimated as follows.

( 𝐴𝐴0

) =
1
(1 + |∇ℎ|2)1/2 ≈

2
|∇ℎ| ≈

3
(|∇ℎ|2)1/2

=
4
(∫∞

0
𝑘2𝐹 (𝑘) 𝑑𝑘)1/2

(50)

The equality marked with ‘1’ in (50) is an exact expression for
the area of the random surface described by the equation 𝑥 =ℎ(𝑦, 𝑧, 𝑡). The transition marked with ‘2’ is valid for |∇ℎ|2 >>1 due to the assumption (𝐴/𝐴0) >> 1. The transitionmarked
with ‘3’ is an estimate (an average of the absolute magnitude
of a random function with zero mathematical expectation is
approximately equal to the square root of its dispersion). The
equality marked with ‘4’ is the exact expression of this root in
terms of the spectrum of the random surface 𝐹(𝑘). This gives

( 𝐴𝐴0

) ≈ (∫∞
0
𝑘2𝐹 (𝑘) 𝑑𝑘)1/2 , (51a)

𝜎2𝑓 (𝑡) = (𝑥 − 𝑥 (𝑡))2 = ∫∞
0
𝐹 (𝑘, 𝑡) 𝑑𝑘 (51b)

i.e., the small- and large-scale wrinkles (large and small wave
numbers 𝑘 in FSD) control the dimensionless mean area(𝐴/𝐴0) and the dispersion 𝜎2𝑓 of the instantaneous flame,
respectively.

The assumption that the small-scale structures in the
transient turbulent flame are already statistical at equilibrium
results in a nearly constant speed of the flame 𝑈𝑡 =𝑆𝐿(𝐴/𝐴0). Small-scale equilibrium is achieved when the rate
of generation for small-scale wrinkles in the flamelet sheet by
small-scale turbulent eddies with speed 𝑢󸀠𝑒 that is equal to or
less than the flamelet speed (𝑢󸀠𝑒 ≤ 𝑆𝐿 for the laminar flamelet
regime) and the rate of their consumption by the moving
flamelet sheet surface are equal. At the same time, large-scale
structures are not yet at equilibrium, resulting in an increase
in the flame width. In the case of strong turbulence, when𝑢󸀠 >> 𝑆𝐿, this increase is controlled by turbulent diffusion.
The dispersion of the instantaneous flame 𝜎2𝑓 and the width
of the flame in this case are as follows:

𝜎2𝑓 ≅ 2𝐷𝑡𝑡, (52a)

𝛿𝑡 ∼ (𝑢󸀠𝐿𝑡)1/2 , (52b)

where the turbulent diffusion coefficient𝐷𝑡 ∼ 𝑢󸀠𝐿.
In [17, 22], we referred to a flame with this type of

statistical structure as an “intermediate steady propagation
(ISP) flame”. The kinematic equations describing a one-
dimensional ISP flame in a motionless medium of constant

density and a three-dimensional ISP flame in a moving
medium are as follows:

𝜕𝑐𝜕𝑡 = 𝐷𝑡𝜕2𝑐𝜕𝑥2 + 𝑈𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑐𝜕𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (53a)

𝜕𝑐𝜕𝑡 + 󳨀→𝑢∇𝑐 = ∇ ⋅ (𝐷𝑡∇𝑐) + 𝑈𝑡 |∇𝑐| . (53b)

The mean chemical sources in these equations are 𝑊 =𝑈𝑡|𝜕𝑐/𝜕𝑥| and 𝑊 = 𝑈𝑡|∇𝑐|. In the case of variable density,
the chemical term in the corresponding Favre-averaged
equations becomes

𝜌𝑊 = 𝜌𝑊̃ = 𝜌𝑢𝑈𝑡 |∇𝑐| . (54)

The problem is then reduced to obtaining theoretical
expressions for the speed 𝑈𝑡, which are different for the
laminar and thickened flamelet combustion mechanisms.
This problem was considered in [22] for the laminar flamelet
regime (using the flame surface mathematical model) and in
[16, 17] for the thickened (microturbulent) regime.

10.1.TheChemical Source for the Laminar Flamelet Regime. In
the flamelet regime in the case of constant density and strong
turbulence (𝑢󸀠 >> 𝑆𝐿), the speed and time interval of the ISP
flame are described by the following expressions [22]:

𝑈𝑡 ∼ (𝑢󸀠𝑆𝐿)1/2 , (55a)

𝜏𝑡 ≤ 𝑡 << (𝑢󸀠𝑆𝐿)
2 𝜏𝑡. (55b)

We use (55a) in modeling the chemical source in the case
when the gas densities and the turbulent characteristics are
different for the unburned and burned gases. We assume that
the turbulent flame speed 𝑈𝑡 is controlled by the turbulence
of the unburned gas. Hence, the modal expression for the
chemical source (𝜌𝑊)𝐿 used in the two-fluid conditional
equations becomes

(𝜌𝑊)
𝐿
= 𝐴𝐿𝜌𝑢√𝑘1/2𝑢 𝑆𝐿 |∇𝑐| , (56)

where 𝐴𝐿 ∼ 1 is an empirical constant, 𝑐 is expressed in (31a)
in terms of 𝑐, as described by the two-fluid equations, 𝑆𝐿 is the
speed of the laminar flame relative to the unburned gas, and
𝑘𝑢 = (3/2)𝑢󸀠𝑢2 is the turbulent energy in the unburned gas,
as described by the two-fluid model equations of turbulence
considered in Section 9.

The formula (55a) is also invalid at large times 𝑡 >(𝑢󸀠/𝑆𝐿)2𝜏𝑡, when wrinkles of all sizes reach statistical equi-
librium. A theoretical analysis of this steady-state flame
propagation was carried out in [22] using a hyperbolic
equation that directly described the front edge of the flame,
controlling its propagation speed, and showed that this speed
was 𝑈𝑡 = (𝑢󸀠2 + 𝑆2𝐿)1/2. Hence, the flame speed at strong
turbulence 𝑢󸀠/𝑆𝐿 >> 1 becomes 𝑈𝑡 ≅ 𝑢󸀠, meaning that
this analysis confirmed and clarified the known classical
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Damköhler and Shelkin estimate 𝑈𝑡 ∼ 𝑢󸀠. As this theoretical
result indicates a paradoxical contradiction of the numerical
experimental data (since the speed of the turbulent flame
does not depend on the physicochemical properties of the
combustible mixture), we referred to it in previous work as
the Damköhler-Shelkin paradox [22]. We remind the reader
that the steady-state stage is unattainable in practice for real
flames.

Strictly speaking, (55a) is also invalid for small times𝑡 ≤ 𝜏𝑡 when the wrinkles of all sizes are at statistical
disequilibrium. Accurate simulations on these timescales are
mainly important for spark-ignition engines. We do not
consider this case here andmake the assumption that (56) and
the analogous equation (58) for the thickened flamelet regime
are valid at all times. In this regard, it should be noted that
the statistical equilibrium of small-scale turbulent structures
is postulated in the “𝑘 − 𝜀” turbulence model.

10.2. The Chemical Source for the Thickened Flamelet Regime.
The possibility of applying the two-fluid approach in the
case of the thickened (microturbulent) flamelet regime was
analyzed in Section 2.3. The conditions under which the
thickened flamelet sheet remains thin and strongly wrinkled
are described by the inequalities in (4) and (5).

The formula for the speed of the constant-pressure tran-
sient ISP flame propagating in a uniform flow, obtained in
[16, 17] (Eq. (2.9) in [16] andEq. (6) in [17]), and the inequality
for the time interval for this transient flame are as follows:

𝑈𝑡 = 𝐴𝑢󸀠𝐷𝑎1/4 = 𝐴𝑢󸀠3/4𝑆1/2𝐿 𝜒−1/4𝐿1/4, (57a)

𝜏𝑡 < 𝑡 << 𝜏𝑡𝐷𝑎, (57b)

where 𝐴 is an empirical coefficient, the Damköhler number𝐷𝑎 = 𝜏𝑡/𝜏𝑐ℎ >> 1, the turbulent time 𝜏𝑡 = 𝐿/𝑢󸀠, and the
chemical time 𝜏𝑐ℎ = 𝜒/𝑆2𝐿.

We use (57a) and assume that the turbulent flame speed𝑈𝑡 in the case of variable density is controlled by turbulence in
the unburned gas, which is characterized by the conditional
turbulent energy 𝑘𝑢 and dissipation rate 𝜀𝑢, as described
by the turbulence model equations. Thus, we formulate the
model expression for the mean chemical source (𝜌𝑊)𝑚𝑡 for
the case of the microturbulent flamelet regime as follows:

(𝜌𝑊)
𝑚𝑡
= 𝐴𝑚𝑡𝜌𝑢𝑘3/4𝑢 𝜀−1/4𝑢 𝑆1/2𝐿 𝜒−1/4𝑢 |∇𝑐| , (58)

where the empirical coefficients𝐴𝑚𝑡 and𝐴𝐿 appearing in the
model equations for the laminar andmicroturbulent flamelet
regimes have different values. The molecular heat transfer
coefficient 𝜒𝑢 and the speed of the laminar flame are the
physicochemical characteristics of the combustible mixture
in this case.

11. Conclusions

Widely used in applications RANS models of turbulent pre-
mixed combustion are based on the use the Favre-averaged
equations. There is a large number of papers devoted to
different aspects of the RANS approach, some RANS models

implemented in commercial codes. The totality of all results
obtained in the context of the Favre averaging framework,
constitute a certain technological tool widely used in many
industries. Nevertheless we are sure that the Favre averaging
approach is likely to be less convenient in the long run
than two-fluid conditional averaging approach for modelling
turbulent premixed combustion in the flamelet regime. The
reason is that from a conceptual point of view, the latter
approach yields more adequate description of hydrodynamic
and turbulent process in the unburned and burned gases,
and their mutual interaction. The challenge of modeling
of the phenomena of the counter-gradient scalar flux and
abnormally large velocity fluctuations in the premixed flame,
which, in fact, are treated in the context of Favre aver-
age framework as turbulent phenomena (“counter-gradient
turbulent diffusion” and “abnormally strong turbulence”),
disappear in the context of two-fluid framework. The reason
is that these phenomena are controlled by the difference of
the conditional mean velocities, which are described directly
(without modeling) by the two-fluid conditional equations.

At the same time, the practical use of the two-fluid
approach faces significant difficulties. This is due to the
appearance in the two-fluid unclosed equations along
with requiring modeling conditional Reynolds stresses also
surface-averaged unknowns, and the chemical source, which
depends on the statistical structure of the instantaneous
flame-surface. The unclosed equations become more cum-
bersome when going beyond the two-fluid model is taken
into account the small but finite width of the instantaneous
flame [23], which seems unjustified.

We summarize the results of our affords to overcome
these difficulties and to propose possible way for resolving
arising modeling problem are as follows:

(1) We formulate a system of two-fluid conditionally
averaged unclosed equations (26a) and (26b) for tur-
bulent premixed combustion in the flamelet regime,
where the only unknowns that need to bemodeled are
the conditional Reynolds stresses 𝜏𝑖𝑗,𝑢 = −𝜌𝑢(𝑢󸀠𝑖𝑢󸀠𝑏)𝑢,𝜏𝑖𝑗,𝑏 = −𝜌𝑏(𝑢󸀠𝑖𝑢󸀠𝑏)𝑏 and the chemical source 𝜌𝑊 =𝜌𝑢𝑆𝐿Σ𝑓.

(2) To avoid the appearance of unknown surface-
averaged parameters, which are inevitable in known,
mathematically exact, unclosed two-fluid equations,
we propose the one-step statistical concept of the
flame surface combustion regime, in which every
point of the turbulent flame undergoes direct
transformation from unburned gas with parameters
𝜌𝑢,𝑝𝑢,󳨀→𝑢 𝑢 to burned gas with parameters 𝜌𝑏,𝑝𝑏,󳨀→𝑢 𝑏.

(3) We develop a simple splitting method (without using
generalized functions) that allows us to rederive
known [8] equations containing surface-averaged
terms and to formulate alternative conditional equa-
tions that do not contain these unknown terms. This
method is used for the formulation of equations
describing the conditional Reynolds stresses and for
the reformulation of the equations of the “𝑘 − 𝜀”
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turbulence model in the context of the two-fluid
approach.

(4) We then formulate a system of unclosed equations
that describes the conditional mean and Reynolds-
and Favre-averaged parameters, including the mean
scalar flux and stress tensor, which may be necessary
for the interpretation of the results of numerical
simulations and their comparison with experimental
data.

(5) We touch on the problem of modeling the unknown
Reynolds stresses 𝜏𝑖𝑗,𝑢, 𝜏𝑖𝑗,𝑏 and the mean chemical
source 𝜌𝑊, as follows: (i) we consider unclosed
equations in terms of (𝑢󸀠𝑖𝑢󸀠𝑏)𝑢, (𝑢󸀠𝑖𝑢󸀠𝑏)𝑏, and 𝑊̃, which
may be used in developing advanced models, and
(ii) we propose a simpler modeling approach in
which the Reynolds stresses are estimated in the
context of the modified “𝑘 − 𝜀” turbulence model
and the chemical source is described by an algebraic
expression referring to a transient turbulent flame in
the intermediate asymptotic stage.

(6) These unclosed two-fluid conditionally averaged
equations and the approaches proposed here for the
estimation of appearing unknowns can be treated
as an alternative paradigm for modeling turbulent
premixed combustion in the flamelet regime.

Appendix

In this appendix, we consider the phenomenon of the
countergradient scalar flux in the turbulent premixed flame,
caused by the different pressure-driven acceleration of the
heavier unburned and lighter burned gases. An analysis of
this hydrodynamic mechanism requires methods that fall
outside the scope of the hypothesis-based approach used
above. We consider this important problem in the context of
our simple hydraulic two-fluid theory of the countergradient
phenomenon.

A. The Countergradient Scalar Flux and Its
Transition to the Gradient Case

The hydrodynamic mechanism dominates in the turbulent
premixed flame when the fall in pressure across the flameΔ𝑝 = 𝜌𝑢𝑈2

𝑡 (𝜌𝑢/𝜌𝑏−1) is sufficiently large.This takes place for a
large ratio of the densities 𝜌𝑢/𝜌𝑏 >> 1 and strong turbulence,𝑢󸀠/𝑆𝐿 >> 1. For estimation purposes, we assume 𝜌𝑢/𝜌𝑏 ∼ 10,𝑢󸀠/𝑆𝐿 ∼ 10, 𝑈𝑡 ∼ 𝑢󸀠, 𝛿𝑡 ∼ (𝑢󸀠/𝑆𝐿)𝐿 ∼ 10𝐿, where 𝑢󸀠
and 𝐿 are the characteristic values of the velocity fluctuations
and the size of the turbulent eddies. For estimation of the
characteristic value 𝑞𝑝−𝑑 of the pressure-driven component
of the scalar flux (𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑 using (8), we assume 𝑢𝑢 = 𝑈𝑡,𝑢𝑏 = (𝜌𝑢/𝜌𝑏)𝑈𝑡 ∼ 10𝑈𝑡, and 𝑐 ∼ 0.5, giving 𝑞𝑝−𝑑 ∼ 2𝜌𝑈𝑡. The
characteristic value 𝑞𝑡.𝑑. of the turbulent diffusion component(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑡.𝑑. = −𝜌𝐷𝑡𝑑𝑐/𝑑𝑥 is 𝑞𝑡.𝑑. ∼ 𝜌𝑢󸀠𝐿/𝛿𝑡 ∼ 10−1𝜌𝑢󸀠.
Hence, the ratio 𝑞𝑝−𝑑/𝑞𝑡.𝑑. ∼ 20, meaning that the scalar flux
is controlled by the hydrodynamic effect caused by thermal

expansion. The transition from countergradient to gradient
scalar flux takes place when this ratio falls to 𝑞𝑝−𝑑/𝑞𝑡.𝑑. ∼ 1.
In cases where 𝑞𝑝−𝑑/𝑞𝑡.𝑑. << 1, the pressure-driven effect is
small, and the scalar flux is gradient.

A.1. Simple Hydrodynamic (Hydraulic) Two-Fluid Theory of
the Countergradient Phenomenon. In [15], we formulated
the two-fluid mass and momentum equations assuming
conservation of the total pressure of the unburned gas across
the flame brush, which allowed us to find the mean scalar
flux (𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝𝑑 in the turbulent premixed flame with known
speed 𝑈𝑡 and the ratio 𝜌𝑢/𝜌𝑏. In nondimensional form, these
dimensionless equations in the coordinate system traveling
with the flame front are as follows, using 𝑈𝑡, 𝜌𝑢, and 𝜌𝑢𝑈2

𝑡 as
quantities to normalize the velocity, density, andpressure [15]:

(1 − 𝑐) 𝑢𝑢 + 𝑐 𝑢𝑏Θ = 1, (A.1a)

𝑝 + (1 − 𝑐) 𝑢2𝑢 + 𝑐 𝑢
2
𝑏Θ = 𝑝−∞ + 1, (A.1b)

𝑝𝑢 + (12) 𝑢2𝑢 = 𝑝−∞ + 12 , (A.1c)

whereΘ = 𝜌𝑢/𝜌𝑏 and themean pressure𝑝 is given by𝑝 = (1−𝑐)𝑝𝑢+𝑐𝑝𝑏. Assuming that the conditional mean pressures are
equal, i.e., 𝑝𝑢 = 𝑝𝑏(hydraulic approximation), (A.1a), (A.1b),
and (A.1c) reduce to the following set of equations:

(1 − 𝑐) 𝑢𝑢 + 𝑐 𝑢𝑏Θ = 1, (A.2a)

(12 − 𝑐) 𝑢2𝑢 +
𝑐 𝑢2𝑏Θ = 12 , (A.2b)

which have the solution [15]:

𝑢𝑏 = −𝛽 + (−4𝛼𝛾 + 𝛽
2)1/2

2𝛼 ,
𝑢𝑢 = 1 − 𝑢𝑏𝑐/Θ1 − 𝑐 ,
𝛼 = 𝑐Θ [ 0.5 − 𝑐(1 − 𝑐)2

𝑐Θ + 1] ,
𝛽 = −2 𝑐Θ 0.5 − 𝑐

(1 − 𝑐)2 ,
𝛾 = 0.5 − 𝑐

(1 − 𝑐)2 − 0.5.

(A.3)

The dimensionless expressions for the scalar flux and pro-
longed stress component are as follows.

𝜌𝑢󸀠󸀠𝑐󸀠󸀠 = 𝜌𝑐 (1 − 𝑐) (𝑢𝑏 − 𝑢𝑢) , (A.4a)

𝜌𝑢󸀠󸀠𝑢󸀠󸀠 = 𝜌𝑐 (𝑢𝑏 − 𝑢𝑢)2 (A.4b)

Together with (A.3), (31a) and (31d) yield the exact result
without empirical parameters.Thedimensionless conditional
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Figure 3: Comparison of theoretical results for the dimensionless scalar flux and conditional mean velocities (solid curves) with Moss’s
experimental data [13] (the marks) for a fixed section of a turbulent Bunsen flame.

mean velocities, scalar flux, and stress can be represented
schematically by the following expressions:

𝑢𝑢 = 𝑓1 (𝑐, Θ) , (A.5a)

𝑢𝑏 = 𝑓2 (𝑐, Θ) , (A.5b)

𝜌𝑢󸀠󸀠𝑐󸀠󸀠 = 𝑓3 (𝑐, Θ) , (A.5c)

𝜌𝑢󸀠󸀠𝑢󸀠󸀠 = 𝑓4 (𝑐, Θ) . (A.5d)

Here 𝑓1, 𝑓2, 𝑓3, and 𝑓4 are functions that follow directly from
the previous equations.

We consider this analysis to be an initial theoretical study
of the conditional velocities, mean scalar flux, and stress,
performed in the context of the two-fluid approach.

This hydrodynamics analysis is approximate for the fol-
lowing reasons:

(i) We ignore the effects of turbulence within the
unburned and burned gases.

(ii) We assume a constant total pressure in the unburned
gas.

(iii) We assume that the pressure at each point in the flame
is the same.

In the main body of this paper, we consider unclosed
differential two-fluid conditional equations and proposed
models for the estimation of unknowns that can be used to
solve the problem without these assumptions.

A.2. Application of the Two-Fluid Theory to a Bunsen Flame.
Although (4)–(7a), (7b), (7c), (7d), and (7e) were formulated
for a one-dimensional steady-state flame, they are applicable
to a Bunsen flame, since the contribution of the flame brush
to the increase in the pressure drop across this turbulent
flame is small in comparison with the pressure drop across

the flame caused by thermal expansion. Figure 3 is taken
from our previous work [15] and shows a comparison of the
theoretical results for the dimensionless scalar flux (the left
plot) and conditional velocities (the right plot) with Moss’s
classical experimental data [13], obtained from a fixed section
of a Bunsen turbulent flame.

Good agreement between theory and experiment sup-
ports the conclusion that hydrodynamic effects dominate
in this experiment; i.e., the contribution of the gradient
turbulent diffusion can be ignored. The dashed curve in the
left-hand plot shows the upper estimate for the scalar flux that
gives (7a), using the assumption that the mean conditional
velocities across the flame are constant and equal to 𝑢𝑢 = 𝑈𝑡
and 𝑢𝑏 = Θ𝑈𝑡 (dashed lines in the right-hand plot).

These results show that the countergradient phenomenon
and the velocity fluctuations in turbulent flames, which are
unusually large for turbulent flows, are hydrodynamic in
nature. This means that the scalar flux and stress tensor
cannot be presented in gradient form; i.e., the terms “counter-
gradient (negative) turbulent diffusion” and “unusually large
turbulent velocity fluctuations” that are sometimes used for
premixed flames are misnomers.

B. Criterion for Distinguishing between the
Countergradient and Gradient Scalar Flux

In the general case, the mean conditional velocities 󳨀→𝑢 𝑢 and󳨀→𝑢 𝑏 are controlled by hydrodynamics and turbulence, i.e., the
type of the scalar flux (gradient, countergradient or neutral),
which is governed by the balance between hydrodynamic
and turbulent effects. These interactive hydrodynamics and
turbulent processes are accurately described in the context
of the two-fluid conditionally averaged differential equa-
tions. Here, we approximate the scalar flux as the sum of
the countergradient hydrodynamic contribution, which we
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describe in the context of the theory considered above, and
the contribution of the gradient turbulent diffusion, using the
turbulent diffusion coefficient𝐷𝑡:

𝜌𝑢󸀠󸀠𝑐󸀠󸀠 = (𝜌𝑢󸀠󸀠𝑐󸀠󸀠)
𝑝−𝑑

+ (𝜌𝑢󸀠󸀠𝑐󸀠󸀠)
𝑡.𝑑.

= 𝜌𝑢𝑈𝑡𝑓3 (𝑐, Θ) − 𝜌𝐷𝑡𝑑𝑐𝑑𝑥 . (B.1)

In order to explain the physical meaning of this assump-
tion, we note that in the case of constant density (𝜌𝑢󸀠󸀠𝑐󸀠󸀠 =𝜌𝑢󸀠𝑐󸀠 and 𝑐 = 𝑐) there is no pressure-driven mechanism, and
the scalar flux 𝜌𝑢󸀠𝑐󸀠 and difference of the conditional mean
velocitiesΔ𝑢 = (𝑢𝑏−𝑢𝑢) are controlled by turbulent diffusion
(Δ𝑢 = Δ𝑢𝑡.𝑑.):

𝜌𝑢󸀠𝑐󸀠 = 𝜌𝑐 (1 − 𝑐) (𝑢𝑏 − 𝑢𝑎) = −𝜌𝐷𝑡𝑑𝑐𝑑𝑥 󳨐⇒
Δ𝑢𝑡.𝑑. = −𝜌𝐷𝑡𝑑𝑐/𝑑𝑥[𝑐 (1 − 𝑐)] .

(B.2)

(B.1) means that we represent the difference in the
conditional mean velocities in the case of variable densityΔ𝑢 as a sum of the differences caused by the pressure-driven
effect Δ𝑢𝑝−𝑑 and turbulent diffusion Δ𝑢𝑡.𝑑..

In (B.1), we use elements of the two-fluid conditional
averaging and Favre averaging frameworks when repre-
senting a scalar flow as the sum of hydrodynamic and
turbulent contributions and their estimates. Equation (B.1)
is approximate, since it does not include the effect on the
flux 𝜌𝑢󸀠󸀠𝑐󸀠󸀠 of the interaction between hydrodynamic and
turbulent processes, which is automatically described by the
two-fluid conditionally averaged equations.

B.1. Formulation of the Transition Criterion. Eq. (8) allows us
to formulate original local and integral transition criteria:

𝐾𝑙𝑜𝑐 =
󵄨󵄨󵄨󵄨󵄨󵄨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑡.𝑑.󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜌𝑢𝑈𝑡𝑓3 (𝑐, Θ)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌 (𝑐)𝐷𝑡𝑑𝑐/𝑑𝑥󵄨󵄨󵄨󵄨 , (B.3a)

𝐾int =
󵄨󵄨󵄨󵄨󵄨󵄨⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑⟩󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑡.𝑑.⟩󵄨󵄨󵄨󵄨󵄨

= (14) 𝛽 [Θ − (2Θ − 1)1/2] (𝑈𝑡𝑢󸀠 )(𝛿𝑡𝐿 ) ,
(B.3b)

where ⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑⟩ and ⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑡.𝑑.⟩ are the characteristic
values (averaged over the flame section) for pressure-driven
hydrodynamic and turbulent diffusion contributions to the
scalar flux, and 𝛽 is a constant expected to be of order
unity. The local criterion (B.3a), which directly follows from
(B.1), shows that the scalar flux (𝜌𝑢󸀠󸀠𝑐󸀠󸀠) at points inside
the turbulent flame for which 𝐾𝑙𝑜𝑐 = 1, 𝐾𝑙𝑜𝑐 < 1,
and 𝐾𝑙𝑜𝑐 > 1 is neutral, gradient, and countergradient,
respectively. Analogously, the integral criterion (B.3b) shows
that the scalar flux (𝜌𝑢󸀠󸀠𝑐󸀠󸀠) in the sections of the turbulent

flame where 𝐾int = 1, 𝐾int < 1, and 𝐾int > 1 is neutral,
gradient, and countergradient on average, respectively. The
local criterion (B.3a) is uniquely defined in the context of the
simple theory considered above and its representation (B.1).
At the same time, different estimates of the characteristic
values of hydrodynamic and turbulent contributions may
appear in (B.3b).

The assumptions that we used to obtain the integral
criterion (B.3b) are as follows:

(i) We assumed that the characteristic value of the mean
flux ⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑⟩ corresponds to the flux described
by (A.4a) with 𝑐∘ = 0.5, 𝑐∘(1 − 𝑐∘) = 1/4, and 𝜌 =𝜌(𝑐∘), although for simplification, we estimated the
conditional velocities 𝑢𝑢 and 𝑢𝑏 using dimensionless
equations (A.2a) and (A.2b) with 𝑐 = 1 or 𝑐 = 1.This
results in the dimensionless velocities 𝑢𝑏 = Θ and𝑢𝑢 = [Θ−(2Θ−1)1/2], which somewhat overestimate
the difference in velocities described by (A.2a) and
(A.2b) (see Figure 3(b)).

(ii) The estimation of the dimension diffusion flux is⟨𝜌𝐷𝑡𝑑𝑐/𝑑𝑥⟩ ≈ 𝜌(𝑐∘)𝑢󸀠𝐿(1/𝛿𝑡).
Comparing our and analogous criterion of transition𝑁𝐵 = (𝜏𝑆𝐿)/(2𝛼𝑢󸀠) = 1 (where 𝜏 = (Θ − 1) and 𝛼 (in

our case, 𝛿𝐿/𝐿 󳨀→ 0) is a constant expected to be of order
unity) as proposed in [24], we notice that the latter was not
based on a comparison of the pressure-driven hydrodynamic
and turbulent contributions to the scalar flux. Hence, the
criterion 𝑁𝐵 contains the parameters of the turbulent flame𝑈𝑡 and 𝛿𝑡, which affect the hydrodynamics and turbulent
effects, respectively; it therefore cannot predict, for example,
the observed transition from the gradient scalar flux to the
countergradient flux along the Bunsen flame, where 𝑢󸀠 is
nearly constant.

B.2. Qualitative Application of the Criterion to One-
Dimensional and Bunsen Flames. Wefirst apply these criteria
to the one-dimensional steady-state flame where Θ >> 1.
The speed of the premixed flame with strong turbulence𝑢󸀠 >> 𝑆𝐿 does not depend on 𝑆𝐿 and is equal to 𝑈𝑡 ∼ 𝑢󸀠 in
accordance with the Damköhler qualitative estimation [25],
which was confirmed and clarified theoretically (𝑈𝑡 ≅ 𝑢󸀠) in
[22]. For the case of a typical stoichiometric mixture withΘ = 7 (𝑇𝑢 = 300𝐾 and 𝑇𝑏 = 2100𝐾), the integral criterion𝐾int (B.3b) shows that a transition takes place (assuming in
(B.3b) that 𝛽 = 1) in the section where 𝛿𝑡/𝐿 ≈ 1. We believe
that the width of this flame should be 𝛿𝑡/𝐿 ∼ (5− 10); i.e., the
scalar flux is integrally countergradient. At the same time,
in accordance with the local criterion (B.3a), the scalar flux
may be gradient in the vicinity of the front edge of the flame,
since the difference in the velocities 𝑢𝑢 and 𝑢𝑏 is small in this
vicinity, in accordance with the theory (see Figure 3(b)).

The turbulent Bunsen flame is characterized by an
increasing width and at the same time a constant angle incli-
nation to the mean flow, i.e., nearly constant speed 𝑈𝑡 along
the flame.This means that the gradient turbulent component|⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑡.𝑑.⟩| in the integral criterion (B.3b) is reduced
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Figure 4: Comparison of experimental [14] (LHS) and theoretically estimated [15] (RHS) scalar flux in the fixed section of the turbulent
Bunsen flame.

along the direction of the flame, while the hydrodynamic
component |⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑⟩| remains nearly constant. In the
case of a sufficiently large countergradient |⟨(𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑⟩|
(intensive combustion 𝑈𝑡 ∼ 𝑢󸀠 and a large ratio of the
densities 𝜌𝑢/𝜌𝑏 >> 1), there will be a transition from gradient
to countergradient scalar flux.

In [22], we obtained the formula 𝑈𝑡 ≈ (𝑢󸀠𝑆𝐿)1/2 for
the speed of the transient flame under conditions of strong
turbulence 𝑢󸀠 >> 𝑆𝐿 with increasing width and constant
speed; i.e., we must substitute 𝑈𝑡/𝑢󸀠 ∼ (𝑆𝐿/𝑢󸀠)1/2 in (B.3b).
The theoretical concept of this transient flame is based on the
assumption of statistical equilibrium of small-scale wrinkles
and at the same time disequilibrium of large-scale wrinkles in
the instantaneous turbulent flame at the intermediate asymp-
totic stage. We note that the theory for a one-dimensional
steady-state flame is applicable to the Bunsen flame, since the
effect of the increase in flame width on the pressure drop
across the flame is small. In a typical case with Θ = 7 and𝑢󸀠/𝑆𝐿 = 5, the transition takes place in the section where𝛿𝑡/𝐿 ≈ 3; i.e., the transition can take place because the flame
width can reach substantially larger values.

C. Gradient and Countergradient Scalar Flux
in Bunsen and Impinging Flames

Previous experimental studies of the scalar flux in the Bunsen
flame usually report the results of cross-section measure-
ments, which are used in Figure 3, for example, where the
scalar flux measured in [13] was countergradient. In [14],
Bilger et al. studied the Bunsen flame, where the scalar
flux in a fixed cross-section was countergradient, neutral,

or gradient depending on the turbulent parameters of the
flow and the mixture composition. In [15], we compared
these experimental data with our theoretical analysis of the
scalar flux in the Bunsen flame. We briefly present this
comparison for the reader’s convenience and also consider
the results of a study of the scalar flux in free-standing
impinging flames and those close to the wall. In both cases,
we use the representation (B.1), in which the estimation of the
hydrodynamic countergradient contribution is based on the
two-fluid one-dimensional theory.

We hope that these data provide an additional argument
in favor of the two-fluid conditional averaging framework
developed in later sections.

C.1. Scalar Flux Regimes in the Bunsen Flame. In Figure 4
taken from our paper [15] the left plot represent in the
coordinates 𝜌𝑢󸀠󸀠𝑐󸀠󸀠 = 𝑓(𝑐) the experimental data for the
scalar flux in the fixed cross-section of the Bunsen flame
obtained in [14], and in the right plot the results of our
estimations. The velocity fluctuations 𝑢󸀠 and ratios 𝑢󸀠/𝑆𝐿
corresponding to different marks in the Figure 4 are as
follows: 𝑢󸀠 = 0.85𝑚/𝑠 and 𝑢󸀠/𝑆𝐿 = 3.6 (rhombs); 𝑢󸀠 =0.53𝑚/𝑠 and 𝑢󸀠/𝑆𝐿 = 3.1 (squares); 𝑢󸀠 = 0.83𝑚/𝑠 and 𝑢󸀠/𝑆𝐿 =4.9 (circles); 𝑢󸀠 = 0.79𝑚/𝑠 and 𝑢󸀠/𝑆𝐿 = 8.8 (triangles).

In regimes with similar values of the velocity fluctuations
in the flow (𝑢󸀠 = 0.79𝑚/𝑠, 𝑢󸀠 = 0.83𝑚/𝑠, and 𝑢󸀠 = 0.85𝑚/𝑠),
the contributions of the gradient turbulent diffusion to the
scalar flux were similar to each other, while the contributions
of the countergradient hydrodynamic effect were different.
The latter increased with the values of the laminar flame
speed with variations in the mixture composition as follows:𝑆𝐿 = 0.09𝑚/𝑠 (𝑢󸀠 = 0.79𝑚/𝑠, 𝑢󸀠/𝑆𝐿 = 8.8); 𝑆𝐿 = 0.17𝑚/𝑠
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Figure 5: Configurations and profiles of the parameters of the flame close to the wall (upper plots) and the free-standing flame (lower
plots).

(𝑢󸀠 = 0.83𝑚/𝑠, 𝑢󸀠/𝑆𝐿 = 4.9); and 𝑆𝐿 = 0.24𝑚/𝑠 (𝑢󸀠 =0.85𝑚/𝑠, 𝑢󸀠/𝑆𝐿 = 3.6). The hydrodynamic effect is smaller
for the mixture with a smaller laminar flame speed 𝑆𝐿, due
to the lower turbulent speed 𝑈𝑡 and ratio Θ = 𝜌𝑢/𝜌𝑏, and
hence the smaller pressure drops across the turbulent flameΔ𝑝 = 𝜌𝑢𝑈2

𝑡 (Θ − 1), and vice versa. When 𝑆𝐿 = 0.09𝑚/𝑠,
the turbulent diffusion component dominated, and the scalar
flux had a gradient direction; when 𝑆𝐿 = 0.24𝑚/𝑠, the
hydrodynamic component dominated, and the scalar fluxhad
a countergradient direction. For an intermediate value of the
speed, 𝑆𝐿 = 0.17𝑚/𝑠, the contributions of the hydrodynamics
and turbulence effects were comparable, resulting in near-
neutral scalar flux. In the fourth regime shown in Figure 4,
the velocity fluctuations were smaller (𝑢󸀠 = 0.53𝑚/𝑠), but
the laminar flame speed had the same intermediate value𝑆𝐿 = 0.17𝑚/𝑠 (𝑢󸀠/𝑆𝐿 = 3.1). Hence, both contributions were
smaller (the turbulent effect was smaller due to a smaller
value of 𝑢󸀠, while the hydrodynamic effect was smaller due to
a smaller value of𝑈𝑡, caused by smaller value of the speed 𝑢󸀠),
resulting in the near-neutral scalar flux in the experiments
and calculations shown in Figure 4.

C.2. Scalar Flux in Close-to-Wall and Free-Standing Imping-
ing Flames. Figure 5 (a reproduction of Figure 31 in [19])
illustrates the potential of the two-fluid approach in the
theoretically grounded modeling of the scalar flux in the
impinging flame. This figure shows the results of numerical
simulations of the two 2D flames in the channel (close
to the obstacle and free-standing impinging flames). The
simulations were performed by Valirio Battaglia using the
commercial code “Fluent” based on the TFC combustion
model [17] (see [26] for more details).

The flow and turbulence parameters in both cases were
the same (𝑈 = 30𝑚/𝑠, 𝑢󸀠 = 8𝑚/𝑠, 𝐿 = 0.54𝑐𝑚, 𝑝 =1𝑎𝑡𝑚, 𝑇 = 300𝐾, 𝜌𝑢/𝜌𝑏 = 7), although the combustible
mixtures were different. Close-to-obstacle and free-standing
flames had laminar flame speeds 𝑆𝐿 = 0.4𝑐𝑚/𝑠 and 2𝑐𝑚/𝑠,
respectively.

The left-hand images show the geometry of the channel
and obstacle (a 2Dplate), and the isosurfaces 𝑐 = 𝑐𝑜𝑛𝑠𝑡, which
show the configuration of the flames. The central pictures
show the dimensionlessmean pressure (𝑝−𝑝0)/𝑝 (solid line),
mean velocity 𝑈/𝑈0 (dotted line), and the progress variable
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𝑐 (dashed-dotted line) along the central axis. The left-hand
image shows the dimensionless scalar fluxes, which in our
notation are the countergradient pressure-driven contribu-
tion (𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑝−𝑑/𝜌𝑢𝑈0 (solid line), the gradient turbulent dif-
fusion contribution (𝜌𝑢󸀠󸀠𝑐󸀠󸀠)𝑡.𝑑./𝜌𝑢𝑈0 or (−𝜌𝑢𝐷𝑡𝜕𝑐/𝜕𝑥)/𝜌𝑢𝑈0
(dotted line), and the summary scalar flux (𝜌𝑢󸀠󸀠𝑐󸀠󸀠)/𝜌𝑢𝑈0
(bold solid line). It can be seen that the direction of the scalar
flux in the flame close to the obstacle corresponds to gradient
diffusion, while the scalar flux in the free-standing flame is
countergradient except for the zone adjacent to the leading
edge of the flame. In [26], we discussed the reason for the
domination of turbulent diffusion in the head of the flame.

From a theoretical viewpoint, these results are reasonable
since they correlatewith the profile of the pressure, in contrast
to the results for the close-to-the-wall and free-standing
impinging flames mentioned in Section 3.1 and obtained in
[4] in the context of the Favre averaging framework.

Our approximate approach using (9a) and (9b) for the
estimation of the scalar flux in the impinging flame was
validated in [27] against known experimental data for two
impinging flames situated at different distances from the wall
[28]. In both flames, the experimental and calculated scalar
fluxes were countergradient, but in the flame that was closer
to the wall, the level of the scalar flux was lower due to the
smaller pressure drop against the flame (Figure 3 in [27]).

D. Summary of Appendix

The results of the preliminary investigation of the two-fluid
approach considered in this appendix were based on an
approximate representation of the scalar flow in the form of
a sum of hydrodynamic and turbulent contributions and can
help us to better understand the potentialities of the two-fluid
approach and the problems arising from this, which facilitates
a deeper study of this issue. Taking into account the basic
advantages of the two-fluid approach demonstrated above
and bearing in mind the well-documented fact that, in many
practical cases, instantaneous combustion occurs in highly
curved, thin layers, we believe that the two-fluid conditional
averaging framework shows significant promise formodeling
applications. In particular, it seems reasonable to reformulate
the TFC combustion model, which is represented in the
commercial packages Fluent and CFX, in the context of the
two-fluid conditional averaging paradigm.

Nomenclature

BML: Bray-Moss-Libby𝑐: Progress variable𝐷𝑎 = 𝜏𝑡/𝜏𝑐ℎ: Damköhler number𝐾𝑎 = (𝛿𝐿/𝜂)2: Karlovitz number𝑘̃, 𝑘𝑢, 𝑘𝑏: Favre- and conditionally averaged
turbulent kinetic energy𝐿: Integral scale of turbulence󳨀→𝑛 : Unit normal vector to instantaneous
flame𝑝(𝑐): PDF of progress variable

PDF: Probability density function

𝑃𝑢, 𝑃𝑏: Probabilities of unburned and
burned gases𝑝𝑢, 𝑝𝑏: Conditional mean pressures in
unburned and burned gases

Re𝑡 = 𝑢󸀠𝐿/]: Turbulent Reynolds number𝑆𝐿: Speed of laminar flame𝑢󸀠 = (𝑢󸀠2)1/2: Root-mean-square velocity
fluctuation󳨀→𝑢 𝑠𝑢, 𝑢𝑠𝑏: Surface-averaged speeds at the edges
of an instantaneous flame󳨀→𝑢 𝑢, 𝑢𝑏: Conditional mean speeds of
unburned and burned gases𝑈𝑓: Thickened flamelet propagation
speed𝑈𝑡: Turbulent premixed flame
propagation speed.

Greek Symbols

𝛿𝑓: Width of thickened flamelet𝛿𝐿: Width of laminar flame𝛿𝑡: Width of turbulent flame𝜀; 𝜀𝑢, 𝜀𝑏: Favre- and conditionally averaged
dissipation rates𝜂 = 𝐿Re−3/4𝑡 : Kolmogorov microscaleΘ = 𝜌𝑢/𝜌𝑏: Ratio of densities of unburned and
burned gases

]: Kinematic viscosity coefficient𝜌: Density𝜌𝑢, 𝜌𝑏: Density of unburned and burned
gases

𝜌󳨀→𝑢 󸀠󸀠𝑐󸀠󸀠: Mean scalar flux

𝜌󳨀→𝑢 󸀠󸀠󳨀→𝑢 󸀠󸀠: Mean stress tensor𝜌𝑊: Mean chemical sourceΣ𝑓: Flame surface density𝜏𝑐ℎ = 𝜒/𝑆2𝐿: Chemical combustion time𝜏𝑖𝑗,𝑢, 𝜏𝑖𝑗,𝑏: Conditional Reynolds stresses𝜏𝑡 = 𝐿/𝑢󸀠: Turbulent time𝜒: Molecular heat transfer coefficient.
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