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Biacetyl phosphorescence has been the commonly used molecular tagging velocimetry (MTV) technique to investigate in-cylinder
flow evolution and cycle-to-cycle variations in an optical engine. As the phosphorescence of biacetyl tracer deteriorates in the
presence of oxygen, nitrogenwas adopted as theworkingmedium in the past. Recently, nitrous oxideMTV techniquewas employed
tomeasure the velocity profile of an air jet.The authors here plan to investigate the potential application of this technique for engine
flow studies. A possible experimental setup for this task indicated different permutations of image signal-to-noise ratio (SNR) and
laser line width. In the current work, a numerical analysis is performed to study the effect of these two factors on displacement
error in MTV image processing. Also, several image filtering techniques were evaluated and the performance of selected filters
was analyzed in terms of enhancing the image quality and minimizing displacement errors. The flow displacement error without
image preprocessing was observed to be inversely proportional to SNR and directly proportional to laser line width.Themean filter
resulted in the smallest errors for line widths smaller than 9 pixels. The effect of filter size on subpixel accuracy showed that error
levels increased as the filter size increased.

1. Introduction

Flow field inside the engine cylinder is one of the most
important factors controlling the fuel combustion process
and hence engine performance [1, 2]. This realization arises
in the automotive engine community after attaining relatively
significant knowledge on in-cylinder flows and their cycle-
to-cycle variations in the past few decades, while noticing
the occasional dominance of the high-speed fuel spray in
preparation of combustible air-fuel mixture [3–5]. Flow
measurement techniques such as laser Doppler velocimetry
(LDV [6–9]), particle image velocimetry (PIV [10–15]), and
molecular tagging velocity (MTV [16]) continue to play a
crucial role in understanding in-cylinder flows of an automo-
tive engine. Effective quantitative details such as in-cylinder
flow velocity, velocity root-mean-square (rms), circulation,
and turbulent length and time scales are being made possible
from such advanced measurement techniques. Magnetic

resonance imaging is yet another technique, majorly used in
medical field, which has been recently employed for engine
flow studies in the form of magnetic resonance velocimetry
(MRV) [17–19]. A major advantage of MRV is that optical
access is not needed for data acquisition, allowing it to be used
for flow imaging in highly complex geometries. Molecular
tagging velocimetry offers multipoint, planar measurements
demanded for engine flow studies, overcoming the single-
pointmeasurement issues of LDV and hot-wire anemometry.
The number of particle images per interrogation region or
the particle image density is an important parameter that
affects the PIV measurement uncertainty [20, 21]. Particle
image density sometimes increases as the chamber volume
decreases during piston compression. This would heighten
the probabilities of increase in particle size and correlation
peak uncertainty; the particle size increases due to agglomer-
ation and/or thermal expansion due to higher temperatures
[12]. Having mentioned these uncertainties, there are several
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PIV-based works that captured the velocity field throughout
the engine cycle [22, 23]. Nevertheless, MTV is relaxed from
maintaining such desired levels of particle image density as
seen for PIV within the temporally varying cylinder volume
due to piston motion. Another point to note is occasionally
in PIV; the particles cannot follow the flow when the flow
motion undergoes high spatial and temporal acceleration
[24]. Fulfilling the Stokes number condition 𝑆𝑘 < 0.1 [16]
could be an option for verifying the flow-following capability.
However, a study showed that the particles tracked the
flow properly even when the 𝑆𝑘 value was greater than 0.1
and only failed to follow for measurements in the Taylor
length scale [25]. A brief overview with several applications
of MTV for engine flow studies is given in [26]. MTV
is a flow measurement technique that is based on one
of the two luminescence principles: phosphorescence and
fluorescence. In the phosphorescence technique, a pulsed
laser marks a pattern on excitation of the phosphorescent
molecules (premixed or inherent) in the flow. The long-
lived phosphorescence of these tracers is captured at two
instants of time (undelayed, time zero; delayed, time Δ𝑡). In
the fluorescence technique, a “write” laser photodissociates
the seeded or inherent molecule in the flowing medium.The
new photoproduct is excited with another “read” laser and
the corresponding fluorescence is captured at two instants of
time (undelayed and delayed). The Lagrangian displacement
vector evaluated within a known time span provides the flow
velocity. By using a collection of tagged lines instead of a
laser sheet, spatial resolution of MTV could be controlled to
some extent with the MTV grid spacing while taking into
account other factors such as the laser line width and optics
arrangement. Also, using laser lines reduces the amount of
wall reflections due to reduced number of photons per unit
area, impinged on the optical window or the liner.

Biacetyl has been demonstrated to be an elegant molec-
ular tracer for flow measurements mainly due to its longer
phosphorescence lifetime which allows measuring both high
and low speed flows. Epstein developed a new quantitative
flow visualization technique using biacetyl as the seeder
to measure the time resolved, three-dimensional flow in a
transonic compressor rotor [27]. Hiller et al. [28] demon-
strated the applicability of biacetyl as a molecular tracer
for laser-marking method for velocity measurements in gas
flows. Biacetyl phosphorescence MTV was used for several
in-cylinder swirl and tumble flow studies in an optical
engine. Phosphorescence MTV with biacetyl tracer suffers
from quenching due to O2. Hence the engine flow studies
using biacetyl phosphorescence adopted N2 as the working
medium, assuming that it represents the air motion. Such an
assumption is worthwhile, and this technique offered planar
and three-dimensional whole field detection of in-cylinder
flows and their cycle-to-cycle variations usingmolecule as the
seed [29–31]. Nevertheless, an analysis of in-cylinder flows
using air as the working fluid would be more convenient
than using nitrogen based system, especially at low manifold
pressures. Nitric oxide (NO) tagging velocimetry has been
in use for measuring high-speed air flows without exhibiting
any major quenching effects [32, 33]. This MTV technique
is a fluorescence-based type wherein a seed molecule is

photodissociated to create NO line(s). On identifying the
usage of toxic gases as the conventional seed molecules for
NOMTV, Elbaz and Pitz [34] employed nitrous oxide (N2O)
as the seed to create N2O-to-NO tag lines. Nitrous oxide,
also called “laughing gas,” is nontoxic and sometimes used
as an aerosol agent in foods. Based on the photodissociation
chemistry of N2O, both the initial amount of N2O seeded
and the fraction which is dissociated to NOwould determine
the signal-to-noise ratios (SNRs) of the resulting grid images.
The laser energy density (J/cm2) as required to achieve
desired levels ofN2Odissociation demandsmaximumenergy
utilization, starting from the laser output. Furthermore,
maintaining a uniform energy density for multiple beams to
construct a sufficiently denseMTV grid would determine the
thickness of the laser lines. For instance, an excitation beamof
5mJ and 0.47mm nominal diameter was used to obtain 25%
dissociation of N2O in 4% N2O-air mixture [34]. The same
energy density (∼3 J/cm2) could be achieved with a beam of
2.3mJ and 1mm nominal diameter assuming all the other
parameters to be constant.

Spatial correlation technique [35] has been the standard
method employed to correlate undelayed and delayed MTV
images of in-cylinder flows and thereby determine the corre-
sponding Lagrangian displacement vector. Instead of a direct
cross correlation coefficient 𝐼1 ⋅ 𝐼2 as used for PIV image
processing [36], a normalized direct cross correlation or the
spatial correlation coefficient is used for MTV images and is
written as

𝑅 = 𝐼1 ⋅ 𝐼2 − 𝐼1 ⋅ 𝐼2
𝜎𝐼
1

𝜎𝐼
2

, (1)

where the overbar is for expected value, 𝐼 is the intensity
field, and 𝜎 is the standard deviation. Subscripts 1 and 2
represent source window (on undelayed image) and roam
window (on delayed image) forMTV and interrogation spots
at two recording times for PIV.

An illustration of this data processingmethod is included
later in this work. The spatial correlation function is discrete
and the flow displacement is computed with single pixel
resolution. Hence, a fitting polynomial is used for correlation
values in the vicinity of its peak to attain subpixel accurate
displacements. Accuracy of MTV measurements for engine
flow studies was previously reported to bewithin 0.1 pixels, (i)
using spatial correlation technique in a steady flow rig model
[37] and (ii) using spatial correlation in combination with a
decoupled technique [38] for in-plane velocity component of
stereoscopic measurements [31].

Having realized the potential application of N2O MTV
for in-cylinder air flow studies, the authors here investigated
the effect of image SNR and laser line width (LW) on
the subpixel accuracy of flow displacements. Several image
filtering techniques are evaluated, and the performance of
selected filters is analyzed in terms of error reduction. The
current study builds on the work of [35, 39]. Effect of factors
such as image SNR, contrast enhancement, laser line width,
and source window size (related to MTV’s spatial correlation
technique) on subpixel accuracy was studied in [35]. Effect
of image preprocessing on displacement error reduction was
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Figure 1: (a) Simulated undelayed image having an 8 × 13MTV grid and (b) zoomed-in view of the highlighted region in (a).

analyzed using image filters in [39]. Caso and Bohl [39]
utilized multiple filter techniques for image preprocessing;
however, the results of onlymean and sigma (modifiedmean)
filters were presented. The current work reproduces some of
the results obtained in the above two works while discussing
in more detail the performance of various image filters in
enhancing the image quality andMTVerror reduction.These
discussions will be corroborated with visual demonstrations
and graphical results. Although the prime motive is to assess
the requirements to develop an N2O MTV measurement
system for engine flow studies, this analysis work is applicable
to any 2D-MTV(grid pattern) technique in general. Synthetic
images were generated to perform these studies, and the
details of the generation process are discussed in the next
section.

2. Methods: Synthetic Image Generation and
Image Filtering Techniques

MTV technique requires that a pair of images (undelayed
image at the initial time, 𝑡1 = 𝑡, and delayed image at the
later time, 𝑡2 = 𝑡 + Δ𝑡) be acquired during the luminescence
lifetime of the molecular tracer. The first (or undelayed)
image, representing a region of tagged flow, was simulated
by laying down an 8 × 13 grid of Gaussian profile “laser
lines” as shown in Figure 1. It should be noted that the
excimer laser outputs a rectangular beam having a top-hat
intensity profile along one axis and a Gaussian profile along
the other. Depending on the axis chosen for reducing the
beam into a sheet, the laser lines can be considered to be
of Gaussian profile. In addition, it was observed previously
that the errormagnitude was higher for Gaussian profile than
for non-Gaussian profile [35]. Hence, Gaussian profile laser
lines are implemented for the current study to investigate
the performance of image filters under limited experimental
optimizations.These lines were characterized by𝑤 (note that,
in the present work, line width corresponds to 2𝑤 + 1 pixels)
their peak intensity, 𝐼max, and the location of the line center,
𝑑, via

𝐼 = 𝐼maxexp
−𝑑
2
/𝑤
2 . (2)

In the present work, 𝐼max was fixed at 80 counts and a
uniform background intensity of 30 counts was added to
the image to simulate nonzero black levels typically seen in
intensified CCD cameras.This led to a maximum intensity of
190 countswhere the lines intersected.The second (or delayed
image), representing the tagged region at the later time, was
generated by displacing the laser lines of the original image
by a known displacement vector. This simulation strategy
was used in prior studies; see, for example, [35, 39]. In this
work, Gaussian white noise was added to both undelayed
and delayed simulated images, and then the pixel intensities
were scaled to achieve the desired contrast. Caso and Bohl
[39] also added the same level of noise to both undelayed
and delayed simulated images for a more accurate reflection
of real-world conditions. As demonstrated using Figures 1(a)
and 1(b), the magnified view of a chosen section of the whole
image showed more clearly the details of signal and noise
distributions. Hence, hereafter this magnified region of the
original images is considered in discussion.

Signal-to-noise ratio is one of the crucial image features
that determine the accuracy of flow parameters in techniques
such as particle image velocimetry and molecular tagging
velocimetry. As the name indicates, optical SNR can be
described as the ratio of photon signal to the noise present
around this signal. One of the ways to determine the image
SNR is by using a reference image [40]. In the absence of
a reference image, determining SNR becomes more chal-
lenging and uncertain due to unavailability of a source for
comparison.This situation is more applicable in MTV or any
other experimental techniques. In such cases, considering
a local neighborhood of a pixel would be the preferred
way of detecting probable presence of noise and thereby
evaluating SNR value. The neighborhood of a pixel can be
sampled in several ways, among which the 4-connected and
8-connected neighborhood are most commonly used [41].
In the 4-connected neighborhood, the signal and noise are
considered at 4 pixels that are adjacent to the edges of a central
pixel (Figure 2(a)). Additionally, diagonal pixels are included
in the 8-connected neighborhood (Figure 2(b)).

The pixel-wise SNR values were determined at the central
pixels of the 8-connected neighborhood window and in the
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Figure 2: Pixels highlighted in (a) 4-connected neighborhood and (b) 8-connected neighborhood around a chosen central pixel.

end were averaged to obtain the pixel-mean SNR of the whole
image. The default definition used here for SNR was

SNR = mean [𝐴𝑃×𝑄]
standard deviation [𝐴𝑃×𝑄]

, (3)

where 𝐴𝑃×𝑄 is the pixel intensity matrix of size 𝑃 × 𝑄.
The SNR of an image in general can be enhanced using

different image filtering techniques. These techniques make
use of either spatial filters, for example, mean,median, sigma,
and Wiener filters, or frequency filters, for example, ideal
pass, Gaussian, and Butterworth filters [42, 43]. Selected
filters were applied to the simulated images and their effec-
tiveness in enhancing the image SNR was evaluated.

2.1. Spatial Filters. A spatial filter replaces the value at a given
pixel with an operand value (mean, median, threshold-based
sigma, etc.) of all pixels within a selected neighborhood.
Several types of mean filters such as arithmetic mean,
contraharmonic mean, and alpha-trimmed mean filters were
tested on the simulated images (not shown here). It was
observed that the arithmetic mean filter was more effective
in noise removal in the current images compared to the
other two. Hence, the arithmetic mean was chosen to analyze
the performance of the mean filter. Figures 3(a)–3(d) show
the original image and the preprocessed images obtained by
applying various spatial filters.The corresponding SNRvalues
evaluated from (3) were noted above these images. As seen in
themean-filtered image (Figure 3(b)), a significant amount of
noise was removed from the highly noisy image (Figure 3(a)).
However, the averaging of signal intensities resulted in a
relatively darker or low intensity grid; grid nodes in themean-
filtered image are notably dimmer than in the original image.
The filtered image SNR value increased which could suggest
that the mean filter was effective in noise removal.

In general, median filters are known for removing the
impulse noise or “salt-and-pepper” noise. This is apparent
when Figure 3(c) is compared with Figures 3(a) and 3(b).
The median filter remarkably removed the noise present in
the line-to-line gap (or void region), black/clean regions
compared to spotted regions in Figure 3(a) and shaded

regions in Figure 3(b). Another advantage of median filter
over mean filter is that the former prevents or minimizes
significantly the smoothening of the actual signal intensities
especially as apparent here at the grid nodes. However, the
laser lines in the median-filtered image were nonuniform,
with additional intensities randomly appended. This latter
feature of random intensity addition can be attributed to the
original noise andmight have been detected by theMATLAB
code as signal intensity, thereby resulting in a higher SNR
value. Similar to the median filter, the Wiener filter could
remove noise in the void regions (in Figure 3(d)). However,
the noise overlaid on the actual lines was not removed
completely and is visually apparent; see Figure 3(d). The
higher SNR of the Wiener-filtered image might be again
due to the falsification of noise as signal intensity. These
visual observations will be revisited in Section 4.2 to assess
quantitatively the performance of these filters in reducing the
measured displacement errors.

2.2. Frequency Filters. While spatial filtering techniques are
applied in the spatial domain, frequency filtering techniques
are applied to the image of interest in the frequency domain.
The idea here is to process the raw images by analyzing
the gradient of intensities, that is, the rate of change of
a chosen intensity level in the frequency domain. This is
attained using the convolution theorem, which states that
the Fourier transform of the product of two functions in the
spatial domain is the convolution of the transforms of the two
functions in the frequency domain. In general, noise signals
have peak frequency values due to sharp intensity transitions
and hence a low-pass filter is preferred for noise removal [42].
Commonly used low-pass frequency filters are the ideal pass
filter, Gaussian filter, and Butterworth filter. For the current
study, the Gaussian filter was considered due to the well-
known “ringing” effect of ideal pass filter and itself acting as
a special case of Butterworth filter. Given that the simulated
images were generated by adding a Gaussian white noise, the
performance of the Gaussian filter in error reduction could
be considered as a reference to assess the performance of
other filters. Figure 4 shows the performance of the Gaussian
filter with a cut-off frequency of 50Hz on the highly noisy
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SNR = 2.1
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SNR = 3.9

(d)

Figure 3: (a) Original, (b) mean-filtered, (c) median-filtered, and (d) Wiener-filtered image. Here LW = 9 pixels.

SNR = 1.5

(a)

SNR = 4.7

(b)

SNR = 1.9

(c)

Figure 4: (a) Original image, (b) filtered image after applying the Gaussian filter, and (c) mean-filtered image. Here LW = 9 pixels.

image. As expected, the filtered image (Figure 4(b)) contained
minimal noise levels both at the void regions and along
the MTV lines. Also, the intensities at the grid nodes and
along the lines are brighter with the Gaussian filter when
compared to those in the mean-filtered image (included
in Figure 4(c) for ease in comparison). With the Gaussian
Fourier transform, a threefold increase in image SNR value
was noted compared to the original image.

3. MTV Data Processing

As discussed earlier, analyzing the effect of image SNR and
laser line width on MTV subpixel accuracy is crucial when
employing N2OMTV for in-cylinder flow studies. TheMTV
grid displacements have been attained at subpixel accuracy
level using a combination of spatial correlation techniques
and polynomial fitting [38]. As seen in Figure 5, there is
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(a) (b)

Figure 5: (a) and (b): undelayed and delayed MTV images, showing source (solid squares) and roam (dashed square) windows. Adapted
from [35].

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
R1 37 46 62 86 108 122 140 146 139 128 108 85 72 45 32
R2 49 59 77 100 115 140 149 158 155 136 123 94 75 58 49
R3 61 77 92 114 133 155 168 180 168 157 137 113 92 74 67
R4 86 98 119 138 156 177 190 195 193 175 152 131 110 95 86
R5 106 118 133 154 179 195 214 218 213 198 181 152 134 113 109
R6 124 146 155 179 196 218 234 241 228 223 205 173 154 140 126
R7 138 152 169 188 212 227 244 250 241 231 206 190 170 152 143
R8 150 158 175 188 215 237 249 255 250 235 217 195 175 155 141
R9 140 151 176 189 211 230 245 244 247 228 208 186 177 151 141
R10 126 135 158 179 197 215 230 240 237 216 197 176 155 140 125
R11 107 125 137 155 177 196 207 220 213 201 177 157 135 119 109
R12 87 100 117 134 158 176 190 195 193 177 153 133 114 94 85
R13 68 76 91 116 136 156 171 171 167 149 131 114 91 81 65
R14 49 64 80 96 120 135 153 161 153 136 118 100 76 58 44
R15 38 47 65 88 106 124 141 145 143 126 103 85 68 50 38

Undelayed image

(a)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
R1 9 16 26 36 51 77 96 107 127 130 124 115 94 69 57
R2 16 22 33 43 54 77 97 119 133 138 134 121 101 76 56
R3 21 27 38 47 64 89 107 126 137 149 143 127 106 85 63
R4 37 36 48 62 76 98 121 137 153 156 150 136 118 96 79
R5 54 63 63 75 95 114 137 155 170 177 170 156 135 114 96
R6 72 72 90 93 115 135 153 177 186 199 187 175 160 136 116
R7 95 103 111 122 139 155 183 194 213 215 211 199 175 155 134
R8 111 114 126 139 155 175 199 215 235 238 231 218 195 175 155
R9 129 135 138 155 169 192 208 233 243 251 247 230 213 190 167
R10 132 137 144 161 174 191 216 238 249 250 248 236 213 194 172
R11 132 129 142 152 168 192 209 233 248 251 240 229 211 187 170
R12 116 119 126 133 156 178 195 219 230 235 233 220 203 178 158
R13 91 95 109 117 140 155 179 198 207 218 209 194 179 156 135
R14 74 76 88 100 115 133 158 178 186 194 186 176 156 135 117
R15 52 60 64 77 92 113 132 153 168 176 170 157 136 112 90

Delayed image

(b)

Figure 6: Illustration of spatial correlation technique: (a) a 7 × 7 source window with center at (R8, C8) on the undelayed image and (b)
highlighted window on the delayed image whose intensities correlate best with those of source window. Thus the tagged region is displaced
two pixels in𝑋 and 𝑌 direction with the center at (R10, C10); correlation coefficient peak 𝑅max = 0.9984.

an undelayed image (a) taken immediately (O∼ns) after the
photon impingement by laser and the delayed image (b) taken
after allowing the flow tomove (O∼𝜇s).The small solid square
is the source window, covering only one grid node in the
undelayed image. The principle is to obtain the displacement
at each grid node, thereby resulting in a global Lagrangian
displacement vector. As seen clearly from this figure, the
grid node covered by the source window on the undelayed
image is displaced, due to flowmotion, to a new location (see
smaller solid square on the delayed image on the right). Also,
there is a larger dashed square, called roam window, marked
surrounding the solid square on the delayed image.This roam
window is concentric to the source window’s center located
on the undelayed image. To show such concentricity, a dotted
square is introduced in Figure 5(a); in actual processing, there
is no dotted square window applied on the undelayed image.

A spatial correlation coefficient, 𝑅(𝑟, 𝑠), is determined
between the intensity field 𝐼1 of the source window and 𝐼2
of the roam window as a function of pixel displacement
(𝑟, 𝑠) between them. From the obtained array of 𝑅(𝑟, 𝑠), the
maximum value represents the location of the displaced

source window and, hence, the grid node. Figures 6(a) and
6(b) show sample pixel intensities of a section of undelayed
and delayed MTV images. A 7 × 7 source window, as
highlighted in Figure 6(a), has its center at row R8 and
column C8 with pixel intensity of 255 (grayscale maximum
value).This pixel represents the intersection of two laser lines
or in other words the central pixel of an MTV grid node. On
correlating the intensity field of source window and a roam
window (size of 15×15 in this case) on the delayed image, the
window highlighted in Figure 6(b) is determined to correlate
well (𝑅max = 0.9984). Hence for this example, the tagged flow
moved two pixels in both X and Y directions as indicated by
the new window centered at (R10, C10).

From the illustration above, it is expected that the source
window should contain sufficient intensity gradients in order
to attain more accurate correlations. Such a displacement
obtained is of pixel accuracy. In order to obtain the desired
subpixel accuracy, the spatial correlation technique includes a
higher-order polynomial fitting about the correlation peak of
the𝑅matrix. For each simulated case in the present work, one
undelayed image (total 104 grid nodes formed by 8 horizontal
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and 13 vertical laser lines) and five delayed images were
considered. This provided in total 1040 grid displacements
in the 𝑋 and 𝑌 directions for each case. A source window
of 27 × 27 was chosen for evaluating the synthetic image
displacements. The rms error of displacement was defined as
follows:

rms error = [stdev (Disp𝑋) + stdev (Disp𝑌)]
2 , (4)

where Disp𝑋 and Disp𝑌 are the MTV grid node displace-
ments in the𝑋 and𝑌directions obtained from the correlation
technique and stdev is the standard deviation. In addition, the
statistical error quoted as the 95% error level or confidence
level of displacement [39],

95% Error level

= √(Disp𝑋 meas − Disp𝑋 actual)2 + (Disp𝑌 meas − Disp𝑌 actual)2,
(5)

was used for the current analysis. Here subscripts “meas”
and “actual” represent the values obtained from spatial cor-
relations and the original values used to create the synthetic
images.

4. Results and Discussion

4.1. Effects of SNR and Line Width on Subpixel Accuracy
without Filtering. Figure 7 shows the sample of original
undelayed images (partial grid taken from the whole 8 × 13
grid) for various SNR values with a laser line width of 11
pixels. Image SNRs showed values from 2.5 to 1.2 for 𝑎 to 𝑖
without filtering. As will be discussed later, the SNR values
changed when the images were preprocessed using various
filters. Hence, for suitable comparisons and a consistency in
the discussion, the SNR values are designated alphabetically
while the numerical values are mentioned wherever appro-
priate. The SNR values for biacetyl MTV images captured
in previous engine flow studies usually ranged from 7 to 15
(values based on (3)), with a laser line width of about 11
pixels. Simulating the image noise is complex due to various
sources of noise seen in the actual experimental images such
as shot, dark current, hot pixel, and readout noises [44].
Also, the fluorescence yield of the nitric oxide molecules as
seen in N2OMTV depends on several factors. Some of these
factors are the read laser energy, in-cylinder air pressure and
temperature, and the NO number density. Considering all
the aforementioned signal and noise uncertainties possible
with N2OMTV, the current work investigates the worst case
scenario by simulating images with much lower SNRs than
those seen with experimental biacetyl MTV images. The
effect of SNR on rms displacement error (see (4) and without
filtering) is shown in Figure 8. Few spurious correlations as
detected for images with SNR ℎ and 𝑖 were removed from
the error calculations. The rms displacement error without
filtering rapidly decreased until the image SNR was greater
than 1.6, followed by a gradual decline as the image SNR was
increased further.

To analyze the effect of line width on displacement
accuracy, synthetic images were generated with different LWs

(i.e., 3 to 15 pixels) for a given noise level. It should be noted
that, for the same level of noise, SNR value increased with
the increase in line width. For example, in the case of SNR f,
SNR value increased from 1.5 to 1.9 when the line width was
increased from 9 pixels to 11 pixels. Therefore, SNR values 𝐴,
𝐷, 𝐹, and 𝐻 in Figure 9 and in the rest of this work are the
averaged values of SNRs 𝑎, 𝑑, 𝑓, and ℎ, respectively, obtained
with all the LWs for a given noise level. In this way, the image
SNR h that included an LW of 11 pixels was shown to be 1.6
(Figure 7) and the image SNRH that represents the average of
all LWs from 3 to 15 pixels at this noise level was shown to be
1.4 (Figure 9). Figure 9(a) shows that the displacement error
increased as SNR decreased and also as the LW increased.
The latter observation of displacement error increasing with
LW is important in two ways. First, MTV accuracy depends
on the presence of sufficient intensity gradients in the source
window (recall the discussion on Figure 6). For a given source
window size (15 × 15 in Figure 9(a)), a wider tag line occupies
more pixels and increases the possibility of intensity flatness
across the window. Figure 9(b) shows the corresponding
error levels using a larger source window of 27 × 27 pixels2.
The maximum error values for a given image SNR using a
larger window reduced by more than half. Also, the slopes of
displacement error curves in Figure 9(a) became steeper with
LW as the amount of image noise present was higher. Second,
the dissociation of N2O-to-NO depends on the laser energy
density which can be increased by narrowing the laser line
width. The observations in Figures 9 and 12 could be useful
for designing the N2OMTV optical setup (laser line forming
optics) for engine air flow studies.

4.2. Effects of SNR and Line Width on Subpixel Accuracy
Using Different Filters. The performance of different filters,
discussed in Section 2, is investigated in reducing the dis-
placement error. The set of undelayed and delayed images
with an SNR value of 𝐹 (or 1.6) was used for this comparison
study. Figure 10 shows the MTV displacement error levels
with different filters of 5 × 5 window size and for the original
images, without filtering, for various line widths. It was
observed that when compared to the original images, the
mean and Gaussian filters enhanced subpixel accuracy levels
for all line widths, while the median filter enhanced the
accuracy levels for line widths greater than 9 pixels. It was
interesting to observe that theWiener filter performed similar
to or even better than the median filter in some cases (at
LW <9 pixels). However, the corresponding filtered image,
as in Figure 3(d), showed visually apparent noise levels. This
could be due to the presence of sufficient amounts of spatial
gradients of intensity field along two orthogonal directions,
which is advantageous when using the spatial correlation
technique. Overall, the mean filter resulted in the smallest
errors for smaller LWs, while the Gaussian filter was superior
at LWs greater than 9 pixels followed by the mean filter.
Hence, the mean filter is shown to be highly effective in
reducing image noise and thus MTV displacement error.

In addition, the mean filter enhanced the displacement
accuracies or reduced the rmsdisplacement error for different
SNR values from 𝑎 to 𝑖 (at a given LW). Figure 11 shows the
comparison plot of displacement error without filtering and
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SNR = i (or 1.2)SNR = ℎ (or 1.6)

SNR = g (or 1.8)SNR = e (or 2.0)

SNR = c (or 2.3)SNR = a (or 2.5)

Figure 7: Synthetic images of various SNR values with LW = 11 pixels.

withmean filter for various SNRs and a line width of 11 pixels.
Notice that although the SNR values obtained from image
filtering were higher than without filtering, a common 𝑥-
axis was considered for ease in comparison by choosing the
original image SNR values (without filtering). Also, spurious
correlations earlier observed with SNR ℎ and 𝑖 did not occur
with the filtered images. Nevertheless, these points were
removed while calculating the errors to be consistent while
comparing filtered and nonfiltered results. It was observed
that the effect of mean filter in reducing the 95% error level
was more apparent for highly noisy images than for less noisy
images. However, the least noisy image or the image with
highest SNR value considered in this work showed higher

displacement error with filtering than without filtering. This
can be noted as the limiting case of the mean filter. The mean
filter stretches the signal levels, thereby attenuating signal
peak intensities (at nodes), while the task of filtering noise is
minimal due to lack of significant noise in the original image.

Figure 12 shows the error levels after employing a 5 × 5
mean filter on the undelayed and delayed images. The corre-
sponding error levels without filtering as seen in Figure 9 are
included here for direct comparison. Applying a mean filter
to the original images reduced the displacement errors, with
exceptions observed for lower line widths. The error levels
were higher with filtered images for laser line widths thinner
than 5 pixels, as seen in the magnified section (Figure 12(b)).
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Figure 13 demonstrates the effect of mean filter on
processing images of different LWs. Additional grid lines
were included to enhance the visualization of filtering effect
on different line widths. It was observed that the mean-
filtered images smoothed both signal intensities and image
noise. The former feature of attenuating the signal is more
apparent at LW = 3. This illustration further adds to the
understanding of why error levels increased for LW below 5
pixels, as seen in Figure 12.

The 95% error level values with and without filtering are
tabulated in Figure 14. The effectiveness of the spatial mean
filter in reducing the error levels depended on both image
SNR and line width. The mean filter showed a significantly
positive impact on error reduction for lower SNR images
(e.g., error level of 0.7 without filter→ 0.2 with filter for LW
= 15, SNR = H) compared to that for a higher SNR image

(0.04 → 0.02 for LW = 15, SNR = A). On the other hand,
error levels were aggravated with higher SNR images until
the line width was greater than 9 pixels. This line width limit
was also seen in [39]. The line width after which the mean
filter enhanced the MTV displacement subpixel accuracy at
each SNR value is highlighted by underlining the error values
in Figure 14. From these observations it is realized that the
thicker theMTV laser lines are in a high qualitymean-filtered
image, the better the subpixel accuracy is expected to be. An
alternate way to show the limit of line width below which
mean filter worsens the subpixel accuracy is by introducing
a normalized error parameter (NE):
NE

= (95% error levelw/o filter − 95% error levelwith filter)
(95% error levelw/o filter)

.
(6)
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Figure 15 illustrates the efficacy of the proposed parameter.
Here, a negative value of NE indicates that the error was
increased using a particular filter, mean 5 × 5 filter in
this case, whereas a positive value indicates that the error
decreased with the filter application. This plot readily shows
the line width limits beyond which applying mean filter
reduced the errors for SNR 𝐷, 9, SNR 𝐹, 9, and SNR 𝐻, 7.
Thus, the normalized error parameter readily provides the
aforementioned line width limits without the need to plot
curves of error levels with and without filtering (Figure 12)
or list the individual error values (Figure 14).

In addition, the effect of mean filter window size on the
resulting displacement error is analyzed by considering one
of the less noisy images (original image SNR = 1.9) and

different line widths. As seen in Figure 16(a), the 95% error
level increased with the window size 𝑘. The mean filter, when
applied for a relatively larger neighborhood window, resulted
in what we describe as “signal stretching.” Figure 16(b)
shows the mean-filtered images that were used in the spatial
correlation technique to attain the MTV displacements and
the corresponding errors.The signal stretching characteristic
is noticed by observing how the grid nodes were enlarged and
MTV lines were widened or stretched, thereby representing
a pseudo intensity distribution. As the filter size increased,
the lines became wider and the image became blurred. The
highly blurred images with larger line widths reduced the
effect of filter size on displacement error, especially for 𝑘 = 9
and 7 with LW = 11 as noted in Figure 16(a). The features
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of signal stretching and independence of filter size for LWs
greater than 11 pixels were also noted in [39]. For more noisy
images (not shown here), it was expected and confirmed that
the displacement error values were higher compared to those
for the less noisy images. In addition, the effect of filter size
on displacement error was much less for larger line widths.

5. Preprocessing Experimental MTV
Images Using Filters

The spatial and frequency domain filters discussed in this
work were applied to biacetyl MTV images. Figure 17(a)
shows the MTV delayed image without any filtering applied
andwill be called hereafter as the “baseline” image.This image
was recorded previously along the in-cylinder tumble plane
that symmetrically bisects the intake and exhaust valves of
an optical engine. Details of the experimental setup can be
found in related works [29, 30]. The engine was operated at
2500 rpm and the MTV images were acquired at 107 CAD
before TDC during compression stroke. The piston surface
was located at the bottom of the MTV grid as indicated
with the dashed line in Figure 17(a). Figures 17(b)–17(d)
show the MTV delayed image on applying mean, Gaus-
sian, and median filters, respectively. These filtered images
demonstrated the intensity attenuation and noise behavior
as observed from the simulated images: The mean filter
reduced the noise level while simultaneously attenuating the
signal pixel intensities (Figure 17(b)). Median filter retained
the intensities of actual laser grid and the lines are clearer
than with other filters (Figure 17(c)). However, significant

amount of “salt-and-pepper” noise remained in the filtered
image. Gaussian filtered image exhibited reduced noise levels
similar to those in the mean-filtered image while retaining
the grid intensities similar to those seen with median filter
(Figure 17(d)). The effects of these filters on MTV mea-
surement accuracy were quantified by evaluating the grid
displacements using spatial correlation technique within the
region highlighted in Figure 17(a).

Figure 18 shows the corresponding velocity vectors plot-
ted at these grid points using the baseline undelayed and
delayed images (not shown here; delay time = 12 𝜇s). The
flow direction was influenced by the piston surface wall
interaction as indicated by the upward-pointing curved
vectors near the bottom-right of the vector plot. It should
be noted that this vector plot is away from and does not
include the piston boundary as highlighted in Figure 17(a).
In addition, the whole flow field was redirected from the
almost vertically downward movement during intake stroke
to a more lateral motion (Figure 18) due to upward moving
piston during compression stroke.

The displacement of the baseline delayed image was con-
sidered as the reference value and the noise reduction index
(NRI) due to the filtered delayed images (mean,Gaussian, and
median) was analyzed from the deviation:

NRI = √(𝛿𝑋filter − 𝛿𝑋base)2 + (𝛿𝑌filter − 𝛿𝑌base)2, (7)

where 𝛿𝑋 and 𝛿𝑌 are subpixel displacements of grid points
in “𝑋” and “𝑌” direction, and the subscripts filter and
base indicate if these values were taken from the baseline
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Figure 13: Original (a and c) and mean-filtered images (b and d) for selected SNRs and different line widths at each SNR.

image or filtered image. The statistical relation in (7) is
termed as the noise reduction index because the laser line
width in the experimental MTV images was 11 pixels and
it was determined that the mean filter would reduce the
measurement error at this LW (see Figure 14). The LW

limits for median and Gaussian filters, however, were not
determined in this work and are assumed here to share the
same values as for the mean filter.

The error values were calculated for an 8 × 8 grid (64
grid points). A few spurious correlations were detected which
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were removed by applying an error processing algorithm
in MATLAB code. Figure 19 shows the plotted values of
deviations, after removing spurious correlations, for all the
grid points. With the baseline displacements as reference, the
displacements calculated from median-filtered image were
closer to those of the baseline with an average NRI value
of 0.16 pixels for the chosen laser grid. On the other hand,
displacements calculated from mean-filtered image showed
the highest noise reduction capacity (average NRI of 0.4
pixels) among all the filters.

6. Conclusions

Realizing the capability of N2O molecular tagging velocime-
try to measure air flows, the authors here investigated the
potential application of N2O MTV for in-cylinder air flow
measurements. Based on the working principle of N2O
MTV and the related optical setup for in-cylinder MTV
grid formation, it was identified that the image SNR and
laser line width depend on several working parameters (e.g.,
laser energy density and NO fluorescence signal). Hence,
a parametric study of image SNR and MTV laser line
width was made to understand their effects on the subpixel
accuracy levels of flow displacements with andwithout image
preprocessing. Although the prime focus of this work is

on N2O MTV, the current discussions can be applied to
other MTV techniques such as biacetyl MTV because both
techniques share identical laser grid setup. Synthetic MTV
images having different levels of Gaussian white noise were
generated for this work.The rms displacement error was used
to characterize the subpixel accuracy, apart from the 95%
error level that was used to compare the current results with
those in previous works.The rms displacement error without
filtering rapidly decreased until the image SNR was greater
than 1.6, followed by a gradual decline as the image SNR was
increased further. The 95% error level (confidence interval)
and its slope increased and became steeper, respectively, as
SNR decreased and also as line width increased. One of the
key aspects to minimize noise or spurious detection while
applying MTV for in-cylinder flowmeasurements is to select
proper source window size for spatial correlations. This was
demonstrated in this work wherein the error levels were
reduced by more than half when switching from a source
window of 15 × 15 to 27 × 27 pixels2.

In the second part of this work, the effect of image pre-
processing on error reduction was analyzed using a Gaussian
filter and various spatial filters such as mean, median, and
Wiener filter. It was observed that themean filter was effective
in removing visual noise and increased the image SNR, while
the median- and Wiener-filtered images contained visibly
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image set.

apparent levels of noise. When compared to the Gaussian
filter, the mean filter resulted in smaller error levels for LW
<9 pixels and slightly higher error levels for LW >9 pixels,
in agreement with results from a similar work. From a priori
knowledge of simulated image noise distribution (Gaussian
white noise), the performance of themean filter indicates that
it is very effective in enhancing the displacement subpixel
accuracy.Also, themeanfilter reduced the displacement error
significantly for more noisy images compared to that for less
noisy images. However, the least noisy image showed higher
displacement error with filtering than without filtering. This
was attributed to the intensity attenuation as a result of signal
stretching, which was more apparent for LW <5 pixels. The
limit of line width below which mean filter worsened the
subpixel accuracy moved from 11 pixels to 7 pixels as the
image noise increased. In addition, error levels increased as

the filter size was increased and became almost independent
of filter size for LW ≥11 as also seen in previous works. The
simulation results were further validated using experimental
images taken along the in-cylinder tumble plane.

Abbreviations

Δ𝑡: Delay time
𝑘: Mean filter size
𝑅: Spatial correlation coefficient
𝑆: Source window size
CAD: Crank angle degree
LDV: Laser Doppler velocimetry
LW: Line width
MRV: Magnetic resonance velocimetry
MTV: Molecular tagging velocimetry
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Figure 17: (a) Baseline delayed biacetyl MTV image without any filtering and (b) mean-filtered, (c) median-filtered, and (d) Gaussian filtered
delayed image. The baseline image was taken at 107 CAD before TDC during compression stroke.
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validation of les applied to internal combustion engine flows:
Part 1: comprehensive experimental database,” Flow, Turbulence
and Combustion, vol. 92, no. 1-2, pp. 269–297, 2014.

[24] J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle image
velocimetry for complex and turbulent flows,” Annual Review
of Fluid Mechanics, vol. 45, pp. 409–436, 2013.

[25] T. V. Overbrueggen, M. Klaas, B. Bahl, and W. Schroeder,
“Tomographic particle-image velocimetry analysis of in-
cylinder flows,” SAE International Journal of Engines, vol. 8, no.
3, pp. 1447–1467, 2015.

[26] R. Vedula, M. Mittal, and H. J. Schock, “Molecular tagging
velocimetry and its application to in-cylinder flow measure-
ments,” Journal of Fluids Engineering, vol. 135, no. 12, Article ID
121203, 2013.



Journal of Combustion 17

[27] A. H. Epstein, “Quantitative density visualization in a transonic
compressor rotor,” Journal of Engineering for Power, vol. 99, no.
3, pp. 460–475, 1977.

[28] B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity
visualization in gas flows using laser-induced phosphorescence
of biacetyl,” Review of Scientific Instruments, vol. 55, no. 12, pp.
1964–1967, 1984.

[29] M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow
measurements in an internal combustion engine assembly using
molecular tagging velocimetry,” Experiments in Fluids, vol. 41,
no. 1, pp. 57–65, 2006.

[30] M. Mittal and H. J. Schock, “A study of cycle-to-cycle variations
and the influence of charge motion control on in-cylinder flow
in an IC engine,” Journal of Fluids Engineering, Transactions of
the ASME, vol. 132, no. 5, pp. 0511071–0511078, 2010.

[31] M. Mittal, R. Sadr, H. J. Schock, A. Fedewa, and A. Naqwi, “In-
cylinder engine flow measurement using stereoscopic molecu-
lar tagging velocimetry (SMTV),”Experiments in Fluids, vol. 46,
no. 2, pp. 277–284, 2009.

[32] P. M. Danehy, S. O’Byrne, A. F. P. Houwing, J. S. Fox, and D.
R. Smith, “Flow-tagging velocimetry for hypersonic flows using
fluorescence of nitric oxide,” AIAA Journal, vol. 41, no. 2, pp.
263–271, 2003.

[33] A. G. Hsu, R. Srinivasan, R. D. W. Bowersox, and S. W. North,
“Two-component molecular tagging velocimetry utilizing NO
fluorescence lifetime and NO2 photodissociation techniques in
an underexpanded jet flowfield,” Applied Optics, vol. 48, no. 22,
pp. 4414–4423, 2009.

[34] A. M. ElBaz and R. W. Pitz, “N2Omolecular tagging velocime-
try,”Applied Physics B: Lasers and Optics, vol. 106, no. 4, pp. 961–
969, 2012.

[35] C. P. Gendrich andM. M. Koochesfahani, “A spatial correlation
technique for estimating velocity fields using molecular tagging
velocimetry (MTV),” Experiments in Fluids, vol. 22, no. 1, pp.
67–77, 1996.

[36] R. D. Keane and R. J. Adrian, “Theory of cross-correlation
analysis of PIV images,” Applied Scientific Research, vol. 49, no.
3, pp. 191–215, 1992.

[37] B. Stier and M. M. Koochesfahani, “Molecular Tagging
Velocimetry (MTV) measurements in gas phase flows,” Experi-
ments in Fluids, vol. 26, no. 4, pp. 297–304, 1999.

[38] Q. Zheng and J. C. Klewicki, “A fast data reduction algorithm
for molecular tagging velocimetry: the decoupled spatial corre-
lation technique,”Measurement Science and Technology, vol. 11,
no. 9, pp. 1282–1288, 2000.

[39] M. Caso and D. Bohl, “Error reduction in molecular tagging
velocimetry via image preprocessing,” Experiments in Fluids,
vol. 55, no. 8, article 1802, 2014.

[40] O. Dietrich, J. G. Raya, S. B. Reeder, M. F. Reiser, and S. O.
Schoenberg, “Measurement of signal-to-noise ratios in MR
images: influence of multichannel coils, parallel imaging, and
reconstruction filters,” Journal of Magnetic Resonance Imaging,
vol. 26, no. 2, pp. 375–385, 2007.

[41] I. T. Young, J. J. Gerbrands, and L. J. Van Vliet, Fundamentals
of Image Processing, Delft University of Technology, Delft, The
Netherlands, 1998.

[42] G. C. Rafael and E. W. Richards, “Image smoothing using
frequency domain filters,” in Digital Image Processing, Prentice
Hall, Upper Saddle River, NJ, USA, 2008.

[43] G. C. Rafael and E. W. Richards, “Smoothing spatial filters,” in
Digital Image Processing, Prentice Hall, Upper Saddle River, NJ,
USA, 2008.

[44] D. Dussault and P. Hoess, “Noise performance comparison of
ICCD with CCD and EMCCD cameras,” in Proceedings of the
Optical Science and Technology, the SPIE 49th Annual Meeting,
International Society for Optics and Photonics, 2004.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


