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This work investigates the active control of an unstable Rijke tube using robust output model predictive control (RMPC). As
internal model a polytopic linear system with constraints is assumed to account for uncertainties. For guaranteed stability, a linear
state feedback controller is designed using linear matrix inequalities and used within a feedback formulation of the model predic-
tive controller. For state estimation a robust gain-scheduled observer is developed. It is shown that the proposed RMPC ensures
robust stability under constraints over the considered operating range.

1. Introduction

Modern gas turbines have to comply with increasingly
stringent emission requirements for NO,. One of the most
effective ways reducing these emissions is the development
of lean premixed (LP) combustor systems. For gas turbines
operated with natural gas thermal NO, is the most relevant
source, and its formation is highly temperature dependent.
Both, a lean mixture and a premixing of fuel and oxidizer,
which increases the mixture homogeneity and therefore
avoids temperature peaks in the flame, reduce the combus-
tion temperature and consequently the thermal NO, emis-
sions. Alongside the aforementioned advantages LP systems
are more susceptible to combustion oscillations than con-
ventional burner, because the heat release of lean-premixed
flames is very sensitive to flow disturbances. Fluctuating heat
release leads to fluctuating gas expansion. The gas expansion
in the combustion zone acts as acoustic source and the emit-
ted acoustic waves in turn influence the flame if reflected.
Due to this coupling between acoustics of the combustion
chamber and the heat release of the flame a feedback path is
established which can give rise to thermoacoustic instabilities
(see Figure 1). A well-known criterion for thermoacoustic
instability is the Rayleigh-criterion. Originally, Rayleigh
defined the criterion as fOT p'(t) - ¢'(t)dt > 0 [1], but for

example in [2] it is shown, that the acoustic losses L have
to be considered for checking instability. This leads to the
original Rayleigh-criterion determines only if acoustic
energy is fed into the system by the combustion process as
energy source:

T
L P - ¢ Ot > 1, (1)

where p’(t) is the acoustic pressure, g’ the fluctuating rate
of heat release, and L the acoustic losses. If the integral over
one period of oscillation T is positive, the heat release and
acoustic pressure interfere constructively meaning that the
heat release is in phase (up to 90°) with the pressure waves.
Thus, the flame feeds energy into the system. If this energy
feed is higher than the acoustic losses L, the system is unstable
and moves after an exponential growth into a limit cycle. The
limit cycle is clearly a phenomenon of a nonlinear system and
possibly a result of saturation effects in the heat release. It
represents a stable trajectory, where losses and energy feed
are in balance.

As a consequence high-pressure oscillations take place
in the combustor which are detrimental for performance,
emissions and durability of the combustor components. To
avoid these drawbacks, two main directions are possible,
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FIGURE 1: Active control of thermoacoustic instabilities (in parts taken from [5]).

namely, passive and active control, to stabilize the thermoa-
coustic system [3, 4]. Passive control techniques include
geometry modifications and integration of additional acous-
tic dampers like Helmholtz resonators. However, the oper-
ational range at which stabilization is achieved is limited.
To overcome this limitation, active control can be applied to
enlarge the region of stable operations. In addition, existing
burners can be equipped with active control systems as a
retrofit. This can be necessary not only for older systems
but also for systems, where computational fluid dynamics
(CFD) design tools failed to predict instabilities during
development.

In this paper active control is investigated, that is, the
closed-loop control of the thermoacoustic system. Closed-
loop control uses a feedback path consisting of sensors, a
control law and actuators to control a system, cf. Figure 1.
The main goal for active control is to stabilize the system
robustly possibly under constraints over a wide operating
range. Robust stabilization means stabilization in the pres-
ence of uncertain system parameters. The increased demand
for variable operations of gas turbines especially in power
plants stems from the increased use of renewable energy
sources. As a consequence, gas-fired power plants are
operated more flexible to compensate the fluctuating input of
renewable energy sources. The connected problem is two-
fold. On the one hand, it may be the case that the optimal
operating point in terms of efficiency, and emissions might
be unstable itself and thus cannot be operated at. On the
other hand, a change of the operating point can be delayed
because unstable conditions have to be avoided during
transition. Another demand for an active control system is
to handle multiple inputs and multiple outputs (MIMO),
since gas turbines are equipped with different types of
actuators and sensors at different locations [3, 4], cf. Figure 1.
Different sensors are presented in the literature like pressure
transducers and chemiluminescence imaging techniques. For

actuation different types of fuel modulation and acoustic
forcing are applied. A MIMO controller has the advantage
of using the combined information of all available sensors
and the actuator operation of possibly different actuators is
adapted to the actual machine state. In case multiple actu-
ators are used, it is very likely that one actuator on its own
has not the control authority to stabilize the system. Conse-
quently, constraints on the control input have to be consid-
ered. In addition, the MIMO setup has another important
benefit. The controller can be designed to be fault-tolerant,
that is, if there exists some redundancy in the sensor and/or
actuator setup the controller can maintain operation if some
sensor and/or actuator fails. This fault-tolerance can be
improved further by adapting the input constraints of the
failed actuator.

In summary, the following demands have to be fulfilled
by an active control system:

(i) robust stabilization under constraints;
(ii) handling MIMO;

(iii) fault-tolerance.

To cope with these demands, robust output model
predictive control (RMPC) is investigated in this work. A
common physical modelling approach is applied to the Rijke
tube, and from this a simplistic linear polytopic model
is derived to model the system dynamics with (assumed)
parameter uncertainties. The model is used to determine a
robust linear state feedback controller by the use of linear
matrix inequalities (LMI). This controller is incorporated in
an approach presented in [6] to formulate a robust MPC
and combined with a robust gain-scheduled observer. The
proposed RMPC can have all the proposed characteristics
needed for active control systems applied in combustion
systems. In this work, however, the solution for a single input
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F1GURE 2: Schematic drawing of the Rijke tube setup.

TaBLE 1: Dimensions of the Rijke tube setup.

Size Value

L, 0.275m

L 0.195m

I 0.1m

d 0.044 m
Pos. 1: 1.090 m

] Pos. 2: 1.180 m
Pos. 3: 1.285m
Pos. 4: 1.365m

and single output (SISO) setup is shown, thus focusing on
robust stabilization under constraints.

The paper is organised as follows. Section 2 presents
the Rijke tube setup, the corresponding physical modelling,
and its validation. Section 3 introduces the proposed robust
output MPC, and Section 4 gives some control results for,
varied tube length to demonstrate the robustness.

2. Modelling of the Rijke Tube

2.1. Setup. A schematic drawing of the Rijke tube setup is
shown in Figure 2 with corresponding dimensions in Table 1.
The test rig consists of a vertical glass tube that contains a
smaller tube which can be drawn out vertically in order to
vary the total length from the lower to upper end in a range
of 1.09m up to 1.365 m. This change of parameter is used to
validate the robustness of the proposed active controller. The
flame holder in the lower part of the tube is connected to
a fuel feed line and holds a diffusion flame. A microphone is
positioned a small distance beneath the flame holder. The test
rig features both types of adjustment control, the variation
of the fuel mass flow rate via valves at the feed line and
antinoise. For the last mentioned purpose, a loudspeaker is
positioned underneath the tube, which is used as actuator in
this study.

2.2. Acoustics. The acoustic model is a one-dimensional
acoustic network consisting of simple geometric compo-
nents, which are analytically tractable. The underlying

assumption, which is common in thermoacoustic commu-
nity [7, 8] is that the mean flow is homogeneous, the length
to diameter ratio of the considered elements is sufficiently
large such that only axial waves are relevant, the acoustic dis-
turbances are linear, and that the flow is isentropic. Then, it is
sufficient to consider only one-dimensional linear acoustics
and the corresponding acoustic state vector (four-pole) is
of order n = 2. These assumptions are fulfilled for a Rijke
tube [9]. The state can be defined, for example, by acoustic
velocity #’ and acoustic pressure p’. The total pressure and
velocity are defined as the sum of mean and acoustic value as
px,t) = p+p'(x,t),and u(x, t) = u+u'(x, t). The solution of
the governing conservation equations of mass, momentum,
and energy [8] leads to the well-known wave equation whose
solution under the aforementioned assumptions is

p(x,1) :f+f(t— %) +g(t+ x,),

c—u

u(x,1) :a+piz[f<t_ Efﬂ) _g(HEicﬂ)]’

with ¢ the speed of sound, T the temperature and p the den-
sity. The functions g and f are the Riemann invariants repre-
senting the up and down travelling waves. Instead of pressure
and velocity, we use the Riemann invariants as acoustic states.
The advantage is that the resulting transfer functions are
always causal if incoming waves are taken as input and out-
going waves as output. As a consequence, every element in
the one-dimensional network has to connect the Riemann
invariants on both sides of the element. Straight duct
elements can be represented by the time delays 7, and 74
which correspond to the travel times of the acoustic waves.
As gas air under atmospheric conditions is assumed for
the upstream part, for the downstream part with a mean
temperature of 347 K due to the heat release of the flame. The
mean flow speed % is neglected because of its negligible
influence on the acoustic travel times compared to the speed
of sound. Therefore, 7, and 74 can be calculated with 7 = x;/c
with x; the considered distance, and ¢ = ,/yRT with R the

specific gas constant and y the adiabatic exponent. At both
ends of the tube, the model is closed by acoustic reflection
coefficients R, and Ry relating incoming with outgoing wave,
cf. Figure 3. Acoustic reflection coefficients less than one

(2)
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FIGURE 3: Signal-oriented model of the Rijke tube in MATLAB/SIMULINK.

represent the only acoustic losses (see (1)) in the model and
can be interpreted as acoustic flux across the boundaries of
the system.

2.3. Flame. Since only low frequencies are of interest the
flame zone is short compared to the acoustic wavelength.
Thus, the flame zone represents a discontinuity for the acous-
tic waves. An approach derived in [7, 9] exploiting this sim-
plification is used to model the flame zone. The flame zone
can then be modelled with the conservation equations for
mass, momentum, and energy:

A1P1M1 = A2p2u2:
A1p1+Aipiui = Aypy + Aypyui3,

1 1
(CpTl + Eu%)plulAl = (CPTZ + Eu%>P2u2A2 +Q, ( )
3

with the subscripts 1 and 2 for up- and down-stream of the
flame zone (cf. Figure 2), Q the heat release, c, the specific
heat capacity, and A the area. Since A; = A, the area is
omitted in the following. Linearisation leads to the following
system of equations:

S R
& ;41 q

with the matrices X and Y. To close the feedback between
acoustics and combustion, a dynamic relation between
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acoustic disturbances and fluctuating heat release is needed.
Because a large number of physical pathways exist [10], one
often chooses to subsume these effects in one flame transfer
function (the term “transfer function” is used for the Laplace
transform of an ordinary differential equation. Note that the
term “nonlinear transfer function” is not compatible with
this definition), relating one acoustic variable to the integral
heat release. In the flame model, we relate the acoustic
velocity u} (¢) upstream of the flame to the rate of heat release

q' = Q(t) — Q. In [7], it is shown that

i ) ¥

5 < 00M) T, (5)
so that at a low Mach number M pressure fluctuations
remain small even, when u'/% oc O(1). The same conclusions
apply for density and temperature fluctuations. Thus, it is
reasonable to regard acoustic velocity fluctuations as the
main excitation source for heat release fluctuations at low
Mach numbers [11] as is the case for the present setup. As
flame transfer function the n-7-model of Crocco and Cheng
[12] is often used, where n is the so-called interaction index
or combustion efficiency and 77 a time delay. The time delay
can be explained by convective transportation and mixing
time. This model can be combined with a low-pass filter.
Several researchers reported a low-pass behaviour of the
flame transfer function at least for premixed flames [11, 13].
These considerations lead to the following transfer function:

kg
1+ Tfs

q'(s) = e (s), (6)
with ky the static gain and Ty the time constant of the low-
pass element, 7 the travel respectively dead time and u; the
acoustic velocity upstream of the flame.

Due to the resulting interaction between acoustics and
combustion, the thermoacoustic instability reaches a limit
cycle after a period of exponential growth which is a clear
indicator for nonlinear effects in the system. Since only
linear acoustics are expected in the operational range of a
combustor, the nonlinear effects are supposed to be in the
combustion itself. The main non-linear effect of the com-
bustion is possibly a saturation in the heat release. Besides
sophisticated models relating the flame surface to the heat
release via the G-equation [14, 15], there are empirical ways
of predicting a limit cycle by using a parameter-dependent
n-t-model [11]. This non-linear behaviour, however, is not
pursued further in this paper because the goal for active
control is to keep the system near the steady state.

2.4. Model Validation. For simulation purpose, the presented
model is implemented in signal oriented form in Matlab/
SIMULINK as shown in Figure 3. In order to validate the
model and the chosen parameters, the frequency response of
the analytic model and from measurements are compared.
The used modelling parameters are shown in Table 2. For the
derivation of the complete set of parameters with a discus-
sion of the diffusion flame in the setup, see [16].

Figure 4 shows a comparison of the frequency response
of the model and measurements from the test rig taken from

5
TABLE 2: Model parameters for the physical model.

Parameter Value
(o 343 m/s
C 374m/s
R, —-0.89
R4 -0.89
T =T, 293K
=Ty 347K
Ty 0.00391s
Tf 0.0018 s
k; 918

closed-loop identification. The four illustrated positions
represent measurements respectively simulation results at
increasing length of the tube. Since a positive 180° phase shift
indicates instability, it can be seen that at positions 2—4 the
system is unstable, whereas at position 1 it is stable. Since
all parameters are kept constant over the presented operating
range, the change of dynamical behaviour depends only on
the value of the time delays in the upper part of the tube that
are determined by its length. In the presented diagrams, the
length was varied from 1.09 m to 1.365 m resulting in a max-
imal difference of 1.5 ms for the time delays. This explains
the high sensitivity of the dynamical behaviour of the model
concerning small changes in the parameters of the flame.
The diagrams show that a parameter configuration could be
found, that predicts instability or stability over the chosen
operating range correct. The simulated resonant frequencies
are in good agreement with the measurement results. There
are bigger differences, however, in the amplitudes in these
points especially at the unstable positions 2—4. Obviously,
the amplification of acoustic fluctuations at the flame is too
high at these frequencies, however there is only little room
for improvement via parameter variation in the given setup
of the model, as a reduction of the influence of the flame
stabilises the system, assuming constant energy losses.

3. Robust Output Model Predictive Control

Model predictive control (MPC) is a control technique that
utilizes modern optimization algorithms for control by using
a predictive optimization formulation and algorithms for
constrained optimization online. In a receding horizon
policy the cost function:
N-1
J(x(0),u) := > Lx(k), u(k)) + Vi (x(N)) (7)
k=0
is minimized over the prediction horizon N iteratively in
every time step with updated state, x(0) under the input, state
and terminal constraints u € U, x(k) € X for k = {0,...,
N — 1} and x(N) € Xy. In addition, the dynamic model of
the system:

x(k+1) = f(x(k), u(k)) (8)

with the state x and the input u acts as a state constraint for
k = {0,...,N — 1}. The stage cost [(x(k),u(k)) is used to



6 Journal of Combustion
Position 1 Position 2 Position 3 Position 4
100 : 10° 100 ‘ 10°
L
s}
2
=
=
<
107> 1072 1072 1072
0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000
200 400 400 400
300 300
100
200 200 200
o 0 100 100
2 0
& 0 0
~ 100
—-100 -1
—200 00
—-200
—200 —200
-300 -300 —400 -300
0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000
w (rad/s) w (rad/s) w (rad/s) w (rad/s)

FiGure 4: Comparison of frequency response of measurements (green) and analytical model (blue).

define the control objective, for example, by penalizing the
deviation of the models future trajectory of some reference
trajectory. In the following

I(x(k), u(k)) == x" (k)Qux(k) + u" (k)Ru(k) )

is assumed with the positive definite matrices Q and R. The
terminal penalty V(x(N)) can be used to guarantee stability
(see Section 3.3). The first entry of the minimizer u* of J(-) is
used as the actual control input to the system. The advantage
of the MPC approach over classical control approaches like
PIDs is the capability of explicitly accounting for constraints
in the actuating and/or state variables.

3.1. Polytopic System of the Rijke Tube. In order to explicitly
take into account model uncertainties within the MPC
framework, we consider a linear polytopic model of the Rijke
tube in the following form:

x(k+1) = Agx(k) + Bru(k) (10)

with (A, Br) € Co{(A1,By),...,(An,By)}. In order to
derive such a model, we follow a pragmatic approach for

reduced modelling. We model the unstable first (fundamen-
tal) mode as an oscillatory second-order element and neglect
higher-order dynamics:

0 1 0
X = ) x+ , |
—wj —2Dwy kwj

with the characteristic angular frequency wy and the damp-
ing coefficient D. Of course this is only an approximation
of the real system, but the unstable mode is by far the
most dominant one in the system. Nevertheless, higher-order
dynamics could destabilize the system if the controller excites
them. Therefore, it is mandatory that the higher orders are
filtered out. This can be accomplished using the reduced
model within the state observer (see Section 3.5) with suit-
able tuning. Using the analytic model we found a parameter
range for the damping of D = {-0.002,...,—-0.012} and
for the characteristic angular frequency of wy = {815/s,...,
930/s} due to a change in the length of the Rijke tube
between I = {1.2m,...,1.365m}. This range is chosen be-
cause it represents the unstable regime regarding the tube

(11)
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length in the setup. The static gain is constant with k =
0.0106. As linear parameters p; = —wj and p, = —2Dwy are
chosen. The resulting discretized linear parameter varying
system (LPV) is

x(k+1) = (Ao + p1A1 + prAr)x(k)
+ (Bo + p1B1 + p2Ba)u(k), (12)
y(k) = (Co+ p1Ci + p2Co)x(k).

This LPV system can be transformed into a polytopic sys-
tem (10) with m = 4 vertices. As sampling time T; = 0.0006 s
is chosen in order to be able to resolve the frequency range
of the unstable modes. This is also the time slot in which
each optimization problem for the MPC has to be solved.
For the proposed robust observer in Section 3.5 the actual
model and therefore the parameters p; and p,, respectively
D and wy, have to be known. Since we assume that the length
of the tube can be measured online, the relation between the
total tube length / and these parameters is sought. For wy it is
a reasonable assumption to consider only the acoustics for
determining the resonant frequency since the flame has
negligible influence on it in the current setup. Thus, the
following relation for the fundamental mode can be used:

T

0= Jen+ Lifea

(13)
with the index u for the lower part of the tube below the flame
holder and d the downstream part of the tube. To relate the
damping D to the tube length , a data fit from the simulation
is used. The LPV model (12) and its equivalent polytopic
form (10) are used in the following for the robust state
observer and for the determination of the constraints within
the optimization problem.

3.2. Feedback MPC. Because an open-loop prediction of
the systems state trajectory, as it is standard in most MPC
formulations, cannot account for the reduced sensitivity to
disturbances or modelling errors due to a feedback con-
troller, we use the approach of incorporating an internal state
feedback controller u = —Kyx in the prediction model.
This technique is called closed-loop paradigm (CLP, [17]).
In addition, the CLP has the advantage of a better numerical
conditioning of the prediction matrices especially for an
unstable system because the system with controller is stable.
As a result the influence of uncertainties, in the present
case represented by the polytopic system, is reduced over
the prediction horizon due to the presence of the internal
controller. Otherwise, the optimization problem would be
far TOO conservative, because no controller action would
be assumed over the prediction horizon to react on the
uncertainties. The re-parametrisation starts with

J(x(0),w)ap = = > x" (k) Qx(k) + u” (k) Ru(k)

k=0
N-1

= Z x(k)Qx(k) + uT (k)Ru(k) + Vi(x(N))
k=0

(14)

with the inputs

u(k) = —=Kyx(k) +c(k), k=1{0,...,N -1}, (15)

u(k) = —Kpx(k), k=N (16)

and the terminal penalty

Vi(x) = i xT(k)Qx(k) + u (k)Ru(k). (17)

k=N
Formulating the cost function J(-) in ¢ results in (see [17])

N-1

J(x(0),€)crp = . T (k)We(k) (18)

k=0

under the (virtual) input, state and terminal constraints.
Since (18) is just a re-parametrisation of the original
optimization problem, the optimum is identical. The opti-
mization variable c is the deviation of the nominal controller
in (15) and is used for constrained handling only as is evident
from (18). The minimizer ¢* is identical zero in case of no
active constraints. A pragmatic view of designing a MPC in
CLP formulation is to design a controller matrix Ky and
use W in (18) for the weighting of c(k) over the prediction
horizon for constraint handling. This approach is used in the
following.

3.3. Robust Stability of MPC. Formulations for guaranteed
stability within the MPC framework can be considered as a
mature topic nowadays. A standard approach is to utilize the
cost function J(x, u) as a Lyapunov function by requiring that
a minimizer u* for

rl:leiuﬂl{Vf(f(x,u)) +1(x,u) | flx,u) e Xf} < Vi(x).
(19)

exists for all x € X (for details see [18, 19]). Note that (19)
implicitly renders Xy positive invariant Positive invariant
means f(x,u) € Xy, for all x € Xy. In order to extend this
requirement to the robust case, one has to consider the worst-
case for guaranteed stability. This can be done by use of a
min-max optimization:

N-1
miuﬂl max > 1(x(k), u(k), 8(k)) + V(x(N)) (20)
ue )

with 8(k) € A the model uncertainty. For the terminal
penalty this results in the following requirement for robust
stability [19]:

min max{Vf(f(x,u,(?)) +1(x,u) | f(x,u,8) € Xf}
ucl A (21)
< Vf(x),

for all x € Xy. Since A — 0 as x — 0 asymptotic stability
of the origin can be established for the LPV model, and a
solution to (21) exists in case of adequate constraints. Thus,
the problem is to find a terminal penalty V(-) which fulfills



this condition in the closed set X¢. In the unconstrained
case and for the system (10) this problem can be cast as
the following linear matrix inequality (LMI). Having (21) in
mind one searches for a linear state feedback u = —Kyx and
V¢(x) = xTPsx with Py > 0, an upper bound of the worst-
case costs, that fulfills:

x(k)" Qx(k) + u(k)"Ru(k) + x(k + 1)"Prx(k + 1)
(22)
< x(k)"Prx(k)

for all (Ax,Bx) € Co{(Ai1,B1),...,(Au,Bn)} and with Q,
R > 0 which makes V¢(-) a control-Lyapunov function for
the complete model set. Inserting the linear state feedback
u = —Kyx and the model leads to the following matrix
inequality:

(Ak —Bka)TPf(Ak - Bka) -Pr<-Q- K}RKf.
(23)

A linear state feedback fulfilling this condition is robustly
stabilizing the unconstrained LPV system. According to [20],
this matrix inequality can be transformed into an LMI by
substituting W = P;' and L = K;P;' and applying a Schur
complement:

w AW+BLT w LT

AxW + By L w 0 0
> 0. (24)
W 0 Q' o
L 0 0 R!

Since the model set (A, Bx) and V() are convex, it is suffi-
cient to check the vertices of the set (A, By). If one searches
in addition for a controller that minimizes the worst-case
cost:

Py > max i x(k) T Qx(k) + u(k)" Ru(k), (25)
k=0

one has to solve the semi definite program:
max tr(W), (26)

subject to the LMI (24). When comparing (21) and (22) it
can easily be seen that by choosing the stage cost in (7) to be
equal to I(x, u) = x(k)"Qx(k) + u(k)" Ru(k), condition (21)
is fulfilled, since

x(k)" Qx(k) + u* (k)" Ru* (k) + x(k + 1) Prx(k + 1)

< x()"Qx(k) + (~Ksx(k)) ' R(=Kpx(k) -
+x(k+1)"Ppx(k +1)

< x(k)"Pyx(k)

holds for the complete model set in the unconstrained case
(if the global minimum is guaranteed to be found by the

Journal of Combustion

optimizer, then this condition holds. In this work a quadratic
program is solved, so this condition holds). Therefore, the
terminal state x(N) has to reach the aforementioned terminal
region Xy, here a region where u = —Kyx € Uand x(k+1) =
(Ax — BkKy)x(k) € X for all x € Xy holds, that is, no active
constraints. Furthermore, Xy has to be a robust positive
invariant set.

In the literature, this technique of guaranteed stability
is sometimes called dual-mode control. The optimizer has
to steer the system into the terminal region Xy taking into
account the constraints. Within the terminal region a virtual
second controller u = —Kyx becomes active with guaranteed
stability. Because the terminal region X is designed in such
a way that this controller never violates the constraints in
this set, linear theory can be used to design u = —Kyx, in
this work by the use of LMIs. As already mentioned, (21)
guarantees robust stability only in case a min-max optimiza-
tion is used in standard MPC formulation. A min-max opti-
mization is time consuming and can usually not be solved
in real time, that is, within the sampling interval. In case
of a re-parametrisation as feedback formulation using the
derived Ky though robust stability can be guaranteed for a
minimization of (18) as quadratic program (QP) [6]. It can
be shown that J(-) is Lyapunov, that is, strictly monotonically
decreasing over time.

3.4. Robust Constraint Satisfaction. As terminal region X ¢ the
maximal robust positive invariant set (MAS) for polytopic
systems can be constructed using the algorithm presented in
[21] if it holds that

(Ak — Bka)TPf (Ak — Bka) < Py, (28)

known as quadratic stability, for all k = {1,...,m}. This is
fulfilled because of (23). In order to reach the terminal set X ¢
robustly, we follow the lines of [6] and use all permutations
of model set vertices for a n-step ahead prediction:

n—1

x(k+n) = [](Ak - BiKy ) x(k)

k=0

n—1{n-1-2
+ Z{ 1_[ (An,l - Banf)} BlC(l),
=0 | m=0

(29)

to predict the future states. Applying the constraints to all
possible future states leads to the constraint set:

Nx(k)+Mc < d, (30)

which can be checked for redundancy using the (reformu-
lated) constraint set

()
(NM) <d. (31)

C

Restricting the future trajectory to (30) guarantees robust
constraint satisfaction for the complete model set and
arbitrary fast model changes within the prediction horizon.
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FiGgure 5: RMPC of the unstable Rijke tube with different length in simulation. The RMPC has a prediction horizon of N = 4 and uses a

robust state observer. The RMPC is activated at t = 2.1s.

3.5. Robust Observer. Since the actual state x(0) is not
measurable in the Rijke tube setup it has to be estimated by
a state observer. In this work, the observer structure of a
Luenberger observer is used

X(k+1) = Agx(k) + Lo (y(k) — y(k)) + Biu(k),
(32)
y(k) = Cex(k) + Dru(k),

where X(k) and y(k) are the estimated state and output, and
L, is the observer gain. Defining the observer error as e(k) =

x(k) — x(k) leads to

e(k+1) = (Ax — L,Cy)e(k). (33)

Thus, the observer error converges to zero if (33) is
asymptotically stable for all (Ag, Bx). To do so, one can make
use of the duality between the control and observer problem.
Since the eigenvalues, and therefore the stability properties
of A — L,C are identical with its transposed (Ax — LoCk)T =
A{ = C[LT the observer system (32) can be cast into a control
problem [22]:

xT(k + 1) = Asz(k) + CEMT(k),

ur(k) = —Lyxr(k) oy

and one can use the semi-definite program shown in
Section 3.3 to find a positive definite P, and
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FiGure 6: RMPC of the unstable Rijke tube with different length in the experiment. The RMPC has a prediction horizon of N = 4 and uses
a robust state observer. The maximum calculation time for [ = 1.2m is 3.35 x 10> s and for [ = 1.365m1.9 x 10™*s.

the corresponding observer gain L, fulfilling the (quadratic
stability) condition

(af - ckTLE)TPO (AT - ¢ILl) - P, < —Q - LoRL,
(35)

forall (A],Cl) € Co{(AT,CT),...,(AL,CL)} with Q,R > 0.
As a consequence, (33) is robustly asymptotically stable for
the model set. Thus, the observer error converges to zero
for the complete model set, if the actual model is known
to the observer. Here, the model is known due to the online
measurement of the tube length.

4. Results

The proposed robust MPC with its internal polytopic model
and the robust state observer is able to stabilize the Rijke
tube robustly by solving a quadratic program (QP) online.
Critical for the application are the number of constraints in
the QP as a result of the feedback MPC formulation. For
a prediction horizon of N = 4 and m = 4 vertices in the
polytopic model under the input constraints —5 < u < 5 the
problem formulation leads to a QP with 180 constraints.
This QP can be solved online within the sampling time of
T = 0.0006 s with modern hardware. In Figure 5 the control
of the physical model is shown for four different lengths of
the Rijke tube in simulation. The controller is activated after
2.1s. This delay can be interpreted as a temporary loss of
actuation or a disturbance deflecting the system from steady
state. The controller has the task to drive the system back to

the origin. It can be seen that the RMPC is capable of robustly
stabilizing the different configurations while respecting the
input constraints. Especially for the length / = 1.285m, the
RMPC uses the full input range. The reason for this extensive
use of the actuator can be seen in the fact that the RMPC
has to guarantee stability for any arbitrarily fast model
change (change in tube length) within the prediction
horizon. This conservatism could be reduced by using only
the actual model for constraint satisfaction while sacrificing
some robustness concerning model changes. Then, however,
the guaranteed stability would be lost during a parameter
variation, that is, during transition from one tube length to
another. Another source of conservatism is the formulation
as feedback MPC. The robust optimization problem, that
is, finding an input trajectory which guarantees constraint
satisfaction in the presence of (known) uncertainties, can
be solved exactly for example by dynamic programming
[19]. Unfortunately, dynamic programming is not applicable
for most systems due to its complexity. The feedback MPC
formulation is a good compromise between conservatism
and optimization complexity. Figure 6 presents the control
results for the RMPC of the Rijke tube for I = 1.2m and
I = 1.365 m in the experiment. The successful control proofs
the real-time capability of the control. As input and output
constraints =7 < u < 7and —1 < y < 1 are used leading to
176 constraints for the QP. The maximum calculation time
on the dSPACE rapid control prototyping hardware DS1006
equipped with a 2.8 GHz AMD Opteron CPU is below the
sampling time of Ty = 0.0006s. As QP solver gpOASES
was used [23]. The robust state observer uses the presented
LPV model which was derived from the analytical model.
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Using the estimated state, the RMPC can stabilize the Rijke
tube while respecting the given constraints. For comparison
the output estimated by the robust state observer is plotted. It
can be seen that the frequency is in excellent agreement with
the measurement from the microphone, and the estimated
amplitude is a little bit to conservative, when the controller
becomes active.

5. Conclusions

An analytical model for a Rijke tube has been applied which
is able to reproduce the stability map of the thermoacoustic
setup as well as the dynamic behaviour over different lengths
of the tube. Therefore, it is an ideal test bench for the
robust control of unstable thermoacoustic systems, especially
the real-time capability of MPC algorithms. It is used to
derive a simplistic linear parameter varying system which
represents the unstable modes. Using this system, it is
shown that a robust output MPC can be designed that
is capable of steering the system robustly to the origin
under constraints. The proposed RMPC is a good compro-
mise between conservatism and computational load when
considering the very fast system dynamics of a thermoa-
coustic system and as a consequence the short calculation
times needed for the application online. Thus, RMPC is a
promising approach in order to fulfill the demands for an
active control system in modern gas turbines. The robust
stabilization and constraint handling are shown in this paper.
In addition, a MIMO setup and fault-tolerant control can
be incorporated quiet naturally into the MPC framework.
Finally, the importance of physical understanding and
modelling for the estimation of unavoidable uncertainties
is demonstrated for the robust control of thermoacoustic
instabilities.
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