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A Dynamic model of Homogeneous Charge Compression Ignition (HCCI), based on chemical kinetics principles and artificial
intelligence, is developed. The model can rapidly predict the combustion probability, thermochemistry properties, and exact
timing of the Start of Combustion (SOC). A realization function is developed on the basis of the Sandia National Laboratory
chemical kinetics model, and GRI3.0 methane chemical mechanism. The inlet conditions are optimized by Genetic Algorithm
(GA), so that combustion initiates and SOC timing posits in the desired crank angle. The best SOC timing to achieve higher
performance and efficiency in HCCI engines is between 5 and 15 degrees crank angle (CAD) after top dead center (TDC). To
achieve this SOC timing, in the first case, the inlet temperature and equivalence ratio are optimized simultaneously and in the
second case, compression ratio is optimized by GA. The model’s results are validated with previous works. The SOC timing can be
predicted in less than 0.01 second and the CPU time savings are encouraging. This model can successfully be used for real engine
control applications.

1. Introduction

New strategies and technologies to reduce exhaust gas emis-
sions and increase efficiency simultaneously are the main
subjects that are appreciated by engine manufacturers and
laboratories. Strict international, national, and other insti-
tutional legislations increasingly emphasize on this matter
[1, 2]. Homogeneous Charge Compression Ignition (HCCI)
engines are being considered as a new generation of internal
combustion engines. HCCI has characteristics of the two
most popular forms of combustion used in IC engines:
homogeneous charge Spark Ignition (SI) and stratified
charge Compression Ignition (CI). As in homogeneous
charge spark ignition, the fuel and oxidizer are mixed
together. However, rather than using an electric discharge to
ignite a portion of the mixture, the density and temperature
of the mixture are raised by compression until the entire
mixture reacts spontaneously. Stratified charge compression
ignition also relies on temperature and density increase

resulting from compression, but combustion occurs at the
boundary of fuel-air mixing, caused by an injection event,
to initiate combustion. The defining characteristic of HCCI
is that the ignition occurs at several places at a time which
makes the fuel/air mixture burn nearly simultaneously. There
is no direct initiator of combustion. This makes the process
inherently challenging to control. However, with advances in
microprocessors and a physical understanding of the ignition
process, HCCI can be controlled to achieve SI engine-like
emissions along with CI engine-like efficiency. As in spark
ignition engines, the charge is well mixed which minimizes
particulate emissions, and as in diesel engines, it is compres-
sion ignited and has no throttling losses, which all contribute
to the high fuel efficiency [3].

HCCI technology is highly desirable, since it combines
the high fuel efficiency of compression ignition (CI) engines
with the less polluting nature of spark ignition (SI) engines
and low cost. In fact, HCCI engines have been shown to
achieve extremely low levels of Nitrogen oxide emissions
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(NOx) without an after-treatment catalytic converter. The
unburned hydrocarbon and carbon monoxide emissions are
still high (due to lower peak temperatures), as in SI engines
and must still be treated to meet automotive emission
regulations. HCCI engines have a long history, even though
it has not been as widely implemented as spark ignition or
diesel injection. It is essentially an Otto combustion cycle.

Controlling HCCI is a major hurdle to more widespread
commercialization [4]. HCCI is more difficult to control
than other popular modern combustion engines, such as SI
and CI engines. A real-time controlling model is needed to
resolve this challenge before HCCI can be implemented in
mass production. In a typical SI engine, a spark is used to
ignite the premixed fuel and air. In CI engines, combustion
begins when the fuel is injected into compressed air. In both
cases, the timing of combustion is explicitly controlled.

HCCI combustion, however, utilizes homogeneous air/
fuel mixture in the combustion chamber and combustion
is initiated by the mixture’s self-ignition from several points
simultaneously [5]. HCCI needs no centralized combustion
initiation and the entire charge gives a parallel energy release
throughout the chamber. The potential advantage of such
a combustion and simultaneous autoignition is that leaner
air/fuel mixture can be used and the tolerance to exhaust gas
recycling, EGR, is significantly extended [6].

HCCI engines have been shown to operate well at low-to-
medium loads, but obstacles have been encountered at high
load conditions, at cold starts, and during transient operating
conditions. Controlling ignition at all loads continues to be
an issue, including the control of combustion phasing and
limiting the Heat Release Rate (HRR) at high loads [4, 7].

Artificial Neural Network (ANN) models can be used as
an alternative way in engineering analysis and predictions.
Recently, they have also been used in optimization of engine
operating parameters and emissions [8]. ANN models some-
what mimic the learning process of a human brain. They
operate like a “Black Box” model, requiring no detailed infor-
mation about the system. Instead, they learn the relationship
between the input parameters and the controlled and uncon-
trolled variables by studying the previously recorded data,
similar to the way a nonlinear regression performs. Another
advantage of ANN is its ability to handle large and complex
systems with many interrelated parameters. They simply
seem to ignore excess data that are of lower significance and
concentrate instead on the more important inputs [9–12].

HCCI phasing is difficult to manage since it is done
by controlling the temperature, pressure, exhaust gas recir-
culation, composition of the fuel and air mixture, variable
compression ratio, and variable valve timing so that it spon-
taneously ignites close to the Top Dead Center (TDC) where
the maximum engine efficiency is achieved. The efficient
state in each phase is achieved by combustion initiating at 5
to 15 degrees crank angle (CAD) after TDC [5]. Many engi-
neering design problems are very complex and therefore dif-
ficult to solve by using conventional optimization techniques
[13]. As an optimization technique, Genetic Algorithm (GA)
is widely used in engineering applications. There have been
studies in the literature on using GA for optimization of
engine characteristics [13–17].

A computer program is developed to calculate the
Start of Combustion (SOC) CAD, in-cylinder pressure and
temperature profiles, CO2 and H2O concentrations based on
a chemical kinetics model (Chemkin3.7-AURORA), devel-
oped by Sandia National Laboratory [18]. The necessary
samples to train the ANN are computed using our program
by changing the input parameters randomly in their realistic
ranges of engine operation. These input parameters are inlet
pressure, inlet temperature, equivalence ratio, exhaust gas
recirculation, compression ratio, ratio of the connecting
rod length to the crank arm radius (R), engine speed, and
clearance volume. Each run of the program takes about 2
minutes by a Dual Core CPU computer. The program was
run 10,000 times to prepare training and test patterns.

By using ANN to model the HCCI combustion and
predict the desired parameters, the relationship between inlet
and favorable exit parameters can be determined after the
training process. ANN can give a quick and accurate answer
to an input pattern. First, the above input variables are fed
to the network and the output parameters are expressed
by relevant neural networks. Finally, input conditions are
optimized to predict engine SOC which itself depends
upon the engine parameters. By using the current model,
sensitivity analysis is possible and it can be used to predict
the effect of different variables on output parameters, engine
performance, and emission trends.

2. Simulation Model

A zero-dimensional detailed kinetics model is used to model
HCCI combustion. A premixed charge at uniform tempera-
ture and pressure is compressed and expanded at a rate that
depends on engine speed and geometry. This kind of model
cannot capture the multidimensional processes that occur in
a real engine cylinder; however, since heat release is a global
nonpropagating autoignition process, a zero-dimensional
model can reasonably capture the start of combustion and
heat release of the core mixture. Since the SOC of the central
core dictates the overall process, control of this combustion
timing will favorably affect performance.

The kinetics computations used to prepare the database
were carried out based on the Perfect Stirred Reactor (PSR)
assumption. The contents of a PSR are assumed to be approx-
imately uniform spatially due to high diffusion rates or
forced turbulent mixing. Thus, the rate of conversion of reac-
tants to products is in fact controlled by chemical reaction
rates and not by mixing processes. An essential element of the
PSR model is the assumption that the mixture in the reactor
has spatially uniform properties which is valid for HCCI
modeling. The major advantage of the PSR model lies in the
relatively small computational demand. For faster mixing,
the flow through the reactor must be characterized by a nom-
inal residence time, which is deduced from the flow rate and
the reactor volume. It is assumed that the chemical reaction
rate coefficients are independent of reactor conditions.
This assumption may not hold when the electron energy
distribution function deviates significantly from Maxwellian
conditions.
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2.1. Governing Equations. The absolute form of the elemen-
tary reactions is considered:

K∑

k=1

v′kiχk ⇐⇒
K∑

k=1

v′′ki χk (i = 1, . . . , I), (1)

where v′ki and v′′ki are stoichiometric coefficients and χk refers
to mole fraction of the kth species. In matrix format, (1) is a
spare system. The kth species production rate is the sum of
all the kth species production rates in the system as in:

ω̇k =
I∑

i=1

υkiqi (k = 1, . . . , I) (2)

in which υki = υ′′ki − υ′ki , and qi is advanced rates of the ith
reaction as defined by

qi = k fi

K∏

k=1

[
χk
]υ′ki − kri

K∏

k=1

[
χk
]υ′′ki , (3)

where χk is the mole fraction of the kth species, k fi and kri
are rate constants of forward and return reactions for the ith
reaction, respectively. For constant pressure reactions, k fi is
assumed as a function of temperature and is determined by
Arrhenius relation:

k fi = AiT
βi exp

(−Ei
RcT

)
(4)

in which Ei is the activation energy for the ith reaction.
In thermal systems, kri is related to the forward constant
reaction and equilibrium constant:

kri =
k fi

Kci
. (5)

Finally, governing equations of the problem include mass,
energy and state equations for a homogenous, adiabatic and
transient combustion chamber that are solved simultane-
ously.

2.2. Methodology and Assumptions. AURORA computes the
evolution time for a homogeneous reacting gas mixture in a
closed system. The model accounts for finite-rate elementary
gas-phase chemical reactions and performs kinetic sensitivity
analysis with respect to the reaction rates. The main assump-
tions used in the current study for modeling the combustion
chamber are as follows.

2.2.1. Single-Zone Combustion Chamber. HCCI combustion
is initiated by autoignition of the air/fuel mixture. The
gas displacement inside the combustion chamber and the
chamber geometry design has little effect on combustion
performance [19]. Assuming that the spatial variations of the
gas inside the chamber are negligible, the entire chamber can
be divided into many small zones or fragments. A single-
zone engine combustion chamber model is assumed in the
simulations.

2.2.2. Uniform Mixture Composition and Thermodynamic
Properties. The gaseous mixture is assumed to be an ideal
homogeneous mixture with uniform composition and ther-
modynamic properties. The mixture consists of air and fuel
charge with an equivalence ratio of ϕ, and EGR (or added
gases) with certain mole percentages, defined by

YEGR = nEGR(
nair,fuel + nEGR

) ,

nEGR = YEGR ∗ ntotal,

nair,fuel = (1− YEGR)∗ ntotal,

(6)

where nEGR and nair,fuel are moles of EGR and total moles of
air and fuel charge, respectively.

2.2.3. Adiabatic Compression and Expansion. The engine
combustion chamber volume considered in AURORA sim-
ulation is time dependent and engine parameter based. In
order to simplify the model and center the calculations only
on the chemical kinetics, both compression and expansion
strokes are considered to be adiabatic processes. Losses such
as heat transfer from the hot gases to the chamber walls, heat
losses in blow-by, and fuel trapping in crevices are neglected.

2.3. Fuel. In order to investigate the extreme conditions
of fuel autoignition in HCCI combustion, methane has
been selected as the fuel. Methane exhibits certain oxidation
characteristics that are different from all other hydrocarbons.
This is because the activation energy required to break the C–
H bonds in methane is more than other hydrocarbons [16].
It has a very high Octane number, up to 120, and therefore it
is difficult to ignite Methane. However, it is a simple fuel and
its chemical kinetics is relatively well developed.

Gas Research Institute, GRI 3.0 [20] for methane chemi-
cal kinetics mechanism is used to elucidate the mechanism of
autoignition in natural gas burning engines. This mechanism
is made up of 325 reversible elementary reactions among 53
species. The computational time for this mechanism in the
developed model is between 1 to 2 minutes with core 2 Duo
CPU.

2.4. Simulation Software. A Sandia National Laboratory’s
chemical kinetics simulation package, AURORA, is employed
in this investigation. This software predicts the time-de-
pendent and steady-state properties of a PSR or reactor
network. It can be applied to open or closed systems. It uses
TWOPNT software to solve the nonlinear ordinary differen-
tial equations that describe the temperature and species mass
fractions and employs the CHEMKIN 3.7 utility software
package, which handles the chemical reaction mechanism
and species thermodynamic data.

A special model is included in AURORA for simulation
of combustion cylinders as in IC engines. Bowman et al.
[20] provides equations that describe the volume (to the first
order) as a function of time, based on engine parameters,
including compression ratio, crank radius, connecting rod
length, speed of revolution of the crank arm, and the clear-
ance volume. As shown in Figure 1, the connecting rod length
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Figure 1: Parameters used in the IC engine model to determine the
cylinder volume as a function of time.

Table 1: A Caterpillar engine specification.

Caterpillar engine Value

Displacement (liter) 2.44

Bore (mm) 137.19

Stroke (mm) 165.11

Connecting rod length (mm) 261.62

Compression ratio 16.25

is designated by LC , while the crank arm radius is denoted
by LA. The volume swept by the piston is represented by the
dashed rectangle above the piston. The clearance volume Vc

is represented by the open areas above and below the swept
volume. Clearance volume is used to scale the engine volume.

For a Caterpillar engine with specification given in
Table 1, the clearance volume is 160.04 cm3. The ratio of
connecting rod length to crank radius (R) used is 3.169 [5].
The maximum swept volume is given by:

Vs, max = π

2
D2LA, (7)

where D is the cylinder bore diameter as shown in Figure 1.
The engine compression ratio C is defined as the ratio of the
maximum total volume to the clearance volume,

C = Vs, max + VC

VC
. (8)

In some cases it is only necessary to define the compression
ratio and not the clearance volume, since the latter is only
used to scale the calculated volume. If the user is interested
in performing postanalyses for engine efficiency or in the
case of the IC Engine heat transfer coefficient correlation
being used, the clearance volume should be specified with
a physical value. By default, AURORA assumes a value of 1.0.
The other parameter required by AURORA for the IC engine
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Figure 2: A typical pressure trace showing two-stage combustion.

model is R, the ratio of the connecting rod length LC to the
crank arm radius LA:

R = LC
LA

. (9)

Finally, the user must specify the rotation rate of the crank
arm, where

Ω ∼= dθ

dt
. (10)

The total volume available for combustion in the cylinder as a
function of time, scaled by the clearance volume is calculated
by [20]:

Vt

VC
= 1 +

C − 1
2

(
R + 1− cos θ +

(
R2 − sin2θ

)1/2
)

(11)

while the time derivative of the volume is

d(V/VC)
dt

= Ω
(
C − 1

2

)
sin θ

[
1 + cos θ√
R2 − sin2θ

]
. (12)

Equations (7) through (12) provide the volume and volume
derivative as functions of time which AURORA uses to solve
the equations for species and energy conservation.

3. Start of Combustion

A typical cylinder pressure trace is shown in Figure 2. The
first and second stage pressure rises PR1, PR2, the location
of the start of the first and second stages, X1, X2 and the
point where combustion initiates are marked. In this work,
SOC is defined to be at the point where the main heat
release occurs, X2. The ignition delay is defined usually for a
homogeneous system at either fixed volume or pressure with
initial temperature and composition. Second ignition delay
time is the time it takes for the main combustion to occur
after the first stage ignition, X2 − X1. For fuels that exhibited
single-stage ignition, second ignition delay is not defined.

HCCI engine has no direct initiation of combustion.
Thus, it was crucial to determine where SOC is located,
in terms of the crank angle. In this research, SOC was
taken to be at the start of the main combustion. Start of
combustion is defined conventionally as the point where
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Figure 3: Methodology for finding the main heat release for Meth-
ane as a single-stage ignition fuel.

50% of heat release (accumulated) occurs releasing heat
release information from the chemical kinetics model is not
available. Alternatively it is crucial to estimate heat release
rate based on pressure history [19]. For two-stage ignition
fuels the exact location is defined by the intersection of a
tangent line to the first stage pressure rise with a horizontal
line passing through the maximum pressure point. For
single-stage ignition fuels like methane, the turning point
of pressure-crank angle plot is assumed to be equivalent to
the first stage pressure rise in two-stage ignition fuels. Based
on the assumption the methodology of predicting the SOC
timing for single-stage fuels is shown in Figure 3.

4. Neural Network Modeling

Applications of ANN to model combustion chemistry have
been reported in many previous works [21–24]. The accuracy
of the ANN estimation can be improved by choosing
the proper number of hidden neurons and the activation
(transfer) function. In ANN modeling, typically the acti-
vation function is chosen by the designer and then the
weighting factors and biases are adjusted by some learning
rule so that the neuron input/output relationship meets some
specific goal. There are a variety of activation functions. The
logarithmic and hyperbolic tangent sigmoid are the most
commonly used functions in multilayer networks that are
trained by using back propagation algorithm [22].

In order to obtain the ANN models investigated in this
study, two sets of training and test patterns were generated
for the values of input parameters, using the developed
program. This program can calculate the desired parameters
based on a chemical kinetics model relative to inlet con-
ditions. The input variables were inlet pressure, inlet tem-
perature, equivalence ratio, exhaust gas recirculation, com-
pression ratio, ratio of the connecting rod length to the
crank-arm radius (R), engine speed, and clearance volume,
as listed in Table 2. Thus, the ANN model has 8 neurons in
the input layer. The ranges in Table 2 are realistic values in
the engine operation. They specify the quality of the training
data, which is essential for ANN modeling. An ANN model
trained in a small range of the input data may not give
accurate results for the inputs outside the range. On the other
hand, an ANN model trained over a vast range may lose

Table 2: Inlet parameters ranges.

Input Parameters Value

Pressure (bar) 0.95–1.05

Temperature (k) 298–700

Equivalence ratio 0.2–1

EGR (%mass) 0.0–0.6

Compression ratio 14–24

R 2.5–4

Speed (rpm) 1000–3500

Clearance Volume (cm3) 100–200

the concentration on realistic conditions and therefore the
accuracy of the ANN model may also be degraded [25].

The neural network has two main roles, classification and
acting as a mapping function. Five networks with different
missions were applied here. The first network, namely, Com-
bustion Happening Neural Network (CHNN), recognizes
the probability of the combustion initiation. TDC pressure
depends on BDC pressure by isentropic relations. If the cal-
culated TDC pressure exceeds the value of isentropic TDC
pressure multiplied by a coefficient like 1.05, combustion
may occur. For training CHNN 10,000 patterns are produced
by the developed program. Two-thirds of the data were used
as the training set, and the rest were used as the test set.
In classification neural networks, such as the Radial Base
Function (RBF) network, all data must be reported to the
network for training which needs a lot of memory when
input parameters are inordinate. Input parameters for this
process are inordinate and available computer memory is
scarce. Feed Forward Back propagation networks are used
commonly as mapping functions; nevertheless, it was applied
for classification, based on an innovative trick by using
a linear filter attached to each output neurons. Typical
structure of the networks is shown in Figure 4. All networks
have the same structure which is Feed Forward Back propa-
gation networks with 8 input nodes, hidden layer(s), and one
output node. The differences include the number of hidden
layers, the nodes in each hidden layer, the learning process,
activation functions, and learning rates.

The trained CHNN’s mean errors in training and test
patterns are less than or equal to 0.2% and 0.7%, respec-
tively. Then, two approaches are tracked depending on the
probability of combustion occurrence as shown in Figure 5.
If combustion does not occur, the approach described in
the next section will be pursued in which inlet engine param-
eters such as temperature, equivalence ratio, and compres-
sion ratio are optimized by GA to have optimum HCCI
combustion.

Here, it is assumed that combustion occurs for the spec-
ified inlet conditions. The Start of Combustion Neural
Network (SCNN) predicts SOC timing with good accuracy
(Figure 6).

The difference between results of Choi and Chen [5] and
the present study as shown in Figures 6 and 7 is due to
the different ways in defining SOC [5]. In the Well-Mixed
Reactor (WMR) code, used in reference [5], low-temperature
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chemistry reactions are neglected in predicting the temper-
ature and pressure during motoring [26]. Also there is no
low-temperature combustion under our current methane-
air HCCI. Neglecting low-temperature chemistry reactions
in calculations result in delay of methane combustion.
Effects of low-temperature chemistry reactions are higher
at high equivalence ratios. Existence of more reactions at
high equivalence ratio values causes this demeanor. Effects of
low-temperature chemistry reactions in HCCI combustion
are higher at lower inlet temperatures. Furthermore, greater
inlet temperatures can also accelerate the occurrence of low-
temperature chemistry reactions [27].
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Figure 7: SOC versus temperature (all other thermodynamic
conditions and engine geometry are the same).

Table 3: Neural Networks’ errors in training and testing patterns.

Neural networks Training error Test error

CHNN 0.31% 0.67%

SCNN 0.28% 0.76%

PNN 0.42% 3.1%

TNN 0.27% 1.65%

CNN 1.06% 8.6%

HNN 0.86% 5.6%

In the remaining four neural networks, the models
predict the in-cylinder pressure (PNN) and temperature
(TNN) profiles, and the concentration of exhaust CO2

(CNN), and H2O (HNN). In Table 3 errors of each network
in training and testing patterns are presented. As can be
seen in this table, errors related to the testing patterns are
greater than those corresponding to the training patterns. All
networks in the training process encounter a training pattern
at least once, and it is obvious that they can predict better
results when the training patterns are fed to them. In general,
all networks predict the desired parameters at an acceptable
level of accuracy.

As an example, in Figures 8 and 9, the outputs of TNN
corresponding to training and test data are compared to the
target. The outputs are in the range of 150–210 CAD with 0.1
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degree step variations. Training and test patterns consisted of
3 and 1.5 million points, respectively.

HCCI engines are highly sensitive to the inlet tempera-
ture, as this parameter plays an important role in determin-
ing the range in which combustion occurs. Increasing inlet
temperature increases the occurrence of low-temperature
chemical reactions which results in gradual energy release.
Therefore, increasing the temperature reduces the rate
of pressure build-up and maximum in-cylinder pressure
(Figure 10). To plot the figures, sets of inlet conditions
which have been approved by SCNN were chosen to ensure
combustion occurs.

Increasing the inlet temperature increases the in-cylinder
maximum temperature (Figure 11). In addition, the CO2

and H2O production reactions initiate earlier due to the
presence of low-temperature chemical reactions. The related
graphs can be drawn by the presented model.

Equivalence ratio has the same effect on in-cylinder
pressure as inlet temperature. Increasing this parameter leads
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Figure 10: Effect of temperature variations on in-cylinder pressure.

to have a mixture with higher heat capacity and input
energy and consequently maximum in-cylinder temperature
(Figure 12). However, low-temperature chemical reactions
retard SOC timing.

In addition, increasing the equivalence ratio from 0.2 to
0.5 leads to have better combustion closer to complete com-
bustion. Therefore the maximum quantity of the in-cylinder
CO2 and H2O concentrations decreases. In Figure 13 this
effect can be seen for CO2 concentration and it is similar for
H2O.

5. Genetic Algorithm (GA) for
Engine Optimization

As HCCI engines are sensitive to inlet parameters, combus-
tion in these engines does not occur easily in all condition.
Inlet parameters must be adjusted for combustion to initiate
and consequently control it to occur in an optimum SOC
timing. Controlling the combustion location is the second
phase of modeling (Figure 14).

In previous studies [5, 28], results of parametric inves-
tigations are presented from which the optimum engine
operation point can be obtained through inspection. It can
be easily understood that a parametric analysis of a large
number of parameters to find the optimum conditions, even
with a systematic approach takes a lot of time for a full inves-
tigation of the design space. However, the problem can be set
up in the form of an optimization analysis. Then, the search
space can be defined in terms of the input parameters under
investigation and an optimization function can be utilized
which is subject to one or more constraints. In this case,
the constraints consist of the timing of the SOC inequality
where SOC crank angle should be between 5 and 15 degrees
after TDC. The function to be optimized is the SOC, subject
to the inequality constraints. In addition, engine parameters
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Figure 12: Effect of equivalence ratio variations on in-cylinder
temperature.

must be maintained within a range of values. The other
engine parameters such as the engine geometry are kept
fixed. Once the optimization problem is defined which in
this case consists of a suitable Neural Network, the solution
of the problem can be undertaken. A general optimization
routine is required, since the constraint form is program
dependent and is not easily calculated. Therefore, a gradient
type method may not converge to a global solution.

Application of GA is quite similar to other optimization
problem formulations. The choice of using a GA approach
to the problem is due to the special characteristics of GAs.
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Figure 13: Effect of equivalence ratio variations on in-cylinder CO2

concentration.
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Figure 14: Second phase in modeling: optimization of inlet condi-
tions to ensure combustion in the desired SOC timing.

Most optimization techniques deal with the solution in
a deterministic manner. Brute force type approaches may
result in solution becoming quickly trapped in the local min-
ima while techniques exist for testing whether the solution
is a local or global minimum. An interesting alternative uses
a stochastic approach in which a population of solutions is
examined. Among the solutions, the more promising ones
are recombined to determine the next generation of input
parameters, and surprisingly, often this leads to even better
solutions. Normally over a period of many generations, a
global optimal or near optimal set of input values can be
determined. There is no guarantee that a GA will give an
optimal solution or arrangement. It is only certain that the
solution will be nearly optimal in the light of the specific
fitness function used in the evaluation of the many possible
solutions generated. It is implied that a more optimal solu-
tion may exist.

The stochastic approach is nondeterministic by nature
and therefore a global optimum cannot be guaranteed.
Some hybrid techniques exist to combine the “hill-climbing”
deterministic approaches with stochastic GA approaches to
determine the best solution to the level of accuracy required.
The GA method determines the best region of space to
investigate. This refinement is not needed in this study
though.
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The GA approach can be described simply in the follow-
ing pseudocode algorithm.

Step 1. Initialize population with a random set of input para-
meters within the range limits per parameter (see Table 3).

Step 2. Predict SOC probability by CHNN and in case true,
SCNN computes SOC crank angle for each set of parameters
in the population.

Step 3. Calculate the fitness level of each population member
according to the SOC crank angle.

Step 4. For those values for which CHNN is not true or SOC
crank angle exceeds the required value, set fitness to zero.

Step 5. From the remaining population, select members
according to the probabilistic selection for crossover.

Step 6. Generate new members for the next generation of
population.

Step 7. Return to Step 2, continue for a given number of
generations until another stopping criteria is reached.

The problem with this algorithm is that no member of
the population is guaranteed to satisfy the SOC condition.
Hence, penalty methods are often used to accommodate the
condition rather than strictly excluding those population
members that do not satisfy the condition. In other words,
a penalty is added or factored in the fitness function and
the member is used in the selection process of the next
generation. However, the fitness is notably affected. This is
required in this study, as the condition is satisfied with a
known set of parameter ranges. It should again be noted; the
definition of optimization is that SOC occurs between 5 and
15 CAD after TDC [5]. To achieve this, the optimum amount
of the parameter or parameters considered is calculated by
GA in the appropriate engine operating conditions.

To prepare GA, 25 generations with 20 chromosomes
each are applied. Each new generation is born with linked
surgery by 14 chromosome combinations and 2 genetic
mutations relative to previous generations. The SOC crank
angle can be optimized. One or more of the geometric and/or
thermodynamic parameters can be chosen as a free variable
for optimization. Selection of the parameters depends on
engine design characteristics and the ability to change the
actual variables in real cases. Some thermodynamic changes
are possible in engines such as temperature and equivalence
ratio variations. In other instances, geometric parameters
such as the compression ratio are changeable. With the
occurrence possibility of different cases, two main cases are
considered for optimization in this study.

Case 1 (Simultaneous Optimization of Inlet Temperature and
Equivalence Ratio). The GA results are shown in Figure 15.
As it can be seen in this figure, after the 15th generation,
a plateau of the SOC crank angle is achieved while the
amount of inlet temperature is between 440 and 460 K and
equivalence ratio is between 0.4 and 0.6. The optimum
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Figure 15: Optimization process (SOC timing versus Generation,
calculated by changing the inlet temperature and equivalence ratio).

parameter values achieved for an engine with an SOC
crank angle of 6 degrees are at temperature of 450 K and
equivalence ratio of 0.5. Sensitivity of HCCI engines to
temperature is higher compared to equivalence ratio [29].

When GA does simultaneous optimization, temperature
changes are greater than the changes in equivalence ratio
which can be observed in Figure 16.

Case 2 (Optimizing Compression Ratio). The optimization
process is very similar to the previous case. The variable to
be optimized is the compression ratio. The results are shown
in Figure 17. After the 10th generation, a plateau of SOC
crank angle is achieved while the compression pressure value
is between 18 and 20.

6. Conclusion

The main purpose of this study is to provide a rapid,
optimum, and accurate model for simulating combustion
in Homogeneous Charged Compression Ignition engines.
This objective is achieved by constructing and training
Artificial Neural Networks and applying Genetic Algorithm.
To simulate the chemical kinetics and prepare a database
for training ANNs, a computer program has been developed
using FORTRAN in which the Perfectly Stirred Reactor is
used. Methane was used as the fuel and GRI 3.0 is used
for describing its combustion kinetics. In this program, the
Chemkin 3.7 and AURORA package is called 10,000 times as
a solver.

By using the available information in the database, all the
desired ANNs are prepared. They can predict the probability
of combustion initiation and calculate the SOC timing, in-
cylinder pressure, temperature, plus CO2 and H2O con-
centrations. The input parameters are inlet pressure, inlet
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Figure 16: SOC versus inlet temperature and equivalence ratio
calculated by GA.
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temperature, equivalence ratio, exhaust gas recirculation,
compression ratio, ratio of the connecting rod length to the
crank-arm radius, engine speed, and clearance volume.

The validity of the program presented was verified by [5].
As low-temperature chemical reactions are considered in the
developed program, the present model is more accurate than
other similar studies in predicting the Start of Combustion
(SOC). The model can predict the combustion probability
and the SOC timing in less than 0.01 second with favorably
high accuracy.

To obtain the best performance and the highest efficiency
of HCCI, Genetic Algorithm is used to optimize the inlet
parameters. Therefore, in various operating conditions, the
engine can achieve the best possible performance and

efficiency using the optimized parameters. In practice, more
attention is given to the inlet temperature, equivalence ratio,
and compression ratio. In the first optimization case, inlet
temperature and equivalence ratio are optimized simultane-
ously. In the second optimization case, the compression ratio
is optimized.

The presented model is capable of positing on the
electrical boards in real engine control applications. The
proposed approach can be pursued for leaner mixtures and
multizone models with various fuels like normal-heptane
and isooctane.
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