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A practical scheme for selecting characterization parameters of boron-based fuel-rich propellant formulation was put forward; a
calculation model for primary combustion characteristics of boron-based fuel-rich propellant based on backpropagation neural
network was established, validated, and then was used to predict primary combustion characteristics of boron-based fuel-rich
propellant. The results show that the calculation error of burning rate is less than ±7.3%; in the formulation range (hydroxyl-
terminated polybutadiene 28%–32%, ammonium perchlorate 30%–35%, magnalium alloy 4%–8%, catocene 0%–5%, and boron
30%), the variation of the calculation data is consistent with the experimental results.

1. Introduction

Boron-based fuel-rich propellant belongs to composite solid
propellants and is used for solid rocket ramjet engine. The
basic requirements of the propellant for the engine are high
burning rate and appropriate pressure index at low pres-
sure. In its combustion, there are multiphase physical and
chemical reactions. The former low-pressure combustion
model can only be used for qualitative analysis but not
for simulation because many of the parameters cannot be
measured by experiments, and thus primary combustion
property research and formulation design are excessively
dependent on experimental study [1–3]. Therefore, applying
neural network to simulation of propellant combustion char-
acteristics has become an important research direction, and,
in recent years, the neural network method has been applied
to HTPB composite solid propellant, NEPE propellant, and
so forth [4–9]. But no public reports on the application of the
method to calculation for primary combustion characteris-
tics (burning rate and pressure index) of boron-based fuel-
rich propellant can be found at home and abroad. BP neural
network model can achieve a very close approximation to a
complex nonlinear function and is suitable to deal with those
problems in which causal relationship is not clear, there-
fore, in this paper, the concrete combustion process is not

taken into account, and calculation for primary combustion
characteristics is realized by training BP neural network with
formulations and corresponding burning rate data directly.

2. Preferences of Propellant Formulation

BP neural network is applied to calculation for primary com-
bustion characteristics with inputs of pressure and charac-
terization parameters of boron-based fuel-rich propellant
formulation and output of corresponding burning rate;
through training BP neural network, the complex function
between input and output can be simulated; eventually,
with the given pressure and propellant formulation, corre-
sponding burning rate can be obtained. Therefore, selecting
parameters which can reflect the characteristics of boron-
based fuel-rich propellant formulation essentially is a top
priority.

Based on the in-depth study of primary combustion
characteristics of boron-based fuel-rich propellant [1–3], the
main factors which can affect primary combustion charac-
teristics are analyzed, and a practical scheme for selecting
characterization parameters of boron-based fuel-rich pro-
pellant formulation was put forward. The characterization
parameters are as follows.
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(1) HTPB content. HTPB (hydroxyl-terminated polybu-
tadiene) is the flexible matrix of the propellant as well
as an organic fuel, accounting for about 30% of the
total mass of propellant.

(2) AP content. AP (ammonium perchlorate) is the only
oxidant in the propellant, accounting for about 30%
of the total mass of propellant.

(3) AP weight-average particle size. Weight-average par-
ticle size can reflect particle size gradation of AP.
Selecting weight-average particle size as a character-
ization parameter can avoid setting out the different
particle sizes and their corresponding content in
the characterization parameters one by one, thereby
reducing the number of the characterization param-
eters.

(4) B content. B (boron) is one of the main fuels in the
propellant. Due to low primary combustion efficien-
cy and propellant manufacturing problem brought
by pure boron powder, coated boron, and reunion
boron are usually adopted in current boron-based
fuel-rich propellant. In the propellant formulation
characterization, pure boron, coated boron and re-
union boron must be separate. In addition, the type
and amount of coating material in coated boron, the
adhesive in reunion boron, and the particle size of
reunion boron can also affect primary combustion
characteristics of the propellant significantly; they
should be characterized as parameters if necessary.

(5) Flammable metal content. In the propellant formu-
lation characterization, Mg (magnesium), Al (alu-
minum), and MA (magnalium alloy) must be sepa-
rate. In addition, the particle size of flammable metal
can also affect primary combustion characteristics
of the propellant; it should be characterized as a
parameter if necessary.

(6) Burning rate catalyst content. The function of burn-
ing rate catalyst is to affect combustion characteristics
of the propellant.

Besides, when other substances and factors in the propel-
lant formulations can also affect primary combustion char-
acteristics of the propellant, they should also be characterized
as parameters if necessary. It should be highlighted that, in
the simulation, characterization parameters of the propellant
formulations should be selected according to actual needs
and there is no need to use all the above parameters to
characterize the propellant formulations. Selecting appro-
priate characterization parameters can greatly reduce the
computing amount of neural network.

3. Establishment and Validation of BP Neural
Network Model

Backpropagation is the generalization of the Widrow-Hoff
learning rule to multiple-layer networks and nonlinear dif-
ferentiable transfer functions. Input vectors and the corre-
sponding target vectors are used to train a network until
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Figure 1: Computation flow chart of BP neural network.

it can approximate a function or associate input vectors
with specific output vectors. Networks with biases, a sigmoid
layer, and a linear output layer are capable of approximating
any function with a finite number of discontinuities.

Standard backpropagation is a gradient descent algo-
rithm, as is the Widrow-Hoff learning rule, in which the net-
work weights are moved along the negative of the gradient
of the performance function. The term backpropagation
refers to the manner in which the gradient is computed for
nonlinear multilayer networks.

Properly trained backpropagation networks tend to give
reasonable answers when presented with inputs that they
have never seen. Typically, a new input leads to an output,
which is similar to that, the input vectors used in training
lead to the correct output. This generalization property
makes it possible to train a network on a representative set
of input/target pairs and get good results without training
the network on all possible input/output pairs [10].

Figure 1 shows the computing process of standard back-
propagation neural network.

Kosmogorov’s theorem shows that, with appropriate
structure and weights-three-layer feedforward neural net-
work can approximate any continuous function, so a three-
layer structure is adopted in BP neural network model in this
paper.

In order to overcome the shortcomings of BP neural
network (easy falling into local optimum and slow conver-
gence speed), gradient descent with momentum and adap-
tive learning rate backpropagation is adopted as learning
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Table 1: The detailed composition of 15 formulations adopted for
simulation.

Number HTPB (%) MA (%) AP (%) AP size (mm) GFP (%)

1 25 10 32 0.0944 3

2 27 8 32 0.0944 3

3 30 5 32 0.0944 3

4 32 3 32 0.0944 3

5 27 10 30 0.0944 3

6 27 7 33 0.0944 3

7 27 5 35 0.0944 3

8 27 6 34 0.0803 3

9 27 6 34 0.104 3

10 27 6 34 0.127 3

11 27 6 34 0.148 3

12 30 8 32 0.0613 0

13 28 8 32 0.0613 2

14 27 8 32 0.0613 3

15 25 8 32 0.0613 5

algorithm of BP neural network. Momentum allows the
network to ignore small features in the error surface. Without
momentum, a network can get stuck in a shallow local mini-
mum. With momentum, a network can slide through such
a minimum. An adaptive learning rate attempts to keep the
learning step size as large as possible while keeping learning
stable. The learning rate is made responsive to the complexity
of the local error surface.

In this paper, the experimental burning rate data of
boron-based fuel-rich propellant in Chapter III of [3] are
adopted for simulation. The propellant formulation is as
follows: HTPB (hydroxyl-terminated polybutadiene) 28%–
32%, AP (ammonium perchlorate) 30%–35%, MA (mag-
nalium alloy, Mg-Al ratio of 1 : 1) 4%–8%, GFP (catocene)
0%–5%, B (boron) 30%. The detailed composition of 15
propellant formulations adopted for simulation is shown
in Table 1. Accordingly, the following six parameters are
selected as the training sample input:

(1) Pressure (MPa);

(2) HTPB content (%);

(3) MA content (%);

(4) AP content (%);

(5) AP particle size (mm);

(6) GFP content (%).

The corresponding output of the input sample composed
of these six parameters is burning rate (mm/s).

Based on the previous design of BP neural network, a
calculation model for primary combustion characteristics
of boron-based fuel-rich propellant can be established. The
setting of the basic parameters is shown in Table 2.

In 45 sets of burning rate data (15 propellant formu-
lations at 3 pressures) adopted in this paper, 36 sets were

Table 2: The setting of the basic parameters of BP neural network
model.

Basic parameters of BP neural
network

Parameter setting

Structure Three-layer, 6-10-1

Transfer function tansig, purelin

Performance function
Mean square error of training

samples

Algorithm
Gradient descent with

momentum and adaptive
learning rate backpropagation

Momentum coefficient 0.9

Initial value of learning rate 0.05

Ratio to increase learning rate 1.05

Ratio to decrease learning rate 0.7

Maximum performance
increase

1.04

Performance goal 0.001

Maximum number of epochs
to train

5000

selected as training samples and 9 sets as validation samples.
First, use training samples to train BP neural network 10
times, respectively, and save corresponding network one by
one; then use validation samples to validate these neural
networks.

The network which has the minimum mean square error
of validation samples was saved as the calculation model
for primary combustion characteristics and used to calculate
burning rate of 15 experimental formulations under three
different pressures. The comparison between calculated data
and tested data showed that in 45 sets of data, 35 sets’ relative
deviation were within ±3%, accounting for 77.8%; 8 sets’
relative deviation were more than ±3% and less than ±5%,
accounting for 17.8%; only 2 sets’ relative deviation were
more than ±5%, accounting for 4.4%; all the data’s relative
deviation were within ±7.3%; 9 sets of validation sample
data’s relative deviation were totally within ±5%. This shows
that BP neural network model has rather high calculation
accuracy and it can meet the need of calculation for primary
combustion characteristics.

To validate further accuracy and effectiveness of BP
neural network model, multiple linear regression (MLR), ra-
dial basis network (RBF), and generalized regression neural
network (GRNN) are adopted to calculation based on the
same samples and compared with BP neural network model.
Table 3 shows mean square error comparison among the four
calculation models.

As can be seen in Table 3, compared with the other three
calculation models, BP neural network model has the highest
accuracy. This is the advantage of BP neural network model.

Besides, it should be highlighted that, in the simulation,
if more data at more pressure levels can be used to train
the network model, the calculation accuracy usually can be
further improved.
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Table 3: Mean square error comparison among the four calculation
models.

Calculation
model

Mean square error of
training samples

Mean square error of
validation samples

BP neural
network

0.0058 0.0152

MLR 0.2826 0.2917

RBF 3.115 × 10−5 0.0393

GRNN 0.0039 0.0322

4. Prediction of Primary Combustion
Characteristics of Boron-Based
Fuel-Rich Propellant

In this paper, based on the established BP neural network
model, in the pressure range (0.5–1.5 MPa) and in the for-
mulation range (HTPB 28%–32%, AP 30%–35%, MA
4%–8%, GFP 0%–5%, and B 30%), primary combustion
characteristics of boron-based fuel-rich propellant were
predicted, and the variation was preliminarily summed up.
The following burning rate data were obtained by BP neural
network model, and the pressure index data were obtained
by fitting of the burning rate data under different pressures
with the empirical equation listed as follows:

rp = bPn. (1)

In (1), rP refers to burning rate at some pressure; P refers to
pressure; n refers to pressure index.

When the total amount of HTPB/MA is fixed, effect of
HTPB content (wt%) on burning rate and pressure index
can be shown in Figures 2(a) and 2(b), respectively. In
Figures 2–5, C represents calculation data and E represents
experimental data. It can be seen that when increasing HTPB
content with a corresponding reduction in MA content,
burning rate (under a certain pressure) decreases; pressure
index first increases, then decreases and finally rises slightly.

When the total amount of AP/MA and AP particle size
are fixed, effect of AP content (wt%) on burning rate and
pressure index can be shown in Figures 3(a) and 3(b),
respectively. It can be seen that when increasing AP content
with a corresponding reduction in MA content, both burning
rate (under a certain pressure) and pressure index increase.

When AP content is fixed, effect of AP particle size on
burning rate and pressure index can be shown in Figures 4(a)
and 4(b), respectively. It can be seen that when increasing
AP particle size, burning rate (under a certain pressure)
decreases; pressure index first increases and then decreases.

When the total amount of GFP/HTPB is fixed, effect of
GFP content (wt%) on burning rate and pressure index can
be shown in Figures 5(a), and 5(b), respectively. It can be
seen that when increasing GFP content with a corresponding
reduction in HTPB content, both burning rate (under a
certain pressure) and pressure index increase.

In addition, it can be seen from Figures 2–5 that the vari-
ation of the calculation data tallies well with experimental
results, which validates further accuracy and effectiveness of
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Figure 2: Effect of HTPB content (wt%) on burning rate (a) and
pressure index (b).

BP neural network model. Furthermore, BP neural network
model can simulate burning rate and pressure index of
propellant formulations not tested by experiments, which
makes important sense in combustion property researches
and formulation design of boron-based fuel-rich propellant.

5. Conclusions

(1) In this paper, a calculation model for primary
combustion characteristics of boron-based fuel-rich
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Figure 3: Effect of AP content (wt%) on burning rate (a) and
pressure index (b).

propellant based on BP neural network was estab-
lished. The simulation results showed that, BP neural
network model is superior to multiple linear regres-
sion, radial basis network, and generalized regression
neural network; the relative deviation of 95.6% of the
calculation data obtained by using BP neural network
model was less than ±5%, and all the calculation
data’s relative deviation was within ±7.3%.

(2) The established BP neural network model was used
to predict primary combustion characteristics of
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Figure 4: Effect of AP particle size on burning rate (a) and pressure
index (b).

boron-based fuel-rich propellant. HTPB content, AP
content, AP particle size, and GFP content in the pro-
pellant formulation were changed, and burning rate
and pressure index of corresponding formulations
were calculated. The results showed that the variation
was consistent with the experimental results.

(3) In the adjustable formulation range, the calculation
results of different formulations under different pres-
sures can be directly used to optimize the design of
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Figure 5: Effect of GFP content (wt%) on burning rate (a) and
pressure index (b).

propellant formulations, which can reduce the ex-
perimental workload, shorten the research cycle, and
improve reproducibility of the research.
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