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The present study aims at providing a complete picture of the various propagation scenarios that a statistically stationary turbulent
premixed flame may possibly undergo. By explicitly splitting the scalar turbulent flux between its gradient and counter-gradient
contributions, the scalar governing equation is rewritten as an ordinary differential equation in the phase space. Then, an analysis
of the characteristic equations in the vicinity of the reactants and products side is carried out. The domain of existence of the
propagation velocity is then determined and positioned over the relevant Bray number range. It is shown in particular that when
a counter-gradient transport at the cold leading edge of the flame is dominant, there still exists a possibility of observing a steady
regime of propagation. This conclusion is compatible with recent experimental data and observations based on the analysis of
direct numerical simulations.

1. Introduction

The determination of the burning velocity of turbulent pre-
mixed flames ST has been the subject of many experimental
studies. As far as a given modelling of such reacting flows is
concerned, the a priori value of ST for statistically stationary
one-dimensional turbulent flame is often estimated through
the direct application of the results of the Kolmogorov-
Petrovskii-Piskounov (KPP) theory [1] which showed that,
for a one-dimensional reaction zone without heat release
described through the evolution of a single progress variable
c and with a constant diffusion coefficient Dt, the steady
propagation of the reaction zone is controlled by the behav-
ior of the reaction rate at the reactants side and by the value
of the diffusion coefficient. In many situations, experiments
(Moss [2], Cheng and Shepherd [3], Troiani et al. [4],
Zimmer et al. [5]) as well as direct numerical simulations
(DNS) (Veynante et al. [6], Nishiki [7], Hauguel [8], Lee
and Huh [9]) show that an expression of the turbulent

transports via a gradient expression is not appropriate as
some mechanisms may promote a transport with a sign
identical to that of the mean scalar gradient. An extensive
review of relevant experimental and DNS data can be found
in the paper of Lipatnikov and Chomiak [10]. In such
situations, the introduction of the Bray number proposed
by Veynante et al. [6] proved to be helpful to discriminate
between flow configurations featuring gradient turbulent
flux (GTF) only (NB ≤ 1) or counter-gradient turbulent
flux (CGTF) (NB ≥ 1).The Bray number was defined
as NB = τSL/2αvu′ where τ designates the heat release
parameter and αv some order unity efficiency function which
depends mainly on (and is an increasing function of) the
ratio between the turbulence integral length scale and the
flame thermal thickness. For NB ≥ 1, one of the most
prominent mechanism leading to CGTF is directly related to
the differential effect of the pressure gradient on the pockets
of reactants (heavy) and products (lighter). But it should,
nevertheless, be stressed, that even when such a mechanism
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is predominant, there still exists a gradient turbulent flux
acting at scales much smaller than those of the pockets
and for which the turbulent transport coefficient cannot
be estimated through a turbulence model which integrates
the whole turbulence scales. Accordingly, and following in
that respect Veynante et al. [6], Zimont and Biagioli [11]
or Lipatnikov and Chomiak [12], this suggests to consider
the turbulent scalar flux as resulting from the competition
between gradient and counter-gradient mechanisms.

Along these lines, we propose to study the propagation
properties of a turbulent premixed flame by considering such
a flux decomposition. First, an extended KPP analysis is
developed. It combines all the possible scenarios with the
change of NB and provides a general analysis whose results
are not qualitatively dependent anymore on the modelling
closures chosen but permit a clear and comprehensive
discrimination between all the various propagation regimes.

We note that, in the framework of an eddy-break-
up model, an analytical attempt aimed at explaining the
influence of the presence of CGTF on the turbulent
flame propagation properties has been done by Corvellec
et al. [13] who considered an idealized one-dimensional
premixed flame that propagates through high-Reynolds-
number frozen turbulence. These authors dealt only with a
flame brush formed by a GTF zone followed by a CGTF one.
The scalar flux in each zone was expressed by employing a
classical gradient formulation with the peculiarity of using
a strictly negative diffusion coefficient for the CGTF zone.
Thanks to this mathematical “trick”, it was then possible
to employ the KPP technique to study the characteristics
of the governing equation at both sides of the flame brush
and at the intermediate point at which the flux is zero.
This approach did not put into evidence a qualitative
change in the nature of the burning velocity domain which
appears to be still a semi-infinite interval. The lower bound
though appeared to be controlled by both sides in such a
situation. It drew also the attention on the fact that the KPP
results cannot be extrapolated directly in such situations (in
accordance to some extent with the numerical simulations
of Bradley et al. [14]). The results of Corvellec et al. [13]
cannot be considered as being of general implication since
they are contingent to the recourse to an effective diffusion
coefficient and are limited to the analysis of only one flame
structure, that is, a GTF zone followed by a CGTF one.
The Bray number is absent in the theory developed in [13]
whereas DNS [6, 9] and recent experiments on turbulent
premixed flames [4, 5] show that a different mean flame
structure may be encountered that is, a CGTF zone followed
by a GTF one. Thus, the present approach is more general
than those followed previously since it permits to cover all
the two-zone mean flame structures that can be thought
of. It shows in particular that as far as the burning velocity
domain is concerned, qualitative differences with the KPP
and Corvellec et al. [13] results are obtained.

2. Mathematical Formulation

2.1. Governing Equations. An unsteady 1-D freely developing
turbulent isenthalpic premixed flame is considered here

and is described through the evolution of a single progress
variable c = (T − Tr)/(Tb − Tr), where subscripts r and b
denote the states of the reactant mixture and the fully burnt
products, respectively, and τ = (Tb − Tr)/Tr defines the heat
release parameter. Thus, in a fixed coordinate system (O, x)
the Favre averaged equation for c and the continuity equation
to be used later on, are given by

∂ρ

∂t
+
∂ρũ

∂x
= 0,

∂ρc̃

∂t
+
∂ρũc̃

∂x
= − ∂

∂x
ρu′′c′′ + w,

(1)

ρu′′c′′ is the turbulent flux, and w is the mean reaction rate
whose exact expression is not required at this stage. The
flame is propagating from right to left, that is, ∂c̃/∂x � 0.

We consider here the case for which counter-gradient
mechanism is largely present in the flame as it is the case
when the turbulence intensity is sufficiently low and/or the
heat release parameter sufficiently large (see [6] for further
details). Accordingly, the turbulent flux is expressed as

F = ρu′′c′′ = FGTF + FCGTF (2)

FGTF < 0 represents the gradient contribution while
FCGTF > 0 corresponds to the counter-gradient part. Such
a decomposition is compatible with the findings of Veynante
et al. [6] who derived an algebraic expression for the flux as
a function of the laminar flame velocity SL, the heat release
parameter τ and the rms velocity u′, namely, ρu′′c′′ = ρc̃(1−
c̃)(τSL − 2αvu′). In this particular case, the counter-gradient
contribution is equal to

FCGTF = ρc̃(1− c̃)τSL, (3)

and the gradient one reads as

FGTF = −2αvu′ρc̃(1− c̃). (4)

The ratio FCGTF/|FGTF| is just equivalent to the Bray
number NB. If we introduce Dt ≈ ltu′, where lt is the
turbulence integral length scale and suppose that ∂c̃/∂x ≈
c̃(1 − c̃)/lt, then the gradient contribution can be classically
written as FGTF = −ρDt∂c̃/∂x. Here, the dependency of αv
on the ratio between the flame thermal thickness and the
turbulence integral length scale has been neglected. In the
following analysis, we shall consider FGTF as given by (4)
combined with a more general expression for FCGTF, namely,

FCGTF = ρτSL f (c̃), (5)

where f is a positive continuous function of c̃ such that
f (0) = f (1) = 0. In the case of Veynante et al. [6], f (c̃) is
a quadratic symmetric function, namely,

f (c̃) = c̃(1− c̃). (6)

If we now rewrite the c̃-equation combined with the
continuity equation, one obtains

ρ
∂c̃

∂t
+
(

ρũ + τSL
∂

∂c̃
ρ f (c̃)

)

∂c̃

∂x
= ∂

∂x

(

ρDt
∂c̃

∂x

)

+ w. (7)
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It is worth noting that the analysis could be done also in
the case, not considered here, where F would be expressed
without the introduction of a turbulent diffusion coefficient
(e.g., using directly the decomposition of Veynante et al. [6]).

We rewrite (7) in a nondimensional form by defining the
following reference parameters:

(1) a velocity scale û = u′,

(2) a time scale ̂t = lt/u′,

(3) a length scale ̂l proportional to the integral turbu-

lence scale, that is, ̂l = lt,

(4) a reference turbulent diffusion coefficient Dt0 = ltu′

(lt is chosen in such a way that the proportionality
coefficient between Dt0 and ltu′ is unity),

(5) a flame velocity scale
√

Dt0 /̂t = u′.

Thus, one has

R
∂c̃

∂t∗
+
(

Ru∗ + NB2αv
∂

∂c̃

(

R f
)

)

∂c̃

∂x∗

= ∂

∂x∗

(

RD
∂c̃

∂x∗

)

+w∗,

(8)

where x∗ = x/̂l, u∗ = ũ/û, t∗ = t/̂t, D = Dt/Dt0 , R = ρ/ρu =
1/1 + τc̃, and w∗ = w(̂t/ρu). In the following and whenever
unambiguous, we shall drop superscript ∗. So, with that
convention, (8) reads as

R
∂c̃

∂t
+
(

Ru + NB2αv
∂

∂c̃

(

R f
)

)

∂c̃

∂x
= ∂

∂x

(

RD
∂c̃

∂x

)

+ w,

(9)

and the nondimensional form of the continuity equation (1)
is given by

∂R

∂t
+
∂Ru

∂x
= 0. (10)

At this stage, it is important to underline that the form
of (7) allows us to give a physical interpretation of the
influence of CGTF on the flame structure (following mainly
the reasoning adopted in [6]). The term of CGTF is a
nonlinear convection term which tends to move both sides
toward each other because of the change of sign of ∂ρ f (c̃)/∂c̃
(positive at the fresh reactants side and then negative at
the burnt products side). Such a “thinning” effect has to be
counter-balanced by the gradient transport term in order to
obtain a steady state flame propagation regime.

2.2. Steady-State Regime of Flame Propagation. Let us con-
sider a steady state regime of flame propagation. Accordingly,
in a coordinate system attached to the mean flame brush
and introducing the flame mass consumption ṁ and the
turbulent flame speed St such as ṁ = ρuSt, the preceding

continuity and progress-variable nondimensional equations
are written as

Ru = ṁ

ρuu′
= ρuSt

ρuu′
= ρbub

ρuu′
= Λ,

[

Λ + NB2αv
d

dc̃

(

R f
)

]

dc̃

dx
= d

dx

(

RD
dc̃

dx

)

+ w,

(11)

where Λ = St/u′.
We can rewrite (11) as a first-order differential equation

for P = (RD/Λ)(dc̃/dx) on the c̃-domain [0, 1], namely

[

1 +
NB2αv
Λ

d

dc̃

(

R f
)

]

P = PP′ + w
RD
Λ2

. (12)

Introducing ̂NB = NB2αv and Ω = wRD , (12) is expressed
as

PP′ =
[

1 +
̂NB

Λ

(

R f
)′
]

P −Ω
1
Λ2

, (13)

where ()′ denotes the derivation with respect to c̃.

3. Analysis of the P -Equation in
the Vicinity of the Singular Points

Now, our primary objective is to determine the domain of
existence of Λ. In principle, we need for that to analyse the
trajectories in the (P, c̃) phase plane in the KPP-like manner.
It is clear that a priori, due to the presence of the CGTF
derivative f ′, it is difficult to perform the KPP analysis in
such a case.

Thus, leaving aside the question of determining the
trajectories themselves, we focus on the determination of
the associated Λ domain by examining the characteristic
equations of (13) at both sides of the brush. The implication
of the relative position of P and F = ( ̂NB/Λ)R f for the
P-trajectories when they are tangent to the characteristics
lines is also analyzed. We denote F′0 = dF(0)/dc̃ =
̂NB/Λ(R f )′(0) = ( ̂NB/Λ) f ′(0) = α and F′1 = −dF(1)/dc̃ =
− ̂NB/Λ(R f )′(1) = −(1/(τ + 1))( ̂NB/Λ) f ′(1) = β = (1/(τ +
1))α| f ′(1)|/ f ′(0) and introduce the two functions f1(α) =
4/(1 + α)2 and f2(α) = 1/α, such that f2(α) > f1(α) for all α
but α = 1 for which f2(1) = f1(1).

(a) Reactants Side. In the limit c̃ → 0+ and assuming
that P = sc̃ and F = αc̃ (s > 0 and α > 0), the
characteristic equation associated with (13) is given
by

s2 − s(1 + α) +
1
Λ2

Ω′(0) = 0. (14)

The required positiveness of the discriminant Δ0+ = (1 +
α)2 − (4/Λ2)Ω′(0) is assured as soon as Λ2 > f1(α)Ω′(0).
The corresponding roots s1 = (1 + α)/2 +

√

Δ0+ /4 and s2 =
(1+α)/2−√Δ0+ /4 are both positive with s1 > s2. Accordingly,
the reactants side is an improper unstable node and all
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the trajectories but one (the characteristic line s1c̃ itself) are
tangent to the s2c̃ line. Two cases are to be considered in
the vicinity of c̃ = 0: (1) FGTF + FCGTF < 0 (the gradient
contribution overcomes the counter-gradient one) and (2)
the reverse situation prevails, that is, FGTF + FCGTF > 0.

(1) Gradient transport prevails, that is, FGTF + FCGTF <
0 ⇐⇒ P > F. This implies that s2 > α. Solving
this inequality yields α < 1 and Λ2 < f2Ω′(0). It is
worth noting that when α → 0, one recovers the KPP
domain.

(2) Counter-gradient transport prevails, that is, FGTF +
FCGTF > 0 ⇐⇒ P < F. Two scenarios meet these
inequalities, namely.

(i) α > s1. Solving this inequality yields α > 1 and Λ2 <
f2Ω′(0).

(ii) s2 < α < s1. This implies that Λ2 > f2Ω′(0) for α > 0.

In both cases (1, 2), we must satisfy also

Λ2 > f1Ω
′(0). (15)

Thus, for case 1 we have

f1Ω
′(0) < Λ2 < f2Ω

′(0), α < 1, (16)

and for case 2

f1Ω
′(0) < Λ2 < f2Ω

′(0), α > 1,

Λ2 > f2Ω
′(0), α > 0.

(17)

Using the definitions of f1(α) = 4/(1 + α)2, f2(α) = 1/α and
α = ( ̂NB/Λ) f ′(0), for case 1, one has

2
√

Ω′(0)− ̂NB f
′(0) < Λ <

Ω′(0)
̂NB f ′(0)

, Λ > ̂NB f
′(0)

(18)

or in equivalent form

2
√

Ω′(0)− ̂NB f
′(0) < Λ <

Ω′(0)
̂NB f ′(0)

, ̂NB f
′(0) <

√

Ω′(0).

(19)

For case 2, we have

2
√

Ω′(0)− ̂NB f
′(0) < Λ <

Ω′(0)
̂NB f ′(0)

, ̂NB f
′(0) >

√

Ω′(0),

Λ >
Ω′(0)
̂NB f ′(0)

, ̂NB > 0.

(20)

Introducing the variables

˜Λ = Λ
√

Ω′(0)
, ˜NB =

̂NB f ′(0)
√

Ω′(0)
, (21)
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Figure 1: Domain of existence in the (˜Λ, ˜NB) plane of gradient or
counter-gradient total turbulent flux at the reactants side.

we can rewrite for case 1

2− ˜NB < ˜Λ <
1
˜NB

, ˜NB < 1, (22)

and for case 2

2− ˜NB < ˜Λ <
1
˜NB

, ˜NB > 1,

˜Λ >
1
˜NB

, ˜NB > 0.

(23)

It is important to note that relations in (23) are the sum of
two sets, but not the product. Figure 1 illustrates the domain
of existence of GTF and CGTF in the plane (˜Λ, ˜NB) that
followed from the analysis of (13) (for P) in the vicinity
c̃ → 0.

(b) Products Side. In the limit c̃ → 1− and assuming that
P = s(1 − c̃) and F = β(1 − c̃) (s > 0 and β > 0), the
characteristic equation associated with (13) is given
by

s2 + s
(

1− β
)

+
1
Λ2

Ω′
c̃(1) = 0. (24)

The discriminant Δ1− is always positive and there exists only
one positive root s3 = (β − 1)/2 +

√

Δ1− /4. Accordingly, the
products side is a saddle and all the trajectories are tangent
to the s3c̃ line. Again, two situations are to be considered:

(1) GTF prevails, that is, FGTF+FCGTF < 0 ⇐⇒ P > F. This
implies that β < s3 or equivalently Λ2 < (1/β)|Ω′(1)|.
In the limit β → 0, the original KPP behavior is
recovered, that is, the absence of constraint.
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Figure 2: Domain of existence in the (˜Λ, ˜NB) plane of gradient or
counter-gradient total turbulent flux at the products side (a) case
fB > 1 and (b) case fB < 1.

(2) CGTF prevails, that is, FGTF + FCGTF > 0 ⇐⇒ P <
F. This implies that β > s3 or equivalently Λ2 >
(1/β)|Ω′(1)|.

Using the relation

β

α
= 1

1 + τ

∣

∣ f ′(1)
∣

∣

f ′(0)
, (25)

we transform the above inequalities into the following form:

Table 1

Configuration G/G G/CG CG/G CG/CG

Reactants side G G CG CG

Products side G CG G CG

for case 1 (GTF)

˜Λ <
1
˜NB

fB, (26)

for case 2 (CGTF)

˜Λ >
1
˜NB

fB, (27)

where

fB = (τ + 1)
f ′(0)

∣

∣ f ′(1)
∣

∣

|Ω′(1)|
Ω′(0)

. (28)

Figures 2(a) and 2(b) present the domain of GTF and CGTF
obtained from the analysis in the vicinity c̃ → 1 and for
fB > 1 and fB < 1, respectively. In the latter case, two
remarkable values ˜NB1 and ˜NB2 of ˜NB are introduced.They are

defined by ˜NB1 = (1−
√

1− fB) < 1 and ˜NB2 = (1+
√

1− fB) >
1.

There exists a maximum of four possible configurations,
listed in Table 1, which correspond to the total turbulent
flux behavior (gradient (G) or counter-gradient (CG)) in the
vicinity of the singular points c̃ = 0 and c̃ = 1.

Let us consider first the case fB > 1. Analysis of
inequalities (22)–(23) and (25)–(27) gives the following
results.

(i) G/G configuration:

2− ˜NB < ˜Λ <
1
˜NB

, ˜NB < 1. (29)

(ii) G/CG configuration is absent.
(iii) CG/G configuration:

⎧

⎪

⎪
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⎪

⎪
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⎩
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⎪

⎪

⎪

⎩

2− ˜NB < ˜Λ <
1
˜NB

, ˜NB > 1

˜Λ >
1
˜NB

, ˜NB > 0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

sum of two sets

˜Λ <
1
˜NB

fB, ˜NB > 0

⎫

⎪
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⎪

⎪

⎪

⎪
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⎪

⎪

⎬

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎭

product.

(30)

(iv) CG/CG Configuration:
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Figure 3: The domain of the three different possibilities for the
turbulent flame brush structure in the plane (˜Λ, ˜NB) for fB > 1.

Domains of the above three possible configurations are
given in Figure 3. Now for the case fB < 1, all four
configurations are possible, namely,

(i) G/G configuration:

2− ˜NB < ˜Λ <
fB
˜NB

for 0 < ˜NB < ˜NB1 with ˜NB1

= 1−
√

1− fB < 1.

(32)

Consequently, in this interval [0, ˜NB1], we have ˜Λ > 1.

(ii) G/CG configuration:

fB/˜NB < ˜Λ < 1/˜NB for 0 < ˜NB < ˜NB1 and 2 − ˜NB < ˜Λ <

1/˜NB for ˜NB1 < ˜NB < 1 and again we have ˜Λ > 1.

(iii) CG/G configuration:

max(0; 2 − ˜NB) < ˜Λ < fB/˜NB for ˜NB > ˜NB2 with ˜NB2 =
1 +

√

1− fB > 1. In that case, we have ˜Λ < 1.

(iv) CG/CG configuration:

˜Λ >
1
˜NB

for 0 < ˜NB < 1,

˜Λ > 2− ˜NB for 1 ≤ ˜NB < ˜NB2,

˜Λ >
fB
˜NB

for˜NB > ˜NB2.

(33)

The different regions of the (˜Λ, ˜NB) plane corresponding
to these four configurations are presented in Figure 4.
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Figure 4: The domain of the three different possibilities for the
turbulent flame brush structure in the plane (˜Λ, ˜NB) for fB > 1.

We note that the case fB < 1 is realised for the classical eddy-
break-up model where

w∗ = c̃(1− c̃)
1 + τc̃

, (34)

and if Dt = Dt0 = const, f (c̃) = c̃(1 − c̃)-Veynante et al.
case [6]. In that case, one has Ω(c̃) = c̃(1 − c̃)/(1 + τc̃)2 and
consequently Ω′(0) = 1 and Ω′(1) = −1/(1 + τ)2. Thus,

fB = 1
1 + τ

< 1. (35)

The case fB > 1 is obtained if

w∗ = c̃(1− c̃)(1 + κc̃), (36)

where κ is some positive contant. So we have

Ω(c̃) = c̃(1− c̃)(1 + κc̃)
(1 + τc̃)

,

Ω′(0) = 1, Ω′(1) = −1 + κ

1 + τ
.

(37)

For Veynante et al. [6], f (c̃) = c̃(1− c̃) and so

fB = (1 + τ)
1 + κ

1 + τ
= 1 + κ > 1 whenever κ > 0. (38)

It should be noted that experimental data [3, 15] suggest
that w∗ is shifted towards the burnt gas side. Such a situation
can be modelled by relation (36) with κ > 0, and, in this
case, we can have fB > 1. As was shown previously, in such
a situation, the configuration G/CG is absent. Such a result
is compatible with DNS results for 1-D freely propagating
turbulent premixed flame [6, 9]. It is also in correspondance
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with the recent experimental data of Troiani et al. [4] who
investigated bluff-body stabilized turbulent premixed flames.
These authors showed that the radial component of the scalar
flux (which is the counterpart of F) could exhibit a transition
between a counter-gradient to a gradient behavior when
moving along the normal to the mean front from reactants
toward products.

4. A Particular Configuration:
The Murray’s Equation

The Murray’s equation [16] is a good example of the
convection-diffusion equation, of the type considered here,
to demonstrate that the common viewpoint that at the
leading edge it is the diffusion term which always drives
the flame propagation is not universal. Such an equation is
obtained as a particular case of (9) corresponding to R = 1,
u = 0, D = 1, and w = c̃(1 − c̃). In such a case, we have
fB = 1, f ′(0) = | f ′(1)| = 1,Ω′(0) = |Ω′(1)| = 1, and
β = α. We note that formally though, R = 1 corresponds to
τ = 0 leading to NB = 0. But we will consider here NB like
a parameter not linked to τ. In such a situation, by denoting
K = 2 ̂NB and cw = Λ + ̂NB, (11) reduced to that analyzed by
Murray [16] to determine the wave speed cw, namely,

d2c̃

dx2
− (cw − Kc̃)

dc̃

dx
+ c̃(1− c̃) = 0. (39)

Murray [16] showed that travelling wave solutions exist for
all cw ≥ cw(K) where

cw(K) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 if K < 2,

k

2
+

2
k

if K � 2,
(40)

or equivalently with our notations

Λ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2− ̂NB if ̂NB < 1,

1
̂NB

if ̂NB � 1.
(41)

Thus, it appears that in that particular case, for ̂NB � 1 and
in the zone c̃ → 0, it is the counter-gradient transport that
prevails (see the domain CG/G in Figures 3 and 4).

5. Concluding Remark

A methodology that permits to study the domain of the
tubulent flame velocities for a steady regime of a turbulent
premixed flame propagation has been presented. It has been
shown how the introduction of the parameter fB (defined
by 32) that combines both the counter-gradient flux and
the mean reaction rate behavior at both edges of the flame
can be used to determine the domain where a steady regime
of propagation may exist for any combination of scalar
fluxes that dominate at the flame edges. It is worth noticing
though that the present analysis of the sole velocity domain
does not prove the existence/unicity of the steady solutions.
Consequently, future work will concentrate on the use of
numerical simulations to study these questions.
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