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The influence of reactive scalar mixing physics on turbulent premixed flame propagation is studied, within the framework of
turbulent flame speed modelling, by comparing predictive ability of two algebraic flame speed models: one that includes all relevant
physics and the other ignoring dilatation effects on reactive scalar mixing. This study is an extension of a previous work analysing
and validating the former model. The latter is obtained by neglecting modelling terms that include dilatation effects: a direct
effect because of density change across the flame front and an indirect effect due to dilatation on turbulence-scalar interaction.
An analysis of the limiting behaviour shows that neglecting the indirect effect alters the flame speed scaling considerably when
u′/soL is small and the scaling remains unaffected when u′/soL is large. This is evident from comparisons of the two models with
experimental data which show that the quantitative difference between the two models is as high as 66% at u′/soL = 0.3 but only
4% at u′/soL = 52.4. Furthermore, neglecting the direct effect results in a poor prediction of turbulent flame speed for all values of
u′/soL, and both effects are important for practically relevant values of this velocity ratio.

1. Introduction

The propagation of a deflagration wave in turbulent medium
is a classical problem of turbulent premixed combustion and
is of great practical significance in the current climate of
energy and environment. Expressions for the mean prop-
agation velocity, referred to as “turbulent flame speed” or
“turbulent burning velocity”, are often required in practical
computational fluid dynamics (CFDs) codes employed in the
design of combustion systems. Furthermore, from a theoret-
ical standpoint, turbulent flame speed is a useful analytical
tool to assess the general validity of turbulent combustion
models [1] for premixed flames. Analytical expressions of
turbulent flame speed have been studied in many previous
works [2–8]. It is well known from the classical theories [9]
that in regimes of practical interest, the turbulent burning
rate, and hence turbulent flame speed, is dictated by the rate
of turbulent mixing at scales relevant to sustain combustion
on the flame surface. A direct relationship between the

average burning rate and the small scale mixing rate, known
as scalar dissipation rate ε̃c, in large Damköhler number
flames can be written as [9]

ω̇c = 2
2Cm − 1

ρε̃c, (1)

where Cm is a model constant of order unity and ρ is
the average density. The Damköhler number is the ratio
of the integral time scale of turbulence to the chemical
time scale, Da = (Λ/δoL)/(u′/soL), where soL and δoL are, re-
spectively, the flame speed and thermal thickness of an
unstrained planar laminar flame, and the root-mean-square
value of turbulent velocity fluctuations with integral length
scale Λ is u′. The subscript c denotes a reaction progress
variable, which can be defined using scalar mass fractions
or temperature or sensible enthalpy [10]. Here, it is defined
using temperature, and it varies from zero in the unburnt
mixture to one in the fully burnt mixture. The scalar
dissipation rate is defined as ε̃c = ρD(∇c′′ · ∇c′′)/ρ, where
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D is the diffusivity of progress variable c and c′′ is the
Favre fluctuation of c. The scalar dissipation rate, which
denotes the fine scale mixing rate of hot and cold fluid
parcels, embodies the scalar field dynamics, and in turn,
influences the rate of chemical reactions, since the mixing
of the fluid parcels is what ensures sustained combustion on
the flame surface. Equation (1) suggests that the modelling
of mean scalar dissipation rate yields a model for the mean
burning rate. This approach has been used in [11, 12] in con-
junction with the Kolmogorov-Petrovskii-Piskunov (KPP)
analysis to obtain an expression for the turbulent flame
speed.

The KPP theorem [13], which is based on eigenvalue
analysis of the Favre averaged transport equation for the
progress variable, gives the propagation speed of the leading
edge of the flame brush as

ST = 2

√

√

√

√

νt
(

ρuScc
)

(

∂ω̇c

∂c̃

)

c̃→ 0

, (2)

where νt is the turbulent kinematic viscosity and Scc is
the turbulent Schmidt number for the scalar c̃. Strictly,
this analysis applies for statistically planar flames when the
density and turbulence diffusivity are taken to be constant.
Furthermore, it requires gradient flux approximation. How-
ever, Lipatnikov and Chomiak [1] have shown that the
KPP analysis is applicable equally when the density and the
diffusivity are not constant. The analysis [11] of statistically
nonplanar flames using Taylor’s series expansion of Hakberg
and Gosman [2] results in an expression similar to (2).
In the presence of counter gradient flux, which is known
to occur inside the flame brush when the thermochemical
effects are stronger than the turbulence effects, Corvellec et
al. [14] have noted that the solution to the KPP analysis
is limited by the condition at the burnt side (c̃ → 1)
rather than by the condition at the unburnt side (c̃ → 0).
However, it is well known that the turbulent scalar flux is
gradient at the leading edge of the flame brush where (2)
applies. Furthermore, Bray [8] has pointed out that other
premixed flame theories including nongradient transport of
turbulent scalar flux give flame speed expressions which are
equivalent to the KPP expression in (2). The KPP analysis
has been used in many past turbulent flame speed studies
[1–4, 8, 14].

Substituting (1) into (2), one obtains

ST =
√

√

√

√

8νt
(2Cm − 1)Scc

(

∂ε̃c
∂c̃

)

c̃→ 0

. (3)

Now, the modelling of turbulent flame speed depends on
the scalar dissipation rate modelling. Also, the behaviour of
scalar dissipation rate at the leading edge of the flame brush
controls the propagation speed, ST as per (3).

Early theories for turbulent flows have taken the scalar
dissipation rate to be purely a function of the turbulence
parameters. While this is true for turbulent flows with
passive scalars, recent studies [15–20] have shown that the
scalar dissipation rate is strongly influenced by chemical
reactions in premixed flames. The heat release directly affects
the local density, which induces alterations in the local
dynamics of turbulence, scalar fields, and their interaction
and thus, one can envisage a two-way coupling between
heat release and the turbulence. This two-way coupling
has been investigated in recent studies, and both of these
are observed to be leading order [15] effects. A general
review of thermal expansion effects is provided by Lipatnikov
and Chomiak [21]. Also, algebraic models for the mean
scalar dissipation rate and turbulent flame speed that ap-
propriately include these couplings have been proposed
recently [12] using the models developed [22] for various
terms in the scalar dissipation rate transport equation. These
models were validated using turbulent flame speed data
covering a wide range of flame configurations and conditions
[11].

The aim of the present work is to illustrate the influence
of the two-way coupling of heat release effects and the
associated physics on turbulent premixed flame propagation.
This is done, within the turbulent flame speed framework, by
comparing the predictive capability of the flame speed model
with and without the terms signifying the physics behind
the two-way coupling. In principle, one could also do this
within the scalar dissipation rate framework, since the two
models have the same terms with the same model parameters
[12] as one will find in Section 3. However, the dissipation
rate is a very difficult quantity to measure, and experimental
data of this quantity are scarce. On the other hand, turbulent
flame speed has been widely studied, and there is a wealth of
experimental data available for this quantity.

The outline of this paper is as follows. The two-way
coupling and the physics associated with the turbulent
mixing of a reactive scalar in premixed flames are discussed
in Section 2. A brief background on the turbulent flame
speed model and the physical significance of various terms
is presented in Section 3. The limiting behaviour of the
flame speed model which excludes one of the physical
effects of dilatation is discussed in Section 4. The analysis
of the flame speed expression including the effects of two-
way coupling has been reported earlier [11], and thus, it
not repeated here. However, relevant results are quoted for
convenience. The revised and original flame speed expres-
sions are compared with experimental data in Section 5,
and the conclusions of this study are summarised in
Section 6.

2. Physics of Reactive Scalar Mixing

The physics behind the two-way coupling is explained best
using the scalar dissipation rate transport equation, which
also helps us to identify the mathematical terms signifying
these physical processes. This transport equation has been
derived in earlier studies for unity [15] and nonunity Lewis



Journal of Combustion 3

number [23] flames. This equation can be written [15, 16,
22] as

ρ
Dε̃c
Dt

−∇ ·
(

ρD∇ε̃c
)

= −2ρD2[∇(∇c′′) : ∇(∇c′′)]
︸ ︷︷ ︸

D2

+ 2ρεc(∇ · u)
︸ ︷︷ ︸

T2

− 2ρD(∇c̃ · ∇u′′ · ∇c′′)
︸ ︷︷ ︸

T31

− 2ρD(∇c′′ · ∇u′′ · ∇c′′)
︸ ︷︷ ︸

T32

− 2ρD(∇c′′ · ∇ũ · ∇c′′)
︸ ︷︷ ︸

T33

+ 2D
(∇c′′ · ∇ω̇′′c

)

︸ ︷︷ ︸

T4

,

(4)

for unity Lewis number, where ρ is the density, u is the
velocity vector, and ω̇c is the reaction rate of c. The left
hand side of the above equation represents the unsteady,
convective and diffusive flux of the scalar dissipation rate in a
control volume. On the right hand side, the first term denotes
the molecular dissipation effects, and the direct influence of
density change across the flame front is denoted by T2. These
two are leading order terms [15]. The indirect influence of
density change through the interaction of turbulence and
scalar fields is denoted by the three T3 terms. Out of these
three terms, T32 is identified [15] to be a leading order term
in premixed flames. Using Eigen decomposition, this term
can be written asT32 = 2ρεc(eαcos2θ1 + eβcos2θ2 + eγcos2θ3),
where eα > eβ > eγ are the principal components of the
turbulence strain tensor∇u′′ and θi is their orientation angle
with∇c′′. The contribution of chemical reactions is denoted
by T4, which is also a leading order term [15], and it will
prevail even if the reaction is passive (without heat release).
This transport equation has been studied in the past [15, 17]
to develop physical understanding and to develop models
[22, 24] for its various terms. Details can be found in these
studies.

For a passive chemical reaction, T2 is zero. Furthermore,
in turbulent flows T32 is dictated by the alignment of scalar
gradient with the principal turbulent strain rates as noted
above. The alignment characteristics are opposite when the
chemical reaction is passive or active; the scalar gradient
aligns preferentially with the most compressive strain when
the chemical reactions are passive, and the scalar gradient
aligns preferentially with the most extensive strain when
there is strong heat release from the reactions. These situa-
tions are schematically shown in Figure 1, and this change
is because of the fact that the dilatation due to heat release
is strong compared to the turbulent strain rate. Evidence
for such a behaviour has been found in direct numerical
simulation (DNS) studies of statistically planar [16–20, 22],

spherically symmetric [25], and Bunsen [26] flames and
also experimental bluff body stabilised flames [27]. As a
consequence, the isoscalar surfaces are brought together by
the compressive strain resulting in an increase of scalar
gradient when the reaction is passive. Because of the change
in the alignment, the opposite is true for premixed flames
with high heat release. In the present study, we are interested
in elucidating the effect of this change in the physics on the
propagation speed of the flame brush leading edge. As noted
earlier, modelling of these physical process has been done in
previous studies [22], and these models have been used [12]
to obtain a model for the turbulent flame speed. We start
from this model for this study.

3. Turbulent Flame Speed Model

A model for the scalar dissipation rate, ε̃c, accounting for the
direct and indirect effects of heat release rate is written as [12]

ε̃c = 1
β′

[

(

2K∗c − τC4
) soL
δoL

+ C3
ε̃
˜k

]

˜c′′2. (5)

Using this model in (3), the algebraic model for the flame
speed, ST , presented in [12] is obtained, and it is written as
follows:

(

ST
soL

)

=
{

18Cμ

(2Cm − 1)β′

[

[

2K∗c − τC4
]

(

u′Λ
soLδ

o
L

)

+
2C3

3

(

u′

soL

)2
⎤

⎦

⎫

⎬

⎭

1/2 (6)

for turbulent premixed flames with large Reynolds, Re, and
Damköhler numbers.

The constant Cμ in (6) is the standard k − ε turbulence
modelling constant with a value of 0.09 and the constant Cm

= 0.7 for hydrocarbon-air flames [9]. The physical meaning
of other constants is as follows. The symbol β′ = 6.7
represents the contributions from processes related to flame
front curvature, and it comes from the modelling of (T4 −
D2) in (4). The direct contribution of dilatation, T2, at
leading order is signified through the term containing K∗c .
The numerical value of K∗c is 0.85τ for hydrocarbon-air
mixtures and 0.65τ for hydrogen-air mixtures, where τ ≡
(Tad−Tu)/Tu is the heat release parameter, where Tu and Tad

are the unburnt mixture and adiabatic flame temperatures,
respectively. The leading order effects of indirect influence
of dilatation through the scalar gradient alignments, T32,
is signified by the term with C4 and C3 represents the
contribution of turbulence. The values of these two constants
are, respectively,

C3 = 1.5
√

Ka
1 +

√
Ka

, C4 = 1.1

(1 + Ka)0.4 , (7)

where Ka is the Karlovitz number, which is defined as the
ratio of chemical to Kolmogorov time scales, and can be
evaluated using Ka = (D/s0

Lη)2, where η is the Kolmogorov
length scale. The ratio of the integral turbulent velocity
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Figure 1: Schematics showing the alignment of scalar gradient with the two principal components of turbulent strain rate tensor ∇u in (a)
nonreacting turbulence and (b) turbulence with premixed combustion. The most extensive and compressive principal strain rates are noted
respectively as eα and eγ .

time scale to scalar time scale is denoted by C3, and its
dependence on Ka is introduced to capture the variation in
the value of the time scale ratio [12]. The Ka dependence for
C4 is introduced in [24] to recover the classical alignment
behaviour of the scalar gradient with the principal turbulent
strain rates when Ka becomes large.

It is evident that the terms pertaining to the two-way
coupling are K∗c and C4, and both are consequences of dilata-
tion because of chemical heat release. It is worth pointing
out that these terms are relevant for compressible fluids and
may not be important for the case of, say, chemical reactions
occurring in turbulent liquids. The limiting behaviour
of (6) without these terms will be studied in the next
section.

4. Influence of Dilatation Effects on
Limiting Behaviour

The case of passive chemical reaction is trivial for this study
and has been discussed already in [11]. Since there is no heat
release, both K∗c and C4 are zero for this scenario. Hence,
(6) reduces to the classical form [1] (ST/soL) � C(u′/soL)
with the constant C having a dependence on the length scale
ratio Λ/δoL (the Karlovitz number here, to be precise). If
one includes the molecular viscosity of the fluid in the KPP
analysis, then (ST/soL) � 1 + C(u′/soL), as has been noted in
earlier studies [11, 28]. This classical expression, without Ka
dependence, has been suggested by many turbulent premixed
flame theories and is not particularly interesting for the
present study.

If one were to retain only the direct part of the two-way
coupling, then K∗c is nonzero and C4 = 0. This physically
implies that the leading order contribution of dilatation due
to density change across the flame front is important, but
the induced alterations in the dynamics of turbulence and
scalar mixing to be ignored. This situation is an improvement
from the classical cases noted above, which assume that
the alignment characteristics of reactive scalar gradients

are the same as those of passive scalars. Now, from (6), one
obtains

(

ST
soL

)

=
⎧

⎨

⎩

18Cμ

(2Cm − 1)β′

⎡

⎣2K∗c

(

u′Λ
soLδ

o
L

)

+
2C3

3

(

u′

soL

)2
⎤

⎦

⎫

⎬

⎭

1/2

.

(8)

It is worth noting that this feature would appear in a flame
speed expression that could be obtained using the mean
scalar dissipation rate, ε̃c, model proposed in the earlier work
of Swaminathan and Bray [15] in (3).

To study the limiting behaviour of (8) in the limits of
low and high u′/soL, following [11], we assume Λ/δoL to be

constant and recast (8) as (ST/soL) ∼
√

(A + B)(u′/soL)2, where
A = 2K∗c Da and B = 2C3/3.

(i) In the limit of small u′/soL, Ka is small, and hence,
C3 ∼

√
Ka. On the other hand, since Da > 1, A ∼

O(τ)Da. The value of τ for most fuels lies typically
in the range 5 to 10, and hence, one would expect
A
 B, which yields the scaling

ST
soL
∼
√

O(τ)
u′Λ
soLδ

o
L

, (9)

suggesting that ST/soL ∼ (u′/soL)
√

Da or ST/u′ ∼
√

Da,
which is different from Da1/4 discussed in [1]. The
scaling in (9) suggests a square root dependence on
(u′/soL) for the normalised turbulent flame speed,
ST/s

o
L, and also the contribution of thermochemistry

overwhelms the contribution of turbulence for small
u′/soL values. On the other hand, the opposite is true
for (6) which yields a linear scaling for ST/s

o
L with

u′/soL. This is because the contribution of direct effect
of dilatation, signified by K∗c term, is balanced by the
contribution of C4 making A to be of order zero for
(6) as has been noted in [11]. The linear scaling is
consistent with the scaling arguments proposed by
Damköhler [29].
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Figure 2: The predictions of turbulent flame speed expressions, (6) (solid line) and (8) (dashed line), are compared to the experimental data
of [31] for various equivalence ratios: (a) φ = 0.8; (b) 1.0; (c) 1.2; (d) 1.4.

(ii) In the limit of large u′/soL, Ka is large and C3 ≈ 1.5.
Hence, A ∼ O(τ)Da and B ∼ O(1) which gives the
scaling

ST
soL
∼
√

√

√

√O(τ)
u′Λ
soLδ

o
L

+ O(1)

(

u′

soL

)2

, (10)

for both (6) and (8), since C4 � 0 for large Ka.
The above scaling can also be written as ST/u′ ∼
√

1 + O(τ)Da.

It is interesting to note that neglecting C4-related term
affects the scaling of turbulent flame speed in the limit of
small u′/soL but not in the limit of large u′/soL. This is not
surprising, since C3 and C4 represent the competing effects
of turbulent straining and thermochemistry respectively on
the interaction between turbulence and scalar fields [16,
22]. When u′/soL is very large, the turbulence is expected

to overwhelm the thermochemical process, and the model
parameters reflect this behaviour. Hence, neglecting C4

makes no difference in the large u′/soL limit. (It is also im-
portant to note that these scaling does not say how large is
large.) This does not imply that the direct effect of dilatation
through K∗c is also negligible, and its influence appears as
the first term in (10). Also, the above two scaling expressions
for the turbulent flame speed suggests a qualitative differ-
ence when compared to the corresponding classical scaling
relations. This is somewhat different from the observation
in [30], suggesting only a quantitative influence of density
change for the propagation speed of premixed flames in
large-scale and low-intensity turbulence.

Finally, it is worth commenting on why we have not
considered the case where K∗c is neglected but C4 is retained.
Such a model is not physically correct, since it ignores
the leading order contribution of dilatation, and it would
not satisfy the realisability condition for the mean scalar
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Figure 3: The predictions of the flame speed expressions, (6) (solid line) and (8) (dashed line), are compared to the high pressure Bunsen
flame data of [33]: (a) 0.1 MPa; (b) 0.5 MPa; (c) 2 MPa; (d) 3 MPa.

dissipation rate discussed in [12]. Physically, setting K∗c = 0
implies that there is no density change across the flame front,
and thus, it is meaningless to consider the indirect influence
of density change through the dynamics of turbulence-
scalar interaction. Furthermore, for low values of Ka, such a
model might yield negative value of mean scalar dissipation
rate which is unphysical. In the next section, the predictive
capability of (8) is compared to that of (6) by making com-
parisons with experimental data.

5. Comparison to Measurements

The original flame speed model, (6), was comprehensively
validated in [11] with experimental data from a wide range
of turbulent flame configurations and conditions spanning
all regimes of practical interest. Particularly, due rigour was
paid to the definition of turbulent flame speed given by the
KPP analysis—the propagation speed of flame brush leading

edge—and the experimental data were chosen accordingly.
Other definitions of turbulent flame speed are possible and
the reader is referred to the review paper by Driscoll [32]
or [11] for a discussion on this topic. For comparisons in
the present study, we choose the following subset of the
experimental data considered in [11]:

(1) the planar flame data from the Taylor-Couette appa-
ratus of Aldredge et al. [31],

(2) the high pressure Bunsen flame data of Kobayashi
et al. [33],

(3) the very high turbulence intensity data of Il’yashenko
and Talantov [34, 35].

This is to emphasis the relative roles of direct and indirect
effects of density change on the propagation speed of the
flame brush leading edge for wide conditions of turbulent
flames. As noted earlier, ignoring the effects of density change
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Figure 4: Comparisons of turbulent flame speed predictions to the
experimental data of [34, 35]. The open circles denote the part
of experiment where an open channel was used and closed circles
denote the part where turbulence was generated by a grid. The short
dashed line shows comparisons of (8) with K∗

c = 0.

completely will give the classical result analysed in many
earlier studies.

Comparisons of (6) and (8) with the above three data
sets are shown in Figures 2, 3 and 4, respectively. The values
of soL, δoL, and τ required for the comparisons are calculated
for each case in the same fashion as described in [11]. In
general, the predictions of (8) are worse compared to the
predictions of (6), and this is expected, since (8) does not
include all the effects of density change across the flame
front. The quantitative difference in predictions is more
pronounced in Figure 2 compared to the other cases. This
is because all the data in Figure 2 correspond to low u′/soL
values (≤4). However, the trend in Figure 3 clearly illustrates
the difference between the two expressions. The quantitative
difference between (6) and (8) varies from 66% at u′/soL = 0.3
in Figure 3(a) to 12% at u′/soL = 10 in Figure 3(d). This is
further evident in Figure 4, where the quantitative difference
decreases from 62% to 4% as u′/soL varies from 1.1 to 52.4.
These trends are consistent with the analysis in the previous
section, which suggested that neglecting the C4 term in (6)
affects the scaling appreciably in the low u′/soL limit, while
it is negligible in the large u′/soL limit. This observation
underscores the effects of density change on the flame speed
and the importance of validating turbulent flame speed
models with data over a wide range of conditions. If one were
to consider experimental data selectively, for instance, data
at only large u′/soL in the present case, then the comparisons
can be misleading. Furthermore, the dominant effect of gas
expansion or density change across the flame front in weak
turbulence limit is consistent with the observation by Peters
et al. [36] for the corrugated flamelets regime combustion.

Nevertheless, the direct effect of density change prevail for
large u′/soL values relevant for thin reaction zones regime of
combustion with Da > 1. This is becomes clear when the
two dashed lines in Figure 4 are compared. The short dashed
line in this figure is for (8) with K∗c = 0, which implies that
both the direct and indirect effects of heat release are ignored.
However, the indirect effect of dilatation becomes negligible
only when u′/soL is larger than 50 and Da is of order unity.
This is also clear from Figure 4 (compare the solid and long
dashed lines).

6. Summary and Conclusions

The present study illustrates the influence of dilatation effects
on the propagation speed of turbulent premixed flames,
by assessing their contribution to turbulent flame speed
calculation. An algebraic model for turbulent flame speed,
(6), proposed and validated in earlier studies [11, 12], is
a suitable benchmark, since it incorporates the two-way
coupling of the effects of density change across the flame
front. The direct effect of density change on the local average
mixing rate of hot products and cold reactants is through
the term involving K∗c in (6), and the indirect influence is
through the alignment of reactive scalar gradient with the
principal components of turbulent strain tensor. The term
involving C4 in (6) signify the indirect influence.

If both of these terms are ignored, then the original
model proposed in [11, 12] yields a classical form ST/s

o
L =

1 + C(u′/soL), when the molecular viscosity is included in
the analysis, that has been proposed by many early theories.
Neglecting only the K∗c term but retaining the C4 term is
unphysical, since it implies the influence of indirect effect
when the density change across the flame front is not allowed.
Furthermore, this situation leads to negative values for the
scalar dissipation rate, ε̃c, violating its realisability condition
[12]. On the other hand retainingK∗c but neglectingC4 yields
a flame speed model as in (8), which has a different limiting
behaviour compared to the model in (6). The scaling of (8) is
different from (6) in the small u′/soL limit but not in the large
u′/soL limit. Such a behaviour is also evident in comparisons
with experimental data.

The turbulent flame speed values obtained using these
two equations differ largely in the limit of weak turbulence
(about 66% for u′/soL ≈ 0.3) or in the corrugated flamelets
regime. This is consistent with the observations of Peters
et al. [36]. However, the direct effect of dilatation, signified
through K∗c , prevails for large u′/soL values, but the indirect
influence of dilatation thorough the dynamics of turbulence-
scalar interaction weakens as u′/soL increases. These two
effects of heat release is observed to prevail for practically
relevant values of u′/soL (∼20).
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