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Encounter risk prediction is critical for safe ship navigation, especially in congested waters, where ships sail very near to each other
during various encounter situations. Prior studies on the risk of ship collisions were unable to address the uncertainty of the
encounter process when ignoring the complexmotions constituting the dynamic ship encounter behavior, whichmay seriously affect
the risk prediction performance. To fill this gap, a novel AIS data-driven approach is proposed for ship encounter risk prediction by
modeling intership behavior patterns. In particular, multidimensional features of intership behaviors are extracted from the AIS trace
data to capture spatial dependencies between encountering ships. ,en, the challenging task of risk prediction is to discover the
complex and uncertain relationship between intership behaviors and future collision risk. To address this issue, we propose a deep
learning framework. To represent the temporal dynamics of the encounter process, we use the sliding window technique to generate
the sequences of behavioral features. ,e collision risk level at a future time is taken as the class label of the sequence. ,en, the long
short-termmemory network, which has a strong ability tomodel temporal dependency and complex patterns, is extended to establish
the relationship. ,e benefit of our approach is that it transforms the complex problem for risk prediction into a time series
classification task, which makes collision risk prediction reliable and easier to implement. Experiments were conducted on a set of
naturalistic data from various encounter scenarios in the South Channel of the Yangtze River Estuary. ,e results show that the
proposed data-driven approach can predict future collision risk with high accuracy and efficiency. ,e approach is expected to be
applied for the early prediction of encountering ships and as decision support to improve navigation safety.

1. Introduction

Water traffic has become increasingly busy with the rapid
development of the shipping industry in recent years, which
has led to an increased risk to individuals and society in
terms of various aspects, especially ship-ship collision ac-
cidents. Owing to the frequent occurrences and serious
consequences of collisions, research on reducing collision
accidents from both theoretical and practical points of view
has always been a major topic of concern for navigational
experts and scholars. Perceiving risk and predicting en-
counter situations between ships are crucial for the

prevention of collision accidents, especially in busy traffic
areas, where congested ships sail relatively close to each
other [1].

To understand the risk level and take actions to decrease
the possibility of collisions occurring in the waters, nu-
merous efforts have been devoted to the risk analysis and
assessment of ship collisions. Some focus on risk surveys
among maritime experts and the conduct of qualitative
collision risk analyses, primarily through empirical studies.
Cohen et al. [2] used highly stressful training scenarios
generated by a ship simulator to measure the heart rates of
participants to estimate the collision risk. Chin and Debnath
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[3] examined the risks of different ship types by developing a
survey conducted by Singapore port pilots under both day
and night conditions. However, the above qualitative
methods do not take into account the ship navigation data,
so it is difficult for them to reflect highly dynamic and
continuous vessel movement as well as the evolutionary
collision risk trends.

In recent years, with the wide application of automatic
identification systems (AIS) in water traffic control and
surveillance, AIS data have been proven to be a valuable
source of ship behavior monitoring and analysis [4–6]. ,e
AIS can transmit motion information (e.g., speed, course,
etc.) between ships, from ships to shore, or vice versa. ,is
makes it possible to quantitatively analyze collision risk by
means of massive AIS data. Silveira et al. [7] used AIS data to
model traffic patterns off the coast of Portugal, based on
which the probability of a ship collision occurring was
calculated. A related method was adopted by Christian and
Kang [8] to develop a probabilistic risk assessment. In ad-
dition, the motion data obtained from AIS can be used to
calculate the distance to the closest point of approach
(DCPA) and time to closest point of approach (TCPA),
which can quantify the collision risk from spatial and
temporal aspects, respectively. Ahn et al. [9] defined the
membership functions of DCPA and TCPA based on the
simulation results. Collision-avoidance maneuvers were
then obtained using multilayer perceptron neural networks.
Similarly, Hwang et al. [10] designed a fuzzy collision-
avoidance expert system, where the DCPA and TCPA were
considered simultaneously. With the help of their system,
ships can be advised to make proper maneuvers to avoid
collisions at the right time.

However, as navigational experts and some studies have
found, the DCPA and TCPA do not fully reflect the actual
collision risk level, and using only these two parameters may
lead to misjudgments regarding the collision risk [11, 12].
,erefore, modeling the collision risk using multiple pa-
rameters has gradually been adopted by most researchers.
Ren et al. [13] presented a linear model for evaluating ship
collisions, which considered several factors, such as the ship
type, velocity, and route. Silveira et al. [14] estimated the
distances between ships by using sampled positions, courses,
and speeds, based on which the number of varying collision
candidates was evaluated by comparing it with a predefined
collision diameter. Zhang et al. [15] developed a vessel
conflict ranking operator (VCRO) model, which considered
the relative ship speeds, the course difference, and distance
between two ships. ,en, the Northern Baltic Sea AIS data
were used to assess the risk of a near-miss collision, and the
results indicate that the model is adequate for ranking the
encounters. Based on the VCRO model, Zhang et al. [16]
combined the density complexity of open waters with the
multivessel VCRO model to assess the regional near-miss
collision risk.

,e ship domain is supposed to be a feasible metric to
make collision risk predictions based on the assumption that
the risk of collision is high when the ship’s domain is in-
vaded by the target ship. Szlapczynski [17] proposed a novel
method to measure collision risk by adopting the concept of

an ellipse-shaped ship domain. Further, Szlapczynski and
Szlapczynska [18] addressed the domain violation problem
by combining two parameters, that is, the degree and time of
domain violation, to offer an intuitive assessment of the
collision risk. Wu et al. [19] also employed the ship domain
violation rule to study the frequency of ship conflicts, which
considered elliptical and circular domains individually, and
a series of hot spots with high collision risk in the Sabine-
Neches Waterway were identified by using the two domain
types. Wang [20] proposed a novel ship domain model
termed the fuzzy quaternion ship domain (FQSD). ,e
domain sizes are determined by the quaternion, including
the forward, aft, starboard side, and port side radius. ,e
FQSD model uses fuzzy boundaries (e.g., the ship boundary
could be linear or nonlinear as well as thin or fat) to estimate
the collision risk, aiming at providing a reasonable and
dependable evaluation method. By taking advantage of the
FQSD model, Qu et al. [21] estimated the number of ship
domain overlaps to evaluate the collision risk in the Sin-
gapore Strait, assuming that increased ship domain overlap
indicates a higher ship collision probability. However, the
ship domain uncertainty will seriously affect prediction
performance. Several measures, such as the length and width
of the encounter ship, which should be known when cal-
culating the ship domain are not always available. In ad-
dition, most collision risk prediction approaches based on
ship domains assume that the speed and course of the ship
are constant at the moment of sampling [22], which does not
sufficiently take into account the evolutionary factors of an
encounter process affecting the risk.

,e primary limitation of prior studies on the risk of ship
collisions is that they cannot address the uncertainty of the
encounter process when neglecting the complex motions
constituting the dynamic behavior of encountering ships.
,us, it is necessary to incorporate the spatiotemporal be-
haviors of ships encountering each other (intership be-
havior) to make the risk prediction more reasonable because
the intership behavior will determine the subsequent risk
state to a certain extent with the evolutionary process of the
ship encounter but was rarely considered and implemented
in previous research. To bridge this gap, we propose a novel
AIS data-driven approach for ship encounter risk prediction
by modeling intership behavior patterns. ,e primary
contributions of this study are summarized as follows:

(i) Intership behavior is essentially a stochastic process
consisting of the motion behaviors of any en-
countered ships. Following this rationale, this paper
proposes modeling intership behavior by trans-
forming the AIS traces into a sequence of behavioral
features by combining a fixed set of parameters,
including the relative velocity, course difference,
and relative distance as well as three azimuthal
types. With this time series structure, the process of
ships encountering each other and the corre-
sponding spatiotemporal dynamics can be effec-
tively characterized.

(ii) As previously discussed, ship collisions are often
closely related to the navigator’s behavior. ,us, a
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novel method to model the relationship between
intership behavior and collision risk involvement is
necessary to accurately predict the risk. To address
this challenge, we relate the sequence of behavioral
features involving a specified time window to the
future risk level. ,en, the mapping between them
can be established through a supervised learning
approach, and the problem of risk prediction is
formed as a time series classification task [23],
which makes the prediction process easier to im-
plement by taking full advantage of the benefits of
data-driven modeling with AIS. Inspired by the
recent achievements of long short-term memory
(LSTM) networks for various time series learning
tasks such as text categorization [24, 25] and tra-
jectory prediction [26, 27], we extend them to our
mapping modeling between the intership behavior
and the collision risk. To the best of our knowledge,
we are the first to address this issue through the
utilization of LSTM networks.

(iii) With our proposed approach, the potential collision
risk associated with the uncertain encounter process
could be recognized and identified at an early stage.
,us, early warnings can be provided so that ship
officers have sufficient time to react to emergencies
and take evasive actions in advance. Additionally,
the outcome of this research can provide useful
support to human operators in charge of large and
crowded water areas and encourage safe navigation
under specific scenarios to reduce the incidence of
ship collisions.

,e remainder of this paper is organized as follows: First,
we provide a brief description of the issue of risk prediction
in Section 2. Next, Section 3 develops a thorough discussion
regarding the extraction of AIS data as well as constructing
the sequence of behavioral features. ,e ship encounter risk
prediction frameworks are proposed in Section 4. Finally,
Section 5 is dedicated to a summary of our numerical results
and a discussion of the model’s performance.

2. Problem Formulation

,e goal of designing the methodological framework is to
investigate the key issues (e.g., ship encounter risk predic-
tion) affecting the intership behavior. ,e collision risk level
of the encountering ships at time t is represented by Rt. Rt is
divided into five categories according to the risk level from
low to high, and class labels of 1, 2, 3, 4, and 5 represent the
following:

CRI �

1, low risk level,

2, low − middle risk level,

3, middle risk level,

4, middle − high risk level,

5, high risk level.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

We denote these risk levels as follows:

(i) Low risk level: A situation where risk begins to be
present and two ships are free to maneuver.

(ii) Low-middle risk level: A situation in which the ships
approaching each other have a collision risk and the
given-way ship should maneuver in advance.

(iii) Middle risk level: A situation in which a safe passing
distance cannot be ensured if only the given-way
ship fully maneuvers.

(iv) Middle-high risk level: A situation in which colli-
sion cannot be avoided if only the given-way ship
fully maneuvers.

(v) High risk level: A situation in which two ships
should fully maneuver to avoid the collision.

In this study, the collision risk can be defined as a
continuum spectrum of colors, as shown in Figure 1. ,is
spectrum ranges from the safest situation (a near-zero
chance of collision) to the riskiest situation during en-
counters (both ships need to take evasive actions to avoid
collision). A collision risk index (CRI) [28] was employed to
calculate the risk spectrum. In terms of collision avoidance,
the CRI is essential for a ship officer to evaluate the risk of a
ship encounter as well as for performing an evasion strategy
[29].

As previously mentioned, the collision risk could be
affected by the uncertain and complex behavior of en-
countering ships. A ship encounter is essentially a dynamic
evolutionary process commonly utilized to perceive the
situation of encountering ships. ,e evolution of the en-
counter process is subjected to the specific motions of each
ship as well as pairwise exchanges of influences between the
ships, thus indicating that the spatiotemporal kinematics of
the ships involved in the encounter have dependency and
correlation. To associate the collision risk prediction with the
evolution of the encounter process, we aim to model the
relationship between the sequence of behavioral features and
the future risk level. For one encounter pair, we denote the
behavioral features as follows:

U � u
1
, . . . , u

i
, . . . , u

N
􏽨 􏽩,

u
i

� V
i
R, A

i
, D

i
ot, α

i
, αi

o, αi
t􏽨 􏽩

T
,

(2)

where U is an N × 6-dimensional variable composed of ui,
where N represents N sampling points. Vi

R, Ai, Di
ot are

relative velocity, course difference, and relative distance
between two ships, respectively. αi, αi

o, αi
t are three types of

azimuths (the details are introduced in Section 3). If the time
window is 2δ and the sliding step is δ, then the entire track U

can be divided into L time windows.,erefore, an encounter
process consisting of a sequence of behavioral features can
be reformulated as follows:

w
t

� u
t− 2δ+1

, u
t− 2δ+2

, . . . , u
t

􏽨 􏽩, (3)

where wt represents the observation window with length of
2δ before time t. ,e goal of this study is to predict the risk
level of a ship at a future time ΔT, so we need to match wt

with Rt+ΔT and generate the pairs of sample datasets
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(wt, Rt+ΔT). We want to find a function f that can best
model the relationship between wt and Rt+ΔT:

f: w
t⟶ R

t+ΔT
. (4)

By means of equation (5), the issue of risk prediction can
be transformed into a time series classification task. To
evaluate the model prediction, a confusion matrix was
designed to assess the predictability. ,e size of the square
matrix represents the categories of various risk levels. Table 1
shows the confusion matrix with five risk levels. As pre-
sented in Table 1, each diagonal element of the confusion
matrix represents the correct category; for example, TL is the
proportion of low risk level that is correctly predicted.FML
represents FalseMiddle give Low, which is the proportion of
low risk level that is wrongly predicted as middle risk level.
In addition, the misclassification error rate (MER) is
employed to estimate the overall performance of the model.
,e MER can be obtained by comparing the predicted risk
level with the actual risk level as follows:

MER �
1

NR

􏽘

NR

1
R
∧

s ≠Rs􏼒 􏼓, (5)

where NR is the number of the windows. Furthermore, a
tenfold cross-validation method is utilized to obtain the best
model, which has been empirically shown to yield estimates
that suffer neither from overly high bias nor from excessively
high variance [30].

3. Data Preparation and Feature Extraction

In this section, we describe the process of extracting the
behavior features from the original AIS trace data, which can
effectively characterize the navigation activities and corre-
sponding spatiotemporal dynamics. ,e process comprises
two components. First, we clean and integrate the enormous
volume of original AIS data, by which the AIS data will be
purified and selected into a time series structure. ,en,
through the space-time registration, the synchronous pairwise
trajectory of encountering ships can be obtained. Next, we
transform the pairwise trajectory data into a sequence of
behavioral features by combining a fixed set of parameters.

3.1. Data Preparation. ,e AIS is an automatic tracking
system to improve navigation safety and avoid collision
accidents by providing the navigation information of various

ships. In general, this navigation information in AIS mes-
sages is broadly classified as either dynamic information or
static information. ,e dynamic information includes the
ship location (longitude and latitude), speed over ground
(SOG), course over ground (COG), destination, and esti-
mated arrival time. ,e static information contains the ship
name, ship maritime mobile service identity (MMSI), ship
type, ship size, current time, and other information. As the
AIS data contains the above information, it can serve as the
data source for understanding the traffic situations [31]. In
particular, SOG and COG have substantial impacts on
dangerous encounter situations. Many existing studies take
SOG and COG into consideration in ship collision risk
assessment [32–34]. However, there are some errors in the
AIS data, such as messy codes and data irrationalities, which
may contribute to misjudgments of collision accidents.
,erefore, certain preprocessing methods are essential to
ensure the reliability and applicability of the AIS data to gain
a better investigation of the collision risk.

3.1.1. Data Cleaning and Trajectory Interpolation. ,is part
aims to eliminate the above-mentioned errors in the AIS
data. A mathematical data cleaning method is used. We
denote a trajectory Traj as follows:

Traj � traj1, . . . , trajm, . . . , trajM􏽨 􏽩,

trajm � lngm
, latm, sogm

, cogm
􏼂 􏼃

T
,

(6)

where M is the number of trajectory sampling points. trajm
denotes the four-dimensional vector of the m-th sampling
points, which contains the location information and kine-
matics information of the ship. With this background, the
method filters out the outliers by taking the statistics of data
distribution statistics into account. Assuming that these
parameters are normally distributed, the distribution can be
identified by the mean and the variance calculated from the

Table 1: Confusion matrix for prediction result of risk level.

Risk level L LM M MH H
L TL FLLM FLM FLMH FLH
LM FLML TLM FLMM FLMMH FLMH
M FML FMLM TM FMMH FMH
MH FMHL FMHLM FMHM TMH FMHH
H FHL FHLM FHM FHMH TH

State of ship
encounter

Risk level

Risk begins
to present

Low risk

Given-way
ship should
maneuver in

advance 

Safe passing
distance cannot be

ensured

Given-way
ship fully

maneuvering
cannot avoid

collision

Two ships
should fully
maneuver to

avoid collision

Low-middle risk Middle risk Middle-high risk High risk

Figure 1: Spectrum of the collision risk level.
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samples. According to the 3σ rule, the outlier points in the
data can be eliminated. Taking the longitude lng as an ex-
ample, formulas (7)–(9) show how to eliminate outlier
points. If equation (10) is satisfied, lngm of the sampling
point trajm is considered as an abnormal value. lngm needs to
be removed and replaced with blank placeholders.

lng �
1

M
􏽘

M

1
lngm

, (7)

εm
lng � lngm

− lng, (8)

σ lng �

�����������

1
M − 1

􏽘

M

1
εm
lng

􏽶
􏽴

, (9)

εm
traj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> 3σtraj. (10)

Because of the AIS system broadcasting frequency and
the above outlier elimination process, there will be some
missing data at different time points. ,at is, the time in-
tervals between the sampling points in a track Traj may not
be equal. For example, the time interval between point traji
and point traji+1 may not be the same as that between point
traji+1 and point traji+2. ,e purpose of this portion is to
form a continuous time series with equal frequencies using
the interpolation method. In particular, different interpo-
lation methods are used to fill in the blanks according to the
variable sparsity of a track Traj. ,rough the initial window
length of 240 s, the whole track Traj can be divided into L

windows to identify its sparsity. ,e smaller the size of L is,
the sparser the data is (i.e., the smaller the sampling fre-
quency is).

(1) If L< 15, then the trajectory data is too sparse, and it
is difficult to restore the missing information even
through the interpolationmethod. For such cases, we
discarded these trajectories.

(2) If 15≤L< 20, then the trajectory data are sparse for a
portion of the time windows. ,us, we reduce the
window length to 120 s to guarantee the density of
the data in shorter windows. ,en the linear inter-
polation is selected for the sequences in each shorter
window.

(3) If 20≤L, it means that the sampling frequency of the
data is relatively consistent. For such dense data, the
Hermitian cubic interpolation achieves better results
than linear interpolation.

As the proposed method is employed to interpolate
various sparsity situations of the trajectory data, a contin-
uous time series with equal frequency can be obtained, in
which the frequency is 1Hz.

3.1.2. Pairwise Trajectory Selection. ,rough data cleaning
and trajectory interpolation, a dataset of a fine single tra-
jectory was obtained. To predict the collision risk in an
encounter situation, it is necessary to match the pairwise

trajectories of these ship pairs. ,e matching rule takes both
time and space constraints into account. Specifically, as
shown in Figure 2, these selected pairwise trajectories
(Traja,Trajb) should have intersections in the time di-
mension and be close to each other in the space dimension.

(1) If [ta
Start, ta

End] and [tb
Start, tb

End] denote the time
intervals of the ship a and ship b respectively, then
[ta

Start, ta
End]∩ [tb

Start, tb
End]≠∅.

(2) If Dab � [d1, d2, . . . , dt] represents the relative dis-
tance between two ships, dmax is the distance
threshold for assessing the encounter between ships.
,en, ∀dt ∈ Dab, dt <dmax.

,ose trajectories that are subject to the above two
constraints can be selected as pairwise samples. In addition,
according to the experience of experts and the definition of
an encounter, dmax � 6.

In crossing situation, two ships are crossing to involve a
collision risk. One ship is coming from either the left or right
direction of the other ship’s bow, and the relative azimuth
between the two ships is 5.7° to 112.5°.

(i) Head-on situation: Two ships are meeting on re-
ciprocal or nearly reciprocal courses to involve a
collision risk. One ship sees the other ahead or nearly
ahead, and the relative azimuth between two ships is
− 5.7° to 5.7°.

(ii) Overtaking situation: Two ships are sailing on
identical or nearly identical course to involve a
collision risk. One ship comes up to another ship
from 112.5° to 247.5°.

3.2. Feature Extraction of Intership Behaviors. ,is part aims
to obtain insights into the dynamic encounter process
through utilizing a sequence of behavioral features. ,ese
features have been established by merging the six parameters
in a fixed time window, including the relative velocity,
course difference, and relative distance as well as three types
of azimuths. ,e coordinate system presented in Figure 3 is

Traj a Traj b

tb 
Start

tb 
End

ta 
End

ta 
Start

Figure 2: Diagram of space-time constraints during the encounter
process.
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established to offer insights into calculating a set of pa-
rameters by modeling the spatial relationship between ships
encountering each other. As shown in Figure 3, the point O

indicates the position of the own ship, and lngo, lato, VO, and
ϕO are the longitude, latitude, SOG, and COG of own ship.
Moreover, the point T represents the location of the target
ship, and lngt, latt, VT, and ϕT are longitude, latitude, SOG,
and COG of the target ship. ,e relative velocity, which is
denoted as VR, is as follows:

VR � VO − VT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (11)

A represents the course difference between the own ship
and target ship through incorporating ϕO and ϕT as follows:

A �
ϕO − ϕT, ϕO − ϕT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 180°,

360∘ − ϕO − ϕT( 􏼁, ϕO − ϕT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 180°.

⎧⎨

⎩ (12)

Dot denotes the relative distance between the two ships,
which is estimated by merging with a set of parameters
including lngolato, lngt, and latt and the Earth radius denoted
as R, as follows:

Dot � R × arccos sin lato( 􏼁sin latt( 􏼁( 􏼁

+ cos lato( 􏼁cos latt( 􏼁cos lngt − lngo( 􏼁,
(13)

and α is the true azimuth between the two ships, which
can be computed as follows:

α �

arccos
lato − latt

Dot

× 60􏼠 􏼡, lato > latt,

360∘ − arccos
lato − latt

Dot

× 60􏼠 􏼡, lato ≤ latt.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

αo and αt denote relative azimuths of two ships, re-
spectively, which are defined as follows:

αo � α − ϕO,

αt � α − ϕT.
(15)

,us, the parameters w � (VR, A, Dot, α, αo, αt) are
regarded as the behavioral features of encountering ship
pairs.

4. Collision Risk Prediction Model

In this section, we propose a novel collision risk prediction
algorithm, which can perceive the potential risk at an early
stage by mapping current behavior to future collision risk.
To this end, first, the risk level of the current encounter
situation is calibrated through the widely used CRI method.
,en a deep recurrent neural network structure is used to
establish the mapping between the ship’s current behavior
and future collision risk; then the problem of risk prediction
is formed as a time series classification task.

4.1. Collision Risk Calibration. Collision risk calibration is a
process used to calculate the risk level for encountering ship
pairs. It should be noted that the risk level obtained from the
calibration is only an assessment based on the current sit-
uation. However, the purpose of this study is to predict
future collision risk.,erefore, it is necessary to establish the
mapping relationship between the current behavior wt and
the risk level Rt+ΔT after a period of time. ΔT is the pre-
diction horizon, which represents the time interval between
observed behavior and predicted risk.

During the training process, a large set of wt and Rt+ΔT

will be prepared to train the model. In this section, the
calibration process of the risk level R will be described. As a
widely used way of risk calibration, the CRI is used to warn
of the collision risk by setting off a collision alarm based on
diverse factors influencing the collision risk. In particular,
various parameters are taken into account in our calibration
process, including the DCPA, TCPA, relative distance, and
course difference between two ships [35].

DCPA � Dot × sin(∠OTQ),

TCPA � Dot ×
cos(∠OTQ)

VR

,

CRIbasic � adcpa
DCPA

Ds

􏼠 􏼡

2

+ atcpa
TCPA

Ts

􏼠 􏼡

2

+ ad

Dot

Ds

􏼠 􏼡

2
⎡⎣ ⎤⎦

− (1/2)

,

CRI � CRIbasicFDCPAFTCPAFcd,

(16)

where Dot denotes the relative distance between the ships
encountering each other. Ds and Ts are the minimum safe
distance and time necessary to perform evasive maneuvers;
we set them as 0.5 miles and 10 minutes, respectively.
Moreover, adcpa, atcpa, andad are the weights coefficients
depending on the state of visibility at sea, the length and
beam of the ship, and the type of water area. According to
[11], Fcd is a multiplier reflecting the encounter danger
degree in different encounter situations. Specifically, re-
garding the course difference between the ships involved in
the encounter, the encounter situations can be divided into
three categories and the corresponding value of each

Y (N)

X (E)

Q

O

P

T

ϕo

ϕT

VO

VR

VT

VR

Figure 3: Rectangular coordinate system of own ship and target
ships.
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multiplier Fcd is obtained in Table 2. Moreover, FDCPA and
FTCPA are the amplification coefficients of DCPA and TCPA,
which are somewhat inversely proportional to the values of
DCPA and TCPA. ,e formulas for calculating the am-
plification coefficients are given as follows:

FTCPA � exp− (TCPA/10)
,

FDCPA � exp− DCPA
.

(17)

Obviously, from the above equation, CRI is a continuous
value. However, continuous CRI values do not directly
indicate the urgency of a ship collision risk. In other words,
even if we know the value of the CRI, we cannot be certain
about the danger level it represents. Here, we apply the
different risk stages of ship encounters to divide the CRI into
five different risk levels: low (L), low-middle (LM), middle
(ML), middle-high (MH), and high (H):

1, if 0≤CRI< τ1[low risk level],

2, if τ1 ≤CRI< τ2[low − middle risk level],

3, if τ2 ≤CRI< τ3[middle risk level],

4, if τ3 ≤CRI< τ4[middle − high risk level],

5, if τ4 ≤CRI[high risk level],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where τ1, τ2, τ3, and τ4 are threshold values that need to be
determined to separate different risk levels. We can deter-
mine them through analyzing the distribution of CRI, which
is computed from AIS data of the encounter ships involved
in the encounter. In addition, it has been put forward that
the statistical probability of the CRI is equal in each en-
counter stage [36]. In following this reasoning, we calculate
the corresponding CRI values for all the samples by using
equation (18). All the CRI values are sorted and divided into
five equal intervals according to the frequency.,e endpoint
of the i-th interval is the threshold τi. Figure 4 shows the
thresholds selected for each risk level, the left side of Figure 4
illustrates the cumulative probability of the CRI in these time
windows, and the right side of Figure 4 counts the number of
each encounter stage, which is closely related to the cor-
responding risk levels. ,ereby, the threshold values of the
five risk levels are provided as follows:

(1) ,e CRI values between 0.00 and 0.13 are ranked as
the low risk level.

(2) ,e CRI values between 0.13 and 0.20 are ranked as
the low-middle risk level.

(3) ,e CRI values between 0.20 and 0.28 are ranked as
the middle risk level.

(4) ,e CRI values between 0.28 and 0.45 are ranked as
the middle-high risk level.

(5) ,e CRI values larger than 0.45 are ranked as the
high risk level.

Following the above process of risk discretization, the
risk level Rt at a different time t is obtained. As mentioned
earlier, we will match the behavior sequence wt with the risk
Rt+ΔT to obtain the training set. From the perspective of
machine learning classification, wt is the temporal feature,

and Rt+ΔT is the label. ,us, the problem of risk prediction is
transformed into a problem of sequence classification. ,e
following section will introduce the sequence classification
method used in this paper.

4.2. Risk Prediction Model. With the fast development of
deep learning, recurrent neural networks (RNNs) have
gained great success in recent years [37] in terms of sequence
classification. While an RNN has the ability to make full use
of the information of the historical input, it is difficult to
manage the long-term dependence caused by the fast failure
of nodes. As one of the advanced RNNs, LSTM networks
address this issue by modifying the internal RNN cell
structure. In particular, LSTM contains a set of memory
blocks consisting of one or more autocorrelative memory
cells and three gates, that is, input, output, and forget gates.
In following this structure, a memory block can retain the
relevant historical information [38]. Besides, the sequence of
behavioral features is considered to be a typical time series;
thus, it follows that the issue of risk prediction can be treated
as a time series classification task. In view of the above, it is
reasonable to think that LSTM networks can provide
valuable insight for predicting the collision risk between
ships encountering each other. With this modeling frame-
work, an understanding of the sequence of behavioral fea-
tures and their relationships with collision risk can be
achieved.

In our implementation, we assume that wt is the se-
quence of behavioral features in the t-th time window; in
addition, Rt+ΔT represents the risk level profiles in the
t + ΔT-th time window computed in terms of equation (18).
With the evolution of the encounter process, the LSTM
networks are employed to learn themapping between wt and
Rt+ΔT. Figure 5 shows the modeling framework of this
mapping; it can be clearly observed from Figure 5 that the
sequence of behavioral features involved in the time window
is effectively related to the risk level.,us, the ship encounter
risk prediction is achieved by utilizing the encounter dataset
under three encounter situations.

5. Experimental Results and Discussion

5.1. Study Areas. ,e South Channel intersection waterway,
an important and busy shipping channel located on the
Yangtze Estuary, was selected as the study area. Figure 6
shows an electronic chart of the South Channel intersection
waterway. Figure 6 indicates that a large number of ships in
this waterway lead to complex encounter situations. In such
a water area with dense traffic flow, the early identification of
risk is very important for navigation safety. In this study, we
use an AIS dataset for 1729 ships in the South Channel
intersection waterway from 07/01/2019 to 08/31/2019.
Subsequently, the sequence of behavioral features is

Table 2: ,e relationship between Fcd and course difference.

Course difference 0° − 60° 60° − 150° 150° − 180°

Fcd 1 8.5 2.34

Journal of Advanced Transportation 7



constructed by determining the length of time window and
sliding step. In our implementation, we set the different
window lengths to 20 s and 10 s; thus, there are 185,208

records in the dataset. ,e records of the individual en-
counter situations are shown in Table 3. Among them,
159,798 records were employed to train the risk prediction
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model, 17,760 records were employed to determine the
optimal parameters of the model, and the remaining records
were used for testing. Figure 7 shows the risk level distri-
bution in the test data, thus providing an opportunity to
advance our test data knowledge.

5.2. Parameters in the Experiment. ,is section discusses the
various experimental parameters to find an optimal pa-
rameter combination to accurately predict the risk of ship
encounters. First, we compare different prediction horizons,
that is, 30 seconds and 40 seconds. It is reasonable that ship
officers have sufficient time to react to emergencies with
these prediction horizons. For improving the accuracy of the
model, the grid search method is adopted to determine the
optimal number of hidden layers and the learning rate of
LSTM in the cross-validation set. Figure 8 shows the cross-
validation results under the two prediction horizons. In the
case of 30 seconds in advance, the peak value of the pre-
diction accuracy is obtained when the hidden layer is 2 and
the learning rate is 0.1, and the accuracy is 0.8712. When it is
40 seconds in advance, the optimal number of hidden layers
and the learning rate should be 3 and 0.00010, respectively,
and the corresponding accuracy is 0.8676. Finally, the
number of LSTM units in the individual hidden layer is 18,
which is closely related to the six types of parameters in the
sequence of behavioral features.

5.3. Experimental Result. In this section, we evaluate the
prediction accuracy and robustness in a typical scenario of
three encounter situations (crossing, head-on, and

overtaking). In particular, Figures 9–11 display a series of
comparisons between the ground truth of the risk level and
the predicted results in an individual scenario, and each of
them contains eight subgraphs. As in the above process, the
ground truth and predicted risk level here both refer to the
future risk level corresponding to the current window.
Figures 9(a)–11(b) and 9(b)–11(b) show the spatial distri-
bution of the predicted values under various prediction
horizons, including 30 seconds and 40 seconds, respectively.
Moreover, Figures 9(c)–11(c) present the spatial distribution
of the real risk level to evaluate the accuracy of the risk
prediction. Furthermore, Figure 9(d)–11(d) and 9(e)–11(e)
demonstrate the risk level of each window under the two
prediction horizons. It can be observed that the parts above
and below the horizontal line are the real risk level and the
predicted risk level, respectively. Finally, to study the dy-
namic change of the risk in the encountering process, we
divide the whole encounter process into five stages according
to time. Figures 9(f)–11(f) and 9(g)–11(g) are the histo-
grams displaying the predicted risk level of each stage under
the three encounter scenarios, and the ratios of individual
risk level are intuitively presented in Figure 9(h)–11(h),
which are closely related to the prediction accuracy of each
stage. ,e following three typical encounter scenarios are
analyzed.

Figure 9 shows the predicted results in the crossing
situation and compares them with the actual values. As
shown in Figure 9(c), the collision risk is initially at the low
risk level, and it is continuing at that level for a while until
the ships involved in the encounter sail into the warning
zone (area indicated by the red dotted line). Subsequently,
the collision risk gradually rises to the high risk level, while
one of the ships is in the center of the warning zone, and it
commences evasive maneuvers to achieve a safe encounter.
Moreover, as shown in Figures 9(a) and 9(b), the risk level
predicted by both models is almost inconsistent with the real
values at the beginning. With the evolution of the encounter
process, there are certain deviations. Later, all the models
correctly predict the risk, especially while the collision risk is
at a high risk level. It follows that effective predictions can be
made by taking advantage of the sequence of behavioral
features. Figures 9(d)–9(g) show that the model has the
ability to yield more superior predictions, while the pre-
diction horizon is shorter. However, the variation tendencies
of true values and predicted values are fairly consistent. As
shown in Figure 9(h), the model has achieved high pre-
diction accuracy in general. ,e proposed approach is

Table 3: Records of time windows.

Category of
situation Total

Training
set

Validation
set Test set

Individual Individual Individual
Crossing
situation

185208

45774 5100 2600

Head-on
situation 74805 8310 2250

Overtaking
situation 39219 4350 2800

High risk level
(28.2%)

Low risk level
(23.7%)

Low-middle risk level
(15.1%)

Middle risk level
(16.9%)

Middle-high risk level
(16.1%)

Figure 7: Proportion of risk levels in the test set.

Figure 6: Electronic chart of the South Channel intersection
waterway of the Yangtze Estuary.
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Figure 8: Determining the optimal hidden layers and learning rate of LSTM via a grid search in the validation set.
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Figure 9: Crossing situation: (a) and (b) are the spatial distributions of risk level under various prediction horizons; (c) is the corresponding
spatial distribution of realistic risk level. (d) and (e) show the risk level statistics of each window under two prediction horizons. (f ) and
(g) are the number of samples of each risk level in the five stages. (h) is the frequency of each risk level at various stages.
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Figure 10: Head-on situation: (a) and (b) are the spatial distribution of risk level under various prediction horizons; (c) is the corresponding
spatial distribution of realistic risk level. (d) and (e) show the risk level statistics of each window under two prediction horizons. (f ) and
(g) are the number of samples of each risk level in the five stages. (h) is the frequency of each risk level at various stages.
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capable of predicting the collision risk under a crossing
situation by making full use of the spatiotemporal behaviors
of the ships involved in the encounter.

As shown in Figure 10(c), collision risk is initially at a
low risk level since the two ships are far apart. As the head-
on process evolves, the risk of collision increases gradually.
However, since both ships sail in their respective channels,
neither of them takes anticollision maneuvers under such a
circumstance, although the high risk level has been main-
tained for a certain period. Eventually, the risk of collision
gradually disappears, because the two ships have passed each
other (Past and Clear). Moreover, the spatial distribution of
risk level in Figures 10(a)and 10(b) is consistent with that in
Figure 10(c). In this example, it seems that there is no
difference between the predicted results in the 30-second
horizon and those in the 40-second horizon. ,is may be
because the motion state of the ship does not change during
the course in terms of speed and direction keeping, and the
prediction accuracy of the collision risk has only a small
relationship with the advance of time. As shown in
Figures 10(d)–10(g), it can be observed that the predicted
results differ from the actual collision risk, thereby con-
firming the suitability of our approach in a head-on situa-
tion. In particular, accurate prediction of a high risk level is
of great significance to avoid potential conflicts in congested
waterways because dangerous encounters occur occasionally
in these high-risk zones. ,erefore, it necessitates additional
attention and caution in these areas to ensure safe en-
counters between ships.

For the overtaking situation, Figure 11(c) shows that the
collision risk has continually been at a high risk level. ,is is
primarily because the relative distance and course between the
two ships are small, which makes it easier for a potential
collision accident to occur. Soon afterward, the collision risk
tends to decline gradually, while one ship leaves the warning
zone, marking a safe encounter between two ships as well.,e
risk distributions with the high risk level in Figure 11(c) are
fairly consistent with those in Figures 11(a) and 11(b), which
shows that the risk prediction model has a high recall rate for
high risk cases. However, for other risk levels, there are certain
deviations between the predicted results and the real value.
Eventually, we can observe from Figure 11(h) that the model
can perceive a high risk from the beginning, which suggests
that once the overtaking situation is formed, there is a high
risk in the initial stage. In this case, the ship officer can pay
additional attention to the possible collision risk according to
this early warning model.
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Figure 11: Overtaking situation: (a) and (b) show the spatial distribution of the risk level under various prediction horizons; (c) is the
corresponding spatial distribution of the realistic risk level; (d) and (e) show the risk level statistics of each window under the two prediction
horizons. (f ) and (g) are the number of samples of each risk level in the five stages. (h) is the frequency of each risk level at various stages.

Table 4: Confusion matrix under a prediction horizon of 30
seconds.

Risk level L LM M MH H
L 903 7 8 15 18
LM 131 117 63 26 31
M 32 20 468 43 43
MH 18 15 62 449 78
H 16 13 32 82 1135
SUM 1100 172 633 615 1305
ACCURACY (%) 82 68 74 73 87
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To evaluate the model performance in all the test sets, the
comparisons of the overall prediction precision results of the
collision risk for the two prediction horizons are shown in
Tables 4 and 5. From the overall sample, this model can
predict the risk accurately in different horizons. ,e ability
to identify the risk situations can effectively warn the ship
officers of potential collisions, which could provide the basis
for a navigation decision. Moreover, in terms of the different
horizons, the model is more accurate in predicting collision
risks that may occur in the near future than in predicting
those further away. In practical applications, this model
needs to balance the tradeoff between prediction accuracy
and horizon length.

6. Conclusions

An AIS data-driven approach has been derived for collision
risk prediction in a vessel encounter situation by learning the
intership behavior. ,e approach considers the relationship
between intership behavior and future collision risk, which
helps to predict the potential collision risk in various en-
counter situations in advance. To illustrate the approach, the
intership behavior is transformed from AIS traces to a se-
quence of behavioral features by combining a fixed set of
parameters. ,en, we related the sequence of behavioral
features involved in a specified time window to the risk level
at a future time; then, the mapping between them was
established through an RNN. Furthermore, we tested the
approach over encounter cases in the South Channel in-
tersection waterway with various prediction horizons. ,e
prediction results demonstrated that the approach has
reasonable and effective ability and that the risk predicted in
advance is consistent with the ship encounter situations. In
particular, the model has an outstanding ability to identify
risk through intership behavior when the potential collision
risk is at a high level. ,is research offers a valuable insight
into collision risk prediction by intership behaviors, and the
approach is expected to be applied to the implementation of
a new collision warning system.
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