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An accurate prediction of future trajectories of surrounding vehicles can ensure safe and reasonable interaction between in-
telligent vehicles and other types of vehicles. Vehicle trajectories are not only constrained by a priori knowledge about road
structure, traffic signs, and traffic rules but also affected by posterior knowledge about different driving styles of drivers. (e
existing predictionmodels cannot fully combine the prior and posterior knowledge in the driving scene and performwell only in a
specific traffic scenario. (is paper presents a long short-term memory (LSTM) neural network driven by knowledge. First, a
driving knowledge base is constructed to describe the prior knowledge about a driving scenario. (en, the prediction reference
baseline (PRB) based on driving knowledge base is determined by using the rule-based online reasoning system. Finally, the future
trajectory of the target vehicle is predicted by an LSTM neural network based on the prediction reference baseline, while the
predicted trajectory considers both posterior and prior knowledge without increasing the computation complexity. (e ex-
perimental results show that the proposed trajectory prediction model can adapt to different driving scenarios and predict
trajectories with high accuracy due to the unique combination of the prior and posterior knowledge in the driving scene.

1. Introduction

Since the 1980s, autonomous vehicles have been regarded as
effective solutions to the problems of road safety, traffic
congestion, and energy crisis. However, autonomous vehi-
cles still face many driving difficulties in the real urban traffic
environment. A major problem is how to interact safely and
reasonably with other types of vehicles in a driving scene.
Experienced human drivers can predict the future trajectory
of other vehicles in a driving scene, thereby making safe,
reasonable, and efficient decisions. Accurately predicting the
future trajectory of a vehicle not only can reduce or eliminate
the collision risk when autonomous vehicles perform
complex drivingmaneuvers, such as merge, lane change, and
overtaking, but also can improve the driving efficiency and
comfort of autonomous vehicles [1]. In a real urban traffic
scenario, the vehicle’s driving trajectory is not only

constrained by prior knowledge, such as that about the road
structure, traffic signs, and traffic rules, but also by uncertain
posterior knowledge, including subjective driving intentions
of the driver. (e influence of driving knowledge on vehicle
trajectory is shown in Figure 1, where it can be seen that
when the road structure constraints are not considered, the
predicted future trajectory, denoted as the red curve, is
incorrect. As shown in Figure 1(b), there is a large slow-
moving truck in front of the target vehicle. In such a case,
based on human driving experience, the target vehicle is
likely to adopt a lane change strategy.(erefore, how to fully
combine the prior and posterior knowledge in a driving
scene in the prediction process is crucial for accuracy im-
provement of the long-term trajectory prediction and safe
interaction with other vehicles.

According to the specific prediction process, the existing
prediction models can be roughly divided into three
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categories: physics-based models, maneuver-based models,
and learning-based models [2]. (e physics-based models
use vehicle kinematics and dynamics model to predict the
future position of a target vehicle, and they include the
constant turn rate and acceleration model [3], switching
Kalman filters [4], and Monte Carlo simulation [5]. How-
ever, these models ignore the prior and posterior knowledge
about a driving scenario, such as road structure, traffic rules,
and driver’s subjective intentions, which limits these models
to short-term prediction (less than 1 s) [6].

Maneuver-based models divide the prediction process
into two parts. First, driving intention is estimated according
to the physical state of a vehicle, information about the road
network, and driver behavior, and then the predicted tra-
jectory is fitted based on the driving intention. For maneuver
classification in more complex scenarios, discriminative
learning algorithms, including the multilayer perceptions
(MLPs) [7], logistic regression [8], relevance vector ma-
chines (RVMs) [9], and support vector machines (SVMs)
[10], have been very popular. Complex vehicle motion is
decomposed into predefined driving action sequences,
which makes driving intention easier to identify and classify,
and the prediction result is more stable and accurate than
that of the physics-based models, and the prediction horizon
is longer. However, in complex traffic scenarios, the tradi-
tional algorithms, such as finite vector machines and con-
ditional random fields, have the problem of low scene
adaptability, while Bayesian network andMarkov model can
solve the problem of driving maneuver classification in
uncertain environments. In addition, the state space of the
above models is extremely large, and these models are prone
to “curse of dimensionality,” and unable to real-time pre-
diction. (e approach of [11] predicts the fictive collision
probabilities stemming from the execution of each intention
by updating a prior intention distribution based on pos-
tulation that drivers do not perform maneuvers with high
collision risks, but this assumption prevents the detection of
specific dangerous maneuvers that are conducive to driving
efficiency. Recently, artificial neural networks have been
used to classify vehicle driving actions, but the existing high-
quality calibrated datasets are limited and cannot cover all
possible driving scenarios (data sparsity) [12], which makes
the network training difficult and challenging, and scene
adaptability is low.

Learning-based models skip the step of maneuver rec-
ognition and perform trajectory prediction directly based on
the historical observation of a target vehicle, so the posterior
knowledge in driving scenarios can be effectively learned,
and incorrect driving motion recognition can be avoided.
Recently, artificial neural networks have been used to predict
future trajectories of vehicles, bicycles, and pedestrians
[13–15]. As a type of recurrent neural network (RNN), the
long short-term memory (LSTM) neural network has been
proven to be very effective in solving the time series
problems, and thus has been widely used in pedestrian
trajectory prediction, intersection vehicle destination pre-
diction, and highway vehicle trajectory prediction. However,
in previous works, specific-scenario models, such as lane
change models for nonintersection sections and left-/right-
turn models for intersection areas, have been proposed
[10, 16, 17], and the training data needed manual annota-
tion, which increased the training difficulty of the model. In
[18], an encoder-decoder LSTM model is proposed for
predicting vehicle trajectory by using an occupancy grid
map, and the maximum prediction horizon of this model is
two seconds, which is not sufficient for applications.

When an intelligent vehicle is driving in a real urban
environment, the driving scene changes dynamically over
time, which means that the prediction model should au-
tomatically adapt to a driving scene. In order to solve the
problem of vehicle adaptability to the driving scene, many
studies incorporated the maneuver-based and learning-
based models. In [19], two LSTMs were used to identify
high-level driver intentions and analyze low-level complex
vehicle motion dynamics. (is method is better geography-
adaptive than the traditional LSTM networks. An LSTM
model for interaction aware motion prediction of sur-
rounding vehicles on freeways was presented in [20]. (is
model assigns confidence values to maneuvers being per-
formed by vehicles and outputs a multimodal distribution
over future motion based on these values. (e mentioned
methods predict the multimodal trajectory based on ma-
neuver classes, which improves the road adaptability, but the
prior knowledge in driving scenarios is not used. In [21], a
long short-term memory (LSTM) network was employed to
anticipate the driving policy of a vehicle (such as forward,
yield, turn left, and turn right) using its sequential history
observations. (e policy was then used to guide a low-level
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Figure 1: Influence of driving knowledge on trajectory prediction: (a) influence of road structure on trajectory prediction; (b) influence of
driving experience on trajectory prediction.
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optimization-based context reasoning process. (is method
combines the prior knowledge in the driving scene and
constructs the cost map to perform the second optimization
of the previously obtained driving intention to generate the
final predicted trajectory, but the driving intention esti-
mation of the upper-level does not utilize the prior
knowledge of the driving scene, and the weight of the
function cannot be adjusted adaptively to a driving scenario.
Deo and Trivedi [22] adopt a convolutional social pooling
LSTM-based model. (is approach predicts a distribution of
future vehicle trajectory dependent on maneuver, but this
approach ignores the impact of the interaction of the road
users. Dai et al. [23] proposed a spatiotemporal LSTM-based
model, which considers the spatial interactions of the sur-
rounding vehicles, but the constraints of other prior
knowledge such as road structure, traffic rules, and driving
experience are not considered. (e dual learning model
(DLM) which takes information from two different inputs to
predict vehicle trajectory was presented in [24]. (is model
embeds the occupancy map and risk map into the trajectory
model to consider a comprehensive definition of risk in the
traffic scene, but the computational complexity usually
grows exponentially if the dimensionality of the feature
space increases. (us, it becomes difficult to meet the online
requirement.

In this article, an integrated trajectory prediction model,
which combines knowledge reasoning and LSTM neural
networks, is proposed. (e contribution of this study can be
summarized as follows:

(1) In order to consider the constraints of the prior
knowledge. (e prediction reference baseline ob-
tained by knowledge reasoning is introduced into the
LSTM network, where the proposed model can ef-
fectively combine the prior knowledge without in-
creasing the computation complexity.

(2) In order to learn the spatial interactions of the
surrounding vehicles and solve combinatorial ex-
plosion problem caused by a large number of con-
dition attributes. A method of deterministic scene
evaluation is employed to classify and analyze the
main conditions that affect the future trajectory of a
vehicle from the perspectives of safety, legitimacy,
and reasonableness, which simplifies modeling of the
spatial interactions.

(3) In order to improve the adaptability of the proposed
model. (e Frenet coordinates based on the PRB are
used to train the LSTM network, and it is not
necessary to annotate the training data set manually
according to the specific driving scenario.(e results
of the field test prove the adaptive performance of the
proposed model.

(4) (e performance of the proposed model is evaluated
with state-of-the-art methods on a naturalistic
highway driving dataset (NGSIM), and the results
show that our proposed model outperforms the
state-of-the-art methods.

(e rest of the paper is organized as follows. (e pre-
diction reference baseline determination method and the
proposed LSTM network are presented in Section 2. (e
proposed prediction model is evaluated by both simulations
and real-traffic urban roadway experiments, and the ob-
tained results are presented and discussed in Section 3.
Finally, the main conclusions, limitations, and future work
are presented in Section 4.

2. Materials and Methods

2.1. Problem Formulation and Method Overview

2.1.1. Problem Formulation. (e proposed trajectory pre-
diction model is divided into two layers. (e first layer
determines the PRB of a target vehicle, and the second layer
predicts the future trajectory based on the PRB. PRB is a
trajectory that indicates the driving intention of the target
vehicle based on prior driving knowledge, which connects
the online reasoning system and the LSTM network.

(e process of driving intention prediction for a target
vehicle Vi at time t is presented in Figure 2, where it can be
seen that it is necessary to understand and evaluate driving
scene St

vi
, and generate the scene evaluation parameters Et

vi
of

the target vehicle, including the safety assessment SAFEt
vi
,

legitimacy assessment LEGALt
vi
, and reasonable assessment

REASONABLEt
vi
, which is expressed as

E
t
vi

� SAFEt
vi

, LEGALt
vi

, REASONABLEt
vi

􏽮 􏽯. (1)

According to the prior knowledge of driving scenarios,
such as traffic rules and driving experience, the driving
intention bt

vi
of the target vehicle is inferred based on the

prolog online reasoning system. A maneuver bt
vi
is classified

by the lateral movement of the vehicle, which is expressed by
a finite set B:

b
t
vi
∈B ∶ � LK, LCL, LCR,TR,TL,GS, SS, . . . ,{ }. (2)

Finite set B includes the following maneuvers: lane
keeping (LK), lane change to left (LCL), lane change to right
(LCR), turn right (TR), turn left (TL), go straight at inter-
section (GS), and stop before the stop line (SS).

Finally, driving intention bt
vi
is fitted to the PRB PRBt

vi
by

the cubic Bezier curves.
(e second layer predicts the future vehicle trajectory. First,

the coordinate transformation is performed on the historical
trajectory of the target vehicle based on the PRB PRBt

vi
, as

shown in Figure 3. In Figure 3, st
vi
denotes the distance the

target vehicle has traveled along the PRB, and ltvi
is the

transverse distance between the target vehicle and the PRBt
vi
.

(e absolute position denoted as (lattvi
, lngt

vi
) is transformed to

the Frenet coordinates that are denoted as (st
vi

, ltvi
). (e set of

observation vectors denoted as Ot(n)
vi

is used for trajectory
prediction of the target vehicle, and it is given by
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t
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(3)
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where a set (st
vi

, ltvi
) denotes the Frenet coordinates, κt

vi
denotes

the curvature, θt
vi
represents vehicle heading, vt

vi
denotes the

vehicle speed, at
vi
denotes the vehicle acceleration, andM is the

input step of the network.
(e network output Pt(n)

vi
is expressed as

P
t(n)
vi

� s
t
vi

, l
t
vi

, v
t
vi

,􏽮 􏽯, � t + 1, t + 2, . . . , t + K, (4)

where K denotes the output step of the network.
Finally, the predicted trajectory denoted as Trat(n)

vi
is

obtained by transforming the reference coordinates to the
absolute coordinates represented by the latitude and lon-
gitude, which is expressed as

Trat(n)
vi

� lattvi
, lngt

vi
, v

t
vi

􏽮 􏽯, n � t + 1, t + 2, . . . , t + K.

(5)

2.1.2. Overview of the Proposed Approach. (is paper pro-
poses a trajectory prediction model based on knowledge
reasoning and LSTM neural network.(e architecture of the
proposed model is shown in Figure 4, where it can be seen
that the proposed model consists of two phases: PRB de-
termination phase and trajectory prediction phase. During
the PRB determination phase, by analyzing the relationship
between “human-vehicle-road” in the driving scene and
extracting the knowledge of road network, traffic partici-
pants, and road traffic facilities, the conceptual ontology
model of the driving scene is established. (e main con-
ditional attributes that affect the behavior decision-making
process are classified and analyzed from the perspectives of

safety, legitimacy, and reasonableness using the proposed
deterministic situation assessment method, and situation
parameters in the horizontal and vertical directions are
obtained. (e behavior prediction rule base is constructed
using the situation parameters, traffic rules, and driving
experience. Based on the prolog online reasoning system, the
behavioral prediction rules are matched with the factual
knowledge obtained by the conceptual ontology model, and
the driving intentions are inferred. Finally, a third-order
Bezier curve is used to fit the driving intention to a PRB.(e
trajectory prediction phase uses the LSTM network to learn
the continuous features of the historical trajectory of a target
vehicle on the basis of the PRB and generates the final
predicted trajectory.

2.2. Prediction Reference Baseline Determination. (e ar-
chitecture of the proposed PRB determination method is
presented in Figure 5, where it can be seen that this method
consists of online and offline phases. (e offline phase es-
tablishes the conceptual ontology model (Tbox) of a driving
scene and extracts the behavioral prediction rules based on
traffic rules and driving experience. According to the con-
ceptual ontology model, the road network and real-time
environment perception information are used to instantiate
the entities and related relationships in the driving scene
(Abox). (e entities and entity relationships in the driving
scene are classified by the deterministic scene assessment
method and analyzed from the perspectives of safety, le-
gitimacy, and reasonableness. (e scene evaluation pa-
rameters in both horizontal and vertical directions are

Scenario assessments

Safety assessment
Lane keeping
Lane change to left
Lane change to right
Turn left
...

Attribute of obstacle
Attribute of traffic sign
Attribute of traffic rule
Attribute of road structure
...

Legitimacy assessment

Reasonable assessment

Rule-based reasoning

Driving intentionInput condition attribute

Figure 2: Driving intention prediction process.
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Figure 3: Frenet coordinate of a vehicle: (a) driving scenario; (b) description of Frenet coordinate.
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generated, and the behavioral prediction rules are matched
with the scene evaluation parameters by using the prolog
online reasoning system.(e driving intentions are inferred,
and finally, the third-order Bezier curve is used to fit the
driving intention to the PRB.

2.2.1. Semantic Modeling of Driving Scene. In a driving
scenario, there are various road element entities, such as
traffic participants, road networks, and road traffic facilities
in urban driving scenarios. (e environment perception
system can provide only the spatial location of each entity,
but it cannot describe the correlation between entities, and
make full use of prior information, such as traffic rules and
driving experience, which is crucial for improving the
prediction model adaptability to the driving scene. Ontol-
ogy, as a form of knowledge expression, is used to model the
concepts of specific domains and relationships between

concepts, which can be used to model driving scenarios
effectively [25–27].

(e conceptual ontology model is divided into two
module types: entities and attributes. (is study takes the
target vehicle as a perspective and summarizes five entity
types on the basis of [28]:

(1) Target vehicle
(e target vehicle entity describes the vehicle to be
predicted.

(2) Behavior
(e behavior entity is a collection of driving ma-
neuvers of a vehicle. (ree behavior types are
designed: LongtiBehavior, LatiBehavior, and
AdvancedBehavior. (e LongtiBehavior represents
basic vertical driving behavior and includes four
behaviors: accelerate, decelerate, keep, and stop. (e
LatiBehavior represents basic horizontal driving

LSTM network

Vehicle state
transformation

Vehicle V1
(1) (1)

OT–M+1,...,OT

(n)
Ot = {s,l,v,a,k}
for t = T – M + 1,...,T
for n = 1,..., N

Predicted
trajectory

Background knowledge
digital map

traffic regulations
driving experience

Real-time perception
Static/dynamic obs

GPS/IMU

Offline phase Online phase
Ontology-based

scenario description
(Abox)

Situation
assessment

Rule-based
reasoning V1

PRB
Prediction

reference baseline
(PRB) produce

Prediction
reference
baseline

Prediction
reference
baseline
Predicted
trajectory

Ontology modeling
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Figure 4: Overview of the proposed trajectory prediction model.
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Figure 5: (e architecture of the proposed prediction reference baseline determination method.
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behavior and includes three behaviors: Change-
ToLeft, ChangeToRight, and KeepLane. (e
AdvancedBehavior represents advanced driving
behavior and includes two behaviors: Overtake and
Merge.

(3) Obstacle
(e obstacle entity represents a collection of obstacle
entities encountered by a vehicle during driving.(is
work divides obstacles according to the behavior
characteristics of obstacle entities in driving sce-
narios into two categories: StaticObstacle and
DynamicObstacle.

(4) Road network
(e road network entity represents the topological
connection of roads by intersecting points and lines.
RoadType includes different road types. RoadPart
describes the components of the road network and is
divided into AreaEntities and PointEntities. Area-
Entities refers to road entities that can be abstracted
into lines and areas, such as lane, side walk, junction,
and segment, while PointEntities refers to road en-
tities that can be abstracted into points, such as road
signs, traffic signs, and traffic lights.

(5) Driving scenario
(e driving scene entity refers to a collection of road
entity elements encountered when a vehicle travels in
different road areas. In this work, driving scenarios
are divided into three categories: InSpecialAr-
eascenario (special area driving scenario),
OnRoadscenario (road driving scenario), and
NearSpecialAreascenario (near special region driv-
ing scenario). InSpecialAreascenario category can be
further divided into IntersectionScenario (intersec-
tion scene), TunnelScenario (tunnel scene), Bridge-
Scenario (elevated scene), and UturnScenario (U-
turn scene).

(e object attribute is used to describe the relationship
between concept classes. (is attribute restricts the de-
scribed relationship regarding the domain and range. (e
data attribute restricts the described relationship through the
definition and value domains. (e definition domain is a
class type.

(e described ontology modeling process of driving
scenario is equivalent to filling the background knowledge
of the TBox that constitutes the ontology knowledge base,
but the situational knowledge in the ABox is still lacking.
According to the road elements of a real driving scenario,
the driving scenario needs to be re-expressed using the
conceptual model of the TBox, which is an instantiation of
the ontology model. A real-traffic scenario is displayed in
Figure 6(a); a concrete driving scene that includes instances
of defined classes is presented in Figure 6(b), and its se-
mantic description is presented in Figure 6(c). (e in-
stances of RoadNetwork are added to the ABox as prior
knowledge, and instances of the obstacle are asserted in real
time.

2.2.2. Situation Assessment. After obtaining a semantic
description of a driving scene, it is necessary to determine
and evaluate condition attributes that affect the driving
intention in the driving scene, so as to estimate the driving
intention of a target vehicle. In order to solve the problem of
combinatorial explosion due to numerous condition attri-
butes [28], a deterministic scenario assessment method is
adopted to classify and analyze the key attributes that affect
driving intentions from the perspectives of safety, legiti-
macy, and reasonableness.

Deterministic scenario assessment methods use the
threat assessment indicators: TTC (time to collision),
THW (time headway), TTB (time to brake), DST (de-
celeration to safety time), and MSM (minimal safety
margin) in rule-based systems, and the probability of
collision is estimated as a binary value. For instance,
Glaser et al. [29] used the TTC and TIV (time inter-
vehicles) indicators to evaluate the possibility of colli-
sion. Noh et al. [30] proposed a distributed reasoning
method by dividing the current and adjacent lanes into
the front and rear areas, and the TTB and MSM indi-
cators were used to evaluate the possibility of collision in
the front area, while the TTC and MSM indicators were
used to evaluate the collision of rear area collision
possibility.

(e proposed deterministic scenario assessment method
consists of two parts. First, the driving scenario is deter-
mined by querying the knowledge base with the current
vehicle position.(en, a reasoning structure of an obstacle is
constructed in eight regions of interest to make safety as-
sessment, and a binary result (safe or dangerous) is calcu-
lated for each region using critical indicators TTC and TIV.
Finally, legitimacy and reasonableness assessments are made
to predict the maneuver of the target vehicle.

(1) Safety Assessment. Safety primarily refers to whether the
surrounding obstacles pose a threat to a vehicle, especially in
the area ahead, but it also refers to whether the left or right
lane can provide a safe lane change.(is paper constructs the
eight-direction obstacle inference model. For each area, the
TTC and TIV indicators are used for safety assessment. (e
TTC indicator is defined as a time when two vehicles
continue to collide on the same trajectory at the current
speed, and it is defined by

TTC �
Di

V − Vi

, (6)

where Di denotes the relative distance between the following
vehicle and followed vehicle, V denotes the speed of the
following vehicle, and Vi is the speed of followed vehicle.

(e threshold value TTCth is used to judge whether a
vehicle is dangerous in high-speed scenarios. (e risk as-
sessment formula is as follows:

RTTC(t) �
0, t≥TTCth,

1, t<TTCth,
􏼨 (7)

and when the calculated collision time t between the fol-
lowing vehicle and followed vehicle is greater than TTCth,
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the current scene is considered to be safe; otherwise, it is
considered to be dangerous.

(e TIV indicator is used to detect low-speed difference
scenarios. When the speeds of two vehicles are similar in
value, the TIV indicator is used to judge the degree of
danger, and it is calculated by

TIV �
Di

V
. (8)

(reshold TIVth is used to distinguish between safe and
dangerous scenes in low workshop distance scenes. (e TIV
risk assessment formula is as follows:

RTIV(t) �
0, t≥TIVth,

1, t<TIVth.
􏼨 (9)

When the calculated vehicle interval time t between the
following vehicle and followed vehicle is greater than TIVth,
the current scene is considered to be safe; otherwise, it is
considered to be dangerous, and in that case, the following
car needs to perform a certain action to avoid a possible
collision.

In each region, only when RTTC(t) and RTIV(t) are
calculated safety synchronously, the region is considered to
be safe. (e risk assessment of an region is determined as
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Figure 6: Scene modeling: (a) real-traffic scenario; (b) concrete driving scene; (c) semantic description of the concrete scene.
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rRegion(t) �
1, R

Region
TTC (t) + R

Region
TIV (t)≥ 1,

0, otherwise,

⎧⎨

⎩ (10)

where Region represents one of the eight regions, as shown
in Figure 7; when rRegion(t) has a value of zero, the area is
considered to be safe, and when rRegion(t) has a value of one,
the area is considered to be dangerous.

(e degree of danger in the area ahead is calculated by

rF(t) �
1, R

F
TTC(t) + R

F
TIV(t)≥ 1,

0, otherwise,

⎧⎨

⎩ (11)

and when the calculated values of the TTC and TIV indi-
cators in the current area are greater than the predefined
threshold, the following result message is obtained: safe-
ToGo (targetVehicle, keep); when the calculated values of
TTC and TIV indicators in the current area are both less
than the predefined deceleration threshold, but greater than
the corresponding parking threshold, the result message is
safeToGo (targetVehicle, dec); in this case, a lane change can
be performed to improve driving efficiency; otherwise, the
result message is safeToGo (targetVehicle, stop).

(e safety assessment of adjacent lanes is conducted
using the same assessment formula as that of the area ahead.
If the left lane is taken as an example, then the degree of
danger is expressed as

rL(t) �
1, has left vehicle at time t,

0, otherwise,
􏼨 (12)

and when there are vehicles in the left area, the left lane can
be considered to be dangerous; otherwise, the safety of the
left front and left rear areas are, respectively, evaluated by

rFL(t) �
1, R

FL
TTC(t) + R

FL
TIV(t)≥ 1,

0, otherwise,

⎧⎨

⎩

rBL(t) �
1, R

BL
TTC(t) + R

BL
TIV(t)≥ 1,

0, otherwise.

⎧⎨

⎩

(13)

(erefore, the safety assessment of the left lane is as
follows:

RiskL(t) �
1, rL(t) � 1 or rFL(t) + rBL(t)≥ 1,

0, otherwise,
􏼨 (14)

If the left lane is safe, safe To Left(target Vehicle, true)
will be generated; otherwise, the scene evaluation parameters
will be instantiated as safe To Left(target Vehicle, false).

(2) Legitimacy Assessment. (e legality assessment includes
three assumptions. First, when a vehicle is driving on the
road, it cannot exceed the maximum speed limit of the road;
second, when the vehicle is driving to the preintersection, it
is necessary to pay attention to the change in traffic lights
and obey the traffic rules; third, when a vehicle is about to
change the lane, the adjacent lane should allow lane changes.

(3) Reasonableness Assessment. Reasonableness assessment
generally refers to whether lane changing and other driving

behaviors affect the current goal of a target vehicle. Based
on the current lane of the target vehicle, the specific road
section or lane to be driven can be known. For instance, on
the one hand, if the next area to be driven by the target
vehicle is an intersection, and the distance between the
target vehicle and the stop line is less than δ, then lane
change is not recommended. On the other hand, if the
distance between the target vehicle and the stop line is
greater than δ, lane change can be performed. Reason-
ableness assessment introduces a situation parameter set
(reasonable To Left, reasonable To Right), which is defined
as data properties in the ontology model.

2.2.3. Rule-Based Reasoning. (e driving intention is de-
termined based on traffic rules and driving experience,
where the traffic rules are mainly used to limit the driving
behavior while the driving experience is utilized to sum-
marize the understanding and cognition of human drivers in
different scenes and obtain some rules that are not specific
traffic rules but are conducive to the reasonable driving.
According to the different driving scenarios defined in the
driving knowledge base, the rules stored in the driving
knowledge base are divided into several categories. Different
scenarios have different key road entities. For instance,
unlike OnRoad Scenario, in Near Intersection Scenario,
traffic lights are considered. Also, the classification of traffic
rules can reduce the rule search space and reasoning time.

In order to save computing resources and reduce rea-
soning time, SWI-Prolog language is used to write rule
knowledge, which is represented as a set of driving scene-
driving behavior mapping pairs, where driving behavior is
described as a rule head, and the driving scene is described as
a rule body. On the basis of [28], this paper adds the scene
assessment as an intermediate link of mapping driving scene
to the driving behavior and reorganizes 57 rules. Some of the
prediction rules are presented in Table 1.

(e online reasoning process can be described as follows.
First, the real-time facts related to the scene are used as
input, and each rule statement is matched. If all the facts of
the corresponding rule are matched, the matched prediction
result will be obtained, and the next rule statement will be
matched until each rule is matched. When all matched
results are obtained, the final result denotes the predicted
driving intention.

2.2.4. Prediction Reference Baseline Fitting. After obtaining
the driving intention of the target vehicle, the driving in-
tention is converted into the prediction reference baseline
using the cubic Bezier curves. As shown in Figure 8, first, a
target lane is selected based on the driving intention and
road network, where p0 represents the current position of
the target vehicle, and p3 is selected from the centerline of
the target lane with distance Ld from p0, and Ld is obtained
based on the driving experience. (e prediction reference
baseline is divided into three parts by p0 and p3: the pre-
dicted extension, the historical extension, and the intention
segment. In addition, Lp and Lh are determined by the input
and output steps of the LSTM neural network.
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Table 1: Prediction rules used in this study.
ID SWRL rules

Rule #1

TargetVehicle (target), currentRoadState (target, “ApprJunction”), isOnSegment (target, Seg), connectToJunction (Seg, Junc),
intersection (Junc), hasTrafficLight (Junc, TL), (hasLightColor (TL, “red”), hasLightColor (TL, “yellow”)), connectToStopLine

(Seg, SL), distToStopLine (SL, DL), DL< 10.
legalToGo (target, SS)

Rule #2

TargetVehicle (target), currentRoadState (target, “ApprJunction”), isOnSegment (target, Seg), connectToJunction (Seg, Junc),
intersection (Junc), hasTrafficLight (Junc, TL), hasLightColor (TL, “green”), connectToStopLine (Seg, SL), distToStopLine (SL,

DL), DL �< 20.
LegalToGo (target, acc)

Rule #3
TargetVehicle (target), currentVelocity (target, V), hasFrontObstacle (target, FO), distToObstacle (FO, DF), (DF/V)< 3,

(DF/V)≥ 2.
SafeToGo (target, dec)
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Figure 8: Schematic diagram of prediction reference baseline fitting: (a) lane-changing scene; (b) intersection turning scene; (c) the cubic
Bezier curves.
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As shown in Figure 8(c), the cubic Bezier curve con-
structed by four control points is used to generate the in-
tention segment, which is expressed as

C(t) � B0,3(t)P0 + B1,3(t)P1 + B2,3(t)P2 + B3,3(t)P3,

(15)

where Bi,3 is the Bernstein polynomial and it is given by

Bi,3(t) �

3

i

⎛⎝ ⎞⎠
t1 − t

t1 − t0
􏼠 􏼡

3−i
t − t0

t1 − t0
􏼠 􏼡

i

, t ∈ 0, 1, 2, 3.

(16)

(e coordinate system (X″, Y″) is built with the origin
P0 at the vehicle center. (e x-axis direction is the vehicle’s
initial heading, the terminal state will be the end point P3,
and P1 and P2 are obtained bymoving forward for distance d
along the vehicle’s initial heading direction from the start
point and backward for distance d along the terminal
heading from the end point P3, respectively. (e position of
the control points in the above coordinate system is
expressed as

P0 �
0

0
􏼢 􏼣,

P1 �
d

0
􏼢 􏼣,

P2 �
Lx − d cosω

Ly − d sinω
⎡⎣ ⎤⎦,

P3 �
Lx

Ly

⎡⎣ ⎤⎦,

(17)

where Lx and Ly are lateral and longitudinal offsets of the
terminal state P3 to P0, respectively; ω is the angle between
the terminal heading and the direction of the x-axis. (e
terminal heading is defined as the tangential direction of the
closest point on the PRB to P3.

Equations (15) and (16) can be rewritten by applying
(17), so the Bezier curve can be represented as

x(t) � 3d + 3d cosω − 2Lx( 􏼁t
3

− 3 2d + d cosω − Lx( 􏼁t
2

+ 3dt,

(18)

y(t) � 3d sinω − 2Ly􏼐 􏼑t
3

− 3 d sinω − Ly􏼐 􏼑t
2
. (19)

Besides, the curvature of the generated path can be
derived by applying (19) and (20), which leads to

κ(t) �
x′(t)y″(t) − y′(t)x″(t)

x′(t)
2

+ y′(t)
2

􏼐 􏼑
3/2 . (20)

(e maximum of the curvature should satisfy the con-
dition given by equation (21) to meet the vehicle’s non-
holonomic constraint:

κ tm( 􏼁≤
tan φmax( 􏼁

L
. (21)

In equation (21), L denotes the vehicle wheelbase and
φmax denotes the maximum steering angle of the vehicle.

(e maximum of the curvature κ(tm) is a function of d.
(e suitable value of d that satisfies the vehicle’s non-
holonomic constraint can be found by brutal searching from
d′/6 to d′/2, where d′ denotes the distance between P0 and
P3. (e processing time can be reduced by building a look-
up table that matches a given set with the corresponding
maximum curvature of the Bezier curve.

2.3. LSTM Network Driven by Knowledge. Since different
drivers have different driving styles, in order to accurately
predict the future trajectory of a vehicle, in this work, an
LSTM neural network is employed to learn the continuous
features of the historical trajectory. (e LSTM is an RNN
type that can effectively overcome the problem of gradient
disappearance [31]. (e LSTM is composed of a unit
memory that stores the previous input sequence information
and a gating mechanism that controls the information flow
between input, output, and unit memory. (ere are three
gates in the core design of the LSTM network, namely, the
input gate, the forget gate, and the output gate. (e specific
network structure is shown in Figure 9. (e forget gate is
used to control how much information is retained in ct. (e
input gate determines how much information of xt remains
in ct, and finally, the output gate determines how much
information in the output ot is output to ht by the control
unit ct. (e work of the LSTM is described by the following
recursive equations:

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑,

it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁

􏽥ct � tan h Wc · ht−1, xt􏼂 􏼃 + bc( 􏼁,

ct � ft ⊙ ct−1 + it ⊙ 􏽥ct

ot � σ Wo · ht−1, xt􏼂 􏼃 + bo( 􏼁,

ht � ot ⊙ tan h ct( 􏼁 ,

(22)

where xt denotes the input vector,σ(x) denotes the acti-
vation function, W denotes the linear transformation ma-
trix, b denotes the offset vector, it, ft, and 􏽥ct are gate vectors,
ct represents the amount of cell memory, and lastly, ht

denotes the output.
In this work, the network presented in Figure 10 is used

as a reference structure. (is network has two layers con-
sisting of 256 LSTM cells, followed by one time-distributed
layer consisting of 128 neurons, and the final dense output
layer containing as many cells as the number of outputs. (e
network input is a tensor of track histories of a vehicle. (e
network output consists of the future coordinates and ve-
locity of the vehicle. Since the prior knowledge about the
driving scene is expressed by prediction reference baseline,
the network can learn the posterior knowledge about the
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driving scene only from the relative relationship between the
historical trajectory and the prediction reference baseline.
Compared with the existing prediction models based on the
LSTM network, the proposed prediction model reduces the
network training difficulty and decreases demand for the
computing performance of the vehicle platform.

3. Results and Discussion

3.1. Data Preparation and Model Training

3.1.1. ;e Training Dataset. (e next generation simulation
(NGSIM) dataset in I-80 and US101 sections is used for
model training and testing [32], and this dataset is derived
from the US Federal Highway Administration, which is
currently the largest public natural driving public data
source, and thus has been widely used in the literature
[33, 34]. (e layouts and top-down views of the US101 and
I-80 sections are shown in Figure 11. Each data frame in-
cludes many vehicle’s parameters, including the position,
velocity, yaw rate, size, and others. (e sampling frequency
of the dataset is 10Hz; therefore, in this work, Δt is set to
0.1 s.

3.1.2. Data Preparation. (e vehicle positioning data in the
NGSIM dataset are obtained by video analysis, so the
recorded trajectory contains a lot of noise [26]. (erefore,

the vehicle kinematics model and the road geometric are
used to filter the original data, which is expresses as

0< κi < κmax,

θmin < θ< θmax,

θri
> θrate,

θri
�
θi+1 − θi

t2 − t1
.

(23)

(e vehicle position is transformed to the Frenet co-
ordinates based on the centerline. As shown in Figure 12(b),
the centerline of each lane is extracted and fitted using the
shapefile, and the centerline that the target vehicle was
initially driven is selected as a reference baseline. For each
original coordinate point (xv, yv), the corresponding
mapping point (xp, yp) on the reference baseline is deter-
mined, and the Frenet coordinates (sv, lv) are obtained by

lv �

�������������������

xp − xv􏼐 􏼑
2

+ yp − yv􏼐 􏼑
2

􏽲

,

sv � S xp, yp􏼐 􏼑,

(24)

where lv denotes the Euclidean distance between (xv, yv)

and (xp, yp), and S(xp, yp) denotes the length from the
mapping point (xp, yp) to the starting point of the reference
trajectory.
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In addition, four other features, curvature κ, velocity V,
acceleration a, and heading θ, are also selected so as to
compose the observation vector o with the Frenet coordi-
nates (s, l).

3.1.3. Training Details. (ere were 8311 filtered trajectories;
80% of the trajectories were selected as the training set, 10%
as the test set, and the remaining 10% was used as the
verification set to observe if the model is overfitted.

(e network was trained using minibatches with a size of
64. Due to the limitation on a sensormeasurement range and
noise in practical application scenarios, it was difficult to
track dynamic vehicles stably for a long time, so the network
was trained using windows that consisted of 30 inputs,
representing a total of 3 s past observations. (e Adam

optimizer was used; the learning rate was 0.0005, and ReLU
activation with α� 0.1. (e loss function adopted the MSE
(mean square error) between the predicted sequence and the
ground truth sequence; the code used to generate the model
was written in Keras, and the training was performed on
NVIDIA GTX 2080 s GPU using the TensorFlow backend.
(e model training contained 16 epochs, and the average
training time for each epoch of the full training set is around
2300 seconds.

3.2. Testing Results and Discussion

3.2.1. ;e Impact of the Prediction Reference Baseline. To
investigate the impact of considering prediction reference
baseline on the accuracy of the proposed method, we test the
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Figure 11: Layouts and top-down views of the sites used for the collection of the NGSIM: (a) US101; (b) I-80.
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Figure 12: Extraction of the lane’s centerline: (a) extraction results obtained by Google Earth; (b) shapefile of the US101 highways.
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RMSE performance of the proposed modelwith three
modifications using the NGSIM dataset.

In one experiment, the system is trained and tested with
the absolute coordinate, in the second, the centerline that the
target vehicle was initially driven is selected as a PRB, and
finally, in the third experiment, the PRB of the target vehicle
is determined by the method in Section 2, while the other
attributes of the three models are unchanged. Figure 13
shows the accuracy of the trajectory prediction for different
time horizons, and the RMSE value of the model is decreased
by adding the PRB for both lateral and longitudinal
trajectories.

3.2.2. Comparative Study. To evaluate the proposed ap-
proach, we purse a direct comparison with state-of-the-art
vehicle trajectory prediction using the same dataset (i.e.,
NGSIM). (e results show that the proposed method out-
performs the state-of-the-art model and decreases the
overall RMSE value of the system by 10 percent on average.
Table 2 summarizes the RMSE values comparing the pro-
posed methods with the baseline trajectory prediction
models in the literature [20, 22–24, 35].

(e comparison results show that the proposed
knowledge-driven LSTM network has better performance in
RMSE for NGSIM. Note that as compared to the baseline
[24], the prediction accuracy gets a slight improvement, but
the proposed method enhances the real-time performance
and much reduces the computational complexity due to the
reduction of the feature space dimension.

3.3. Simulation Results and Discussion

3.3.1. Simulation Experimental Platform. (e simulation
experiments were based on the JAC’s automatic driving
hardware-in-the-loop test platform. (e experimental
simulation platform is presented in Figure 14, where it can
be seen that the experimental platform included the real
vehicle braking system, steering system, sensor system, and
network communication system, which had dSPACE
(Matlab/Simulink) as a core. (e controller rapid proto-
typing platform was built, virtual reality interfaces and
environment-aware sensor modules were provided using the
PreScan software, and the CarSim software was used to run
the vehicle dynamic model and provide a platform that
could be quickly verified for automatic driving algorithm
testing.

3.3.2. Simulation Results. (e simulation scenario shown in
Figure 15 was established according to the real urban traffic
scenario. Two typical traffic scenarios were selected to verify
the adjustment effect of the PRB on the predicted trajectory.
Figure 16(a) shows the driving scene on the road, and
Figure 16(b) shows the driving scene at the intersection. In
the first scene, three PRB intent segments were fitted to lane
keeping (LK), lane change left (LCL), and lane change right
(LCR), as shown by the blue curve in Figure 16(a). (e
historical observation vector of the target vehicle denoted

the network input, and it was unchanged; the output net-
work vector was converted according to three PRB to obtain
three predicted trajectories, as shown by the green curve in
Figure 16(c). In Figure 16(b), the intersection driving sce-
nario is presented, where two PRB intent segments of go
straight (GS) and turn right (TR) are fitted, respectively; the
converted network output results are shown by the green
curve in Figure 16(d). Since the network learns the relative
relationship between the historical and PRB, even at the
same network input, the predicted trajectory will be affected
by the prediction reference baseline. (e experimental re-
sults prove that the priori knowledge about the driving scene
can be used to adjust the predicted trajectory effectively
based on the prediction reference baseline.

3.4. Real-World Urban Traffic Scenarios

3.4.1. Experimental Platform Construction. In order to verify
if the simulation results obtained in coincide well with the
real-world scenario results, an instrumented vehicle was
used to collect data, as shown in Figure 17(a). (e vehicle
loading sensors included an IBEO four-layer laser scan
instrument, a Velodyne HDL-64E lidar, two high-resolution
cameras, and a differential GPS/INS (SPAN-CPT) system.
(e sensor configuration of the vehicle and its sensing range
are shown in Figure 17(b). (e differential GPS module
provided the information on the position, speed, and
heading of the ego vehicle. Based on our previous work [36],
moving obstacles were detected and tracked by a four-layer
laser scanner, which was located at the front of the vehicle.
According to the space-time relationship between the
moving obstacles, such as pedestrians and vehicles, and
experimental vehicles, the position, speed, size, and type of
the sports vehicles can be measured. We conducted a real
vehicle experiment in Hefei, Anhui Province, China.(e test
road is shown in Figure 18(a). (e prediction model was
exemplarily implemented onNVIDIA Xavier platform using
the C++ programming language.

Before conducting the actual vehicle experiment, the
high-resolution maps were collected to establish based on
our experimental vehicle. (ere were more than 1,140 road
entities on the map, including the stop signs, lane markings,
and lane lines, covering approximately 8 km of the roadways
(as Figure 18 shows).

3.4.2. Field Test and Discussion. (e experimental driving
route was located on a typical urban roadway, with a total
length of about 4.7 km. It includes multiple intersections,
Y-shaped intersections, T-shaped intersections, and other
common urban road scenarios. Due to the long experi-
mental route and a large number of scenes encountered, it
was inconvenient to conduct the prediction process for each
scene. (erefore, two typical scenes were selected for de-
tailed trajectory prediction process analysis.

In Scenario 1, vehicle054 was on the road. (e input
conditions of the scene evaluation module are shown in
Figure 19(b). In front of the target vehicle, there was a large
truck denoted as vehicle055 that was moving with a speed
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of 5 km/h. At that time, the speed of vehicle054 was 24 km/
h. (e calculated value of the TIV was less than the de-
celeration threshold.(erefore, it was judged that the target
vehicle would have an intension to change lane. Vehi-
che054 was driving on lane00055, which was a straight lane.
(rough an associated search in the conceptual ontology

model of the driving scene, it was learned that the right lane
was also a straight lane, and the lane line was a white dotted
line; the prolog rule of legality is expressed as follows:

legalToRight (target, true): targetVehicle (target),
isOnLane (target, Lane), hasRightLine (Lane, Line),
and hasLineType (Line, “dotted_white”).

Table 2: RMSE comparison of the proposed method with the baseline models and state-of-the-art model.
Prediction horizon (s) M-LSTM [20] CS-LSTM [22] NLS-LSTM [35] ST-LSTM [23] DLM [24] Proposed method
1 0.58 0.61 0.56 0.58 0.41 0.41
2 1.26 1.27 1.22 1.21 0.95 0.89
3 2.12 2.09 2.02 1.97 1.72 1.64
4 3.24 3.10 3.03 2.85 2.64 2.47
5 4.66 4.37 4.30 3.89 3.87 3.68
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Figure 14: Experimental simulation platform: (a) design of the simulation platform; (b) photo of the simulation platform.
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Figure 13: Effectiveness of considering prediction reference baseline in the vehicle trajectory prediction: (a) lateral position error; (b)
longitudinal position error.
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(e next section of the target vehicle to travel was the
intersection, and the distance to the intersection was greater
than 30m, so the effectiveness of changing lanes was sat-
isfied; thus, the lane change did not affect the current target
of the target vehicle; the prolog rule of reasonableness is as
follows:

reasonableToRight (target, true): targetVehicle (target),
currentRoadState (target. “ApprJunction”), isOnSeg-
ment (target, Seg), connectToJunction (Seg, Junc),
intersection (Junc), connectToStopLine (Seg, SL), and
distToStopLine (SL, DL), DL≥ 30.

(e autonomous vehicle was driving in the right back
region of the target vehicle, and the TTC and TIV values
were both less than the corresponding acceleration threshold
but greater than the corresponding parking threshold; the
prolog rule of safety is as follows:

safeToRight (target, true): targetVehicle (target), has-
RightObstacle (target, null), hasRightFrontObstacle
(target, null), and hasRightBackObstacle (target,
egovehicle).

(e final prolog rule is as follows:

canChangeToRight (target, true): safeToRight (target,
true), reasonableToRight (target, true), and legalTo-
Right (target, true).

After obtaining the driving intention of the target vehicle,
the prediction reference baseline (the blue curve in
Figure 19(a)) was fitted, and the historical trajectory was
transformed into Frenet coordinates based on the prediction
reference baseline and then fed to the LSTMnetwork input; the
predicted trajectory is shown by the green dotted line in
Figure 19(a). (e trajectory prediction results of vehicle054
could effectively reduce the reaction time of autonomous ve-
hicle while avoiding collisions caused by vehicle054 cutting in.

In Scenario 2, vehicle121 was in the preintersection
scenario. (e input conditions of the scenario evaluation
module are shown in Figure 20(b). (e current speed of
vehicle121 was 24 km/h, and the lane it traveled was
lane000103, which was a right-turn lane. In this scenario, the
main factor affecting the target vehicle’s driving intention
was the traffic light. (e prolog rule of legality is as follows:

legalToTurnRight (ego, acc): targetVehicle (target),
currentRoadState (target, “ApprJunction”), isOnSeg-
ment (target, Seg), connectToJunction (Seg, Junc),
intersection (Junc), hasTrafficLight (Junc, TR),

(a)
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Figure 18: Testing roadway layout: (a) the high-resolution map of the experimental roadway; (b) an enlarged view of the map data.
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Figure 17: Experimental platform: (a) the pioneer IV autonomous vehicle; (b) perception range of the autonomous vehicle.
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hasLightColor (TR, “green”), connectToStopLine (Seg,
SL), and distToStopLine (SL, DL), DL�< 0

(e target vehicle was on the right turn, and the prolog
rule of reasonableness is as follows:

reasonableToLeft (ego, true): egoVehicle (ego), cur-
rentRoadState (ego, “ApprJunction”), isOnSegment
(ego, Seg), connectToJunction (Seg, Junc), intersection
(Junc), connectToStopLine (Seg, SL), and dis-
tToStopLine (SL, DL), DL≥ 30.

(e final rule of safety is as follows:

safeToTurnRight (target, true): targetVehicle (target),
hasFrontObstacle (target, null), hasRightFrontOb-
stacle (target, null), and hasRightBackObstacle (target,
null).

(e final rule is expressed as follows:

canTurnRight (target, true): safeToTurnRight (target,
true), reasonableToTurnRight (target, true), and
legalToTurnRight (target, true).

(e blue curve in Figure 20(a) represents the prediction
reference baseline fitted based on the turn right driving
intention. (e predicted trajectory is shown by the green
dotted line in Figure 20(a).

(e experimental results of Scenarios 1 and 2 verify that
the proposed LSTM network can effectively combine the
prior and posterior knowledge in the driving scene, and the
lane change behavior can be predicted before the variation of
vehicle kinemics. (e proposed LSTM network can be it-
eratively adapted to a driving scenario without manual
annotation during the network training, which significantly
reduces the training complexity and solves the sparse data
problem. Due to the unique combination of knowledge
reasoning, the proposed prediction model can make a more
accurate and reasonable estimation of future trajectories of
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Figure 19: (e results of Scenario 1: (a) trajectory prediction interface; (b) scenario reasoning; (c) experimental scenarios.
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surrounding vehicles than the existing models in different
environments.

4. Conclusions

(is paper combines a maneuver-based and learning-based
trajectory prediction models and proposes an improved tra-
jectory prediction model based on the LSTM neural network
driven by driving knowledge. In order to achieve better use of a
prior driving knowledge in driving scenarios and solve the
problem of the combinatorial explosion caused by a large
number of conditional attributes, the multisource and het-
erogeneous information of the driving scenario is modeled
based on ontology, and a driving knowledge base, including the
driving experience and traffic rules, is constructed. (en, the
conditional attributes that affect driving intentions are clas-
sified and analyzed from the perspectives of safety, legitimacy,

and reasonableness, and situation parameters in the horizontal
and vertical directions are generated by the deterministic scene
evaluation method. Finally, using the obtained situation pa-
rameters and the driving knowledge base, the driving intention
is inferred based on the prolog online reasoning system. In
order to make the prediction results effectively combine the
posterior knowledge and solve the problem of insufficient
adaptability of the existing learning-based prediction models,
this paper converts the driving intention of the target vehicle
into a prediction reference baseline, and the Frenet coordinates
based on prediction reference baseline are used as a coordinate
frame for the LSTM neural network. (e prior driving
knowledge existing in the driving scene can be used to adjust
the predicted trajectory in the form of the prediction reference
baseline without increasing the network complexity but en-
suring efficient operation of the proposed model on an em-
bedded platform.
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Figure 20: (e results for Scenario 2: (a) trajectory prediction interface; (b) scenario reasoning; (c) experimental scenarios.
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(e proposed prediction model was verified by simu-
lations and experiments. (e simulation results showed that
the prediction reference baseline could effectively adjust the
output of the LSTM neural network, making the predicted
trajectory meet the constraints of the prior knowledge in a
driving scenario. (e real-world-experiment results show
that the proposed prediction model can significantly reduce
the computing performance requirements while ensuring
real-time performance on the embedded platform. Also due
to the full combination of prior and posterior knowledge in
the driving scene, the target vehicle’s lane-changing behavior
can be predicted on average 2.05 s (for LCL) or 2.71 s (for
LCR) in advance, and the precision can be improved by
12.5% for long-term predictions and is more robust, flexible,
and adaptive in complex traffic scenarios.

Even though the proposed model has advantages in
trajectory prediction, there are still some limitations, such as
that indexes of scenario assessment are not comprehensive
enough. In order to overcome this limitation, in future work,
the evaluation index will be considered from the perspective
of human-vehicle interaction and multivehicle interaction.
Furthermore, data from a more complex scenario will be
collected and used to verify the proposed prediction model.
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