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Electric buses (EBs) have been implemented worldwide and exhibited great potential for air pollution reduction and traffic noise
control. In regular charging scenarios, the deployment of charging facilities and the operational scheduling of the transit system is
crucial to bus transit system management. In this paper, we proposed a joint optimization model of regular charging electric bus
transit network schedule and stationary charger deployment considering partial charging policy and time-of-use electricity prices.
*e objective of the model is to minimize the total investment cost of the transit system including the capital andmaintenance cost
of EBs and chargers, the power consumption cost, and time-related in-service cost. A solving procedure based on the improved
adaptive genetic algorithm (AGA) is further designed and a transit network at inner Anting Town, Shanghai, with 8 individual bus
routes and 867 daily service trips is adopted for the model validation. *e validation results illustrated that the methodology
considering the partial charging policy can arrange the charging schedule adaptive to the time-of-use electricity prices. Compared
with the benchmark of single line separate scheduling, the proposed model can yield 3 million RMB investment saving by highly
utilizing EBs and battery chargers.

1. Introduction

With the development of electric powertrain technologies,
electric vehicles have been adopted worldwide.*is new type
of vehicle is environmentally friendly due to its low-level air
pollution and noise generation and has been regarded as
a potential alternative to conventional diesel automotive
[1–6].

According to recent research, transit bus system is
a major area for electric vehicle adoption. A significant
number of public transit routes have been configured with
electric buses (EBs) throughout the world. According to
Wang et al. [7], over 16000 conventional diesel buses have

been replaced by EB in Shenzhen, China, and the usage
percentage of EB in its bus transit system has reached 100%
at the end of 2017. Similarly, the US Environmental Pro-
tection Agency (EPA) has announced that the proportion of
EBs in America’s transit bus market has increased rapidly
from 2% in 2007 to nearly 20% in 2015. It is also predicted
that full application of EB will potentially lead to a 50%
decrease in fuel consumption in the foreseeable future [8].

Currently, there are mainly four means of EB charging
strategies: regular charging, fast charging, battery exchange,
and charging lanes [9–12]. Among these charging strategies,
regular charging technology is relatively mature and safe and
has been widely adopted in the bus transit system [13]. For
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regular charging scenarios, the deployment of charging
facilities is crucial to bus transit system management. On
one hand, the construction and operation cost of charging
facilities is relatively large, and thus the investment plan has
to be strictly considered. On the other hand, the deployment
of chargers would influence the bus transit system’s service
quality due to the bus recharging process during daily op-
eration [14]. Tomaintain the bus system’s service quality and
minimize the investment cost for charging facilities and EBs,
this study would jointly optimize the EB fleet operation
schedule and charging facility deployment to reduce the
overall investment and achieve high utilization of regular
charging chargers and EBs.

2. Literature Review

*ere have been some exploratory studies on the EB vehicle
scheduling problem and EB charging infrastructure plan-
ning separately.

2.1. Literature Review on EB Vehicle Scheduling Problem.
EB operation and charging scheduling belongs to the transit
vehicle scheduling problem, which refers to the problem of
investigating an optimal assignment of trips in a given
transit timetable to the bus fleet. Transit management must
design feasible and accurate plans for routes running and
EBs charging when the EB penetration level is high. To
operate the mixed bus fleet, Paul and Yamada [15] proposed
a k-greedy algorithm-based approach to maximize the travel
distance of the EBs in the bus fleet. Wei et al. [16] introduced
a spatial-temporal optimization model to schedule the
mixed bus fleet and identify the optimal infrastructure
deployment strategies of the bus system.

*e existing research on the operation scheduling of the
100% EB fleet can be categorized according to the battery
charging strategies outlined in the background. Jang et al.
[17, 18] optimized the locations of charging lanes and the
battery size to minimize the total social cost for a single bus
line. Several studies addressed the operation of EB under
battery exchange mode under the predetermined charging
time and full-charging assumption [19–21]. Wang et al. [8]
developed a framework to optimize the location and capacity
of the charging stations while at the same time generating EB
recharging schedules under fast-charging rules. Liu and
Ceder [12] proposed two different mathematical pro-
gramming models and solution methods to solve the
scheduling problem of fast-charging EBs with the adoption
of a partial charging policy.

Compared with charging lanes, battery exchange, and
fast charging, regular charging mode is the most adopted
charging strategy but requires longer charging time and is
more complicated in terms of scheduling operation and
charging plans. *e bus scheduling problem for regular
charging mode was generally investigated by Li [22] in
consideration of charging stations with limited capacity. Ke
et al. [23] proposed an EB operation and battery charging
simulation framework to minimize EB transportation sys-
tem construction cost in Penghu, Taiwan. Considering

charging and dispatching policies, Jiang et al. [24] developed
a neighborhood search based heuristic to schedule an EB
fleet on a trunk transport route with long travel distance and
high service frequency. In the context of a single EB route
level, Rogge et al. [14] provided a thorough and compre-
hensive framework for the cost-optimized planning of
a mixed EB fleet of different EB types. As for the level of
multidepot EB transit network, Wen et al. managed to
develop an optimization model with the goal of minimizing
the total EB fleet purchase and operation cost and proposed
an adaptive large neighborhood search heuristic to solve the
randomly generated numerical cases [25].

2.2. Literature Review on EB Charging Infrastructure
Planning. EB charging infrastructure planning varies with
EB’s charging strategies similarly. Charging lane EB system
mainly pursues an optimal location and length of charging
lanes [26, 27], whereas EB system with station-based
charging modes generally requires optimization of charging
station sitting and charging facility scheduling. Among the
station-based charging modes, the fast-charging mode is
usually linked to the distributed deployment format of the
fast-charging station, which was investigated at the transit
network level by Wei et al. [16]. Yan et al. [28] proposed
a charging sequence generating strategy for a single fast-
charging station. Centralized charging station deployment
format is generally used for battery swapping and regular
charging modes [11, 29]. Assuming the battery swapping
duration is constant, several optimization methods for
swapping station deployment and switching battery
schedule were proposed in recent studies [30–32]. Mean-
while, the methods of these works can not be implemented
directly to the infrastructure planning of regular charging EB
system due to the regular charging EBs’ flexible charging
policy with relatively long and variable charging duration.

Most existing studies related to regular charging EB
charging infrastructure planning concentrate mainly on the
charging schedule optimization for charging stations, with
known EB fleet size and operation schedule. Leou and Hung
[33] presented a charging scheduling model for a centralized
depot for a small centralized depot considering the variable
daytime electricity prices. Houbbadi et al. [34] developed
a multiobjective depot charging strategy optimization model
aiming at reducing charging cost as well as extending battery
lifetime and tested their solving procedure with a case study
of one specific EB operating on a single line scenario. Wang
et al. [7] presented a real-time charging scheduling method
based on theMarkov decision process for large-scale EB fleet
to reduce the charging and operation cost. *e real-world
streaming data of 16359 EBs in Shenzhen was used to
validate their method. Also grounding the practical case on
EB transit network in Shenzhen, Lin et al. [35] focused on
the deployment of the centralized charging station for EB
transit system, introducing the connection of power grid to
the problem of charging infrastructure planning.

2.3. Research Gaps, Contributions, and Organization of the
Study. It has been addressed that the operation of electric
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vehicle fleets and the planning of charging systems are highly
coupled together [36]. According to the literature review,
however, the method for optimizing regular charging EB
schedule and charging infrastructure deployment jointly is
underexplored. Seldom researchers have tried to investigate
suchmethods. Rogge et al. [14] adopted joint optimization at
the level of bus line and optimized the bus fleet schedule
based on the preconfigured blocks of service trips. But the
quality of blocks had a considerable impact on that of the
solution. Liu and Ceder [12] optimized the total number of
buses and battery chargers for the fast-charging EB system
withmultiple lines. Meanwhile, their optimization objectives
did not contain the operational cost. In this paper, we
propose a joint optimization methodology of regular
charging EB transit network schedule and stationary charger
deployment. *e methodology takes into account the range
limitation of travel distance and state of charge (SOC) as
constraints. Moreover, partial charging policy and time-of-
use electricity prices are considered in the optimization
method to enhance the model’s practical applicability
[12, 37].

*e rest of this work is structured as follows. Section 3
details a formal description of the regular charging EB
stationary charger deployment and multidepot vehicle
scheduling problem (SCD-MDVSP) with a small illustrative
example, followed by the mathematical formulation in
consistence with the problem statement in Section 4. Section
5 provides the solution approach of the improved adaptive
genetic algorithm. Subsequentially, a case study involving 8
individual bus routes in Anting Town, Shanghai, China, is
conducted for model validation and result analysis is in
Section 6. Section 7 finally summarizes our current work and
discusses the possible directions for future research.

3. Description of the SCD-MDVSP

*e goal of this section is to facilitate the understanding of
the SCD-MDVSP, including input conditions, the modeling
scenario, and a feasible solution. A simple numerical ex-
ample, which is based on a transit network with 3 lines, is
used to illustrate the SCD-MDVSP.

In this numerical example, there are 5 terminal stations
related to the 3 transit lines. Considering space and power
management constraints, 2 terminal stations are selected as
charging stations, while other terminal stations are ordinary
terminal stations. It is assumed that the battery chargers can
only be installed in the candidate charging stations. Figure 1
shows the transit network topology and the operating du-
ration between any two stations.

*e SOC-related parameters of EB set in the numerical
example are listed in Table 1, which indicates the charging
and discharging characteristics of EB. In the modeling
scenario, after completing their service missions, EBs would
return to their original departing charging stations and get
fully charged at night and depart with the permitted max-
imum SOC the next day.

*e timetables for the 15 service trips on the 3 lines are
presented in Table 2. Each service trip in the timetables
should be covered exactly once per day, and multiline trips

can be assigned to one EB only if the sequence of trips and
charging arrangements is feasible in respect of time and SOC
range constraints.

Given the input data above, the objective of SCD-
MDVSP is to minimize the overall construction and op-
eration cost of the EB transit system, including EB fleet
purchase cost, battery charger deployment cost, power
consumption cost, and time-related operation cost. To
achieve this goal, there are 4 key points in the joint opti-
mization framework of EB scheduling and charger
deploying, including the EB fleet size, the assignment of
service trips to EBs, the start time and duration of EBs’
charging tasks, and the allocation of the number of sta-
tionary chargers in the charging stations. Figure 2 illustrates
a feasible solution to the SCD-MDVSP.

As shown in Figure 2(a), the EB fleet schedule in SCD-
MDVSP can be established as a flowchart pattern, com-
prising of charging stations, trips, and charging tasks as
nodes [13, 38], while black arrows indicate the sequence of
EB missions as arcs. *ere are 2 EBs (bus 1 and bus 2)
belonging to charging station 1; meanwhile, 1 EB (bus 3) and
1 charger (charger 3) belong to charging station 2. *e
operation and charging schedules of bus 1, bus 2, and bus 3
are D1⟶ s1⟶ c1⟶ s6⟶ s7⟶ s11⟶ c4⟶ s14
⟶ D1, D1⟶ s2⟶ s5⟶ c3⟶ s9⟶ s12⟶ s13
⟶ D1, and D2⟶ s3⟶ s4⟶ c2⟶ s8⟶ s10
⟶ c5⟶ s15⟶ D2, respectively. Similarly, each char-
ger’s battery charger arrangement can also be isolated as
a flowchart pattern (see Figure 2(b)), which is a circle
starting from the charging station where the charger is
installed, serializing the charging tasks executed by the same
charger chronologically and ending up with the same
charging station.*ere are 2 chargers (charger 1 and charger
2) installed in charging station 1 and 1 charger (charger 3)
installed in charging station 2. *e charging task arrange-
ment of charger 1, charger 2, and charger 3 is
D1⟶ c3⟶ c5⟶ D1, D1⟶ c2⟶ D1, and
D2⟶ c1⟶ c4⟶ D2, respectively. *e flowchart pat-
terns of EB fleet schedule and battery charger arrangement
are the basis for the SCD-MDVSP modeling in Section 4.

4. Mathematical Formulation

4.1. Mathematical Notations. To better illustrate the pro-
posed model, the notations of parameters and variables
relevant to the SCD-MDVSP are presented in Table 3.

4.2.MathematicalModel. Given a set of timetabled bus trips
and a set of charging stations, the SCD-MDVSP model is to
minimize the total cost by exploring for an assignment of bus
trips to EBs and an allocation of battery chargers to the
charging stations. *e objective function is defined in 4.2.1
and module constraints are formulated based on the flow-
chart patterns of EB fleet schedule and battery charger ar-
rangement presented in Section 3. Specifically, the EB fleet
schedule flowchart can be divided into two subparts: trip-
related vehicle schedule and charging-related vehicle
schedule. And the constraints of the two subparts are
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Table 1: SOC-related parameters of EB.

Parameters Settings
Total battery capacity 200 kWh
Permitted maximum SOC 180 kWh
Permitted minimum SOC 30 kWh
Charging power of a battery charger 40 kW
Power consumption rate during EB running 20 kW

Table 2: Timetables of the transit lines.

Line ID Direction Departure time Arrival time Service trip ID1

Line 1

D1⟶D2

5:00 7:00 1
13:00 15:00 8
14:30 16:30 9

D2⟶D1

9:00 11:00 6
15:30 17:30 10
20:00 22:00 14

Line 2

D1⟶T1
5:00 8:00 2
11:30 14:30 7

T1⟶D1

7:30 10:30 4
8:30 11:30 5
19:00 22:00 13

Line 3
T2⟶T3

15:30 16:30 11
20:30 21:30 15

T3⟶T2
5:30 6:30 3
17:00 18:00 12

1Service trip ID numbers are in the order of the service trips’ departure time.

D Charging station

T Ordinary terminal
station
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Line 1
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Figure 1: Topology of the transit network.
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Figure 2: A feasible solution to the SCD-MDVSP. (a) EB fleet schedule and (b) battery charger arrangement.
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Table 3: Notations of the SCD-MDVSP model.

Sets/indices
S Set of service trips
C Set of charging tasks
D Set of charging stations
N Set of pricing intervals of time-of-use electricity prices
i, j Indices of service trips, i, j ∈ S

p, q Indices of charging tasks, p, q ∈ C

d Indices of charging stations, d ∈ D

n Indices of pricing interval of time-of-use electricity prices, n ∈ N

Parameters
ai Starting time of service trip i ∈ S

ti Duration of service trip i ∈ S

ei Power consumption of service trip i ∈ S

tij Duration of the deadhead to implement the shift from service trip i ∈ S to service trip j ∈ S without charging midway
eij Power consumption for the deadhead to implement the shift from service trip i ∈ S to service trip j ∈ S without charging midway

tdi
′ Duration of the deadhead to implement the service trip i ∈ S after the EB pulling out of the charging station d ∈ D without

charging midway

edi
′ Power consumption for the deadhead to implement the service trip i ∈ S after the EB pulling out of the charging station d ∈ D

without charging midway
ti d
″ Duration of the deadhead to pull in the charging station d ∈ D after finishing the service trip i ∈ S without charging midway

ei d
″ Power consumption for the deadhead to pull in the charging station d ∈ D after finishing the service trip i ∈ S without charging

midway
t
⌣

ip Duration of the deadhead to execute charging task p ∈ C after service trip i ∈ S

e
⌣

ip Power consumption for the deadhead to execute charging task p ∈ P after service trip i ∈ S without charging midway
t
⌢

pi Duration of the deadhead to execute service trip i ∈ S after charging task p ∈ C

e
⌢

pi Power consumption for the deadhead to execute service trip i ∈ S after charging task p ∈ C

tdp Duration of the deadhead to execute charging task p ∈ C after the EB pulling out of the charging station d ∈ D

edp Power consumption for the deadhead to execute charging task p ∈ C after the EB pulling out of the charging station d ∈ D
􏽥tp d Duration of the deadhead to pull in the charging station d ∈ D after the charging task p ∈ C

􏽥ep d Power consumption for the deadhead to pull in the charging station d ∈ D after the charging task p ∈ C

􏽢ep Power recharged during charging task p ∈ C

mn Starting time of pricing interval n ∈ N

tn Duration of pricing interval n ∈ N

fn Electricity price in pricing interval n ∈ N

cb Capital and maintenance cost of a bus
ct Time-related operational cost for a bus
cc Purchasing and maintenance cost per charger
Intermediate variables
li EB’s current SOC at the completion of the service trip i ∈ S, which can be calculated as (21)
tn
p Charging duration of the charging task p ∈ C in the pricing interval n ∈ N

Decision variables

xij

Equals 1 if the EB’s next service trip is j ∈ S after finishing the service trip i ∈ S (regardless of whether or not the EB goes for
charging between the two service trips), 0 otherwise

ypq

Equals 1 if charging task p ∈ C takes place after charging task q ∈ C and the two charging tasks are completed by the same
charger, 0 otherwise

zip Equals 1 if the EB travels to execute the charging task p ∈ C after finishing the service trip i ∈ S, 0 otherwise
􏽢zpi Equals 1 if the EB travels to execute the service trip i ∈ S after finishing the charging task p ∈ C, 0 otherwise

udi

Equals 1 if the EB pulls out of the charging station d ∈ D to execute the service trip i ∈ S (regardless of whether or not the EB goes
for charging midway), 0 otherwise

􏽢ui d

Equals 1 if the EB pulls in the charging station d ∈ D after finishing the service trip i ∈ S (regardless of whether or not the EB goes
for charging midway), 0 otherwise

vdp Equals 1 if the EB pulls out of the charging station d ∈ D to execute the charging task p ∈ C, 0 otherwise
􏽢vp d Equals 1 if the EB pulls in the charging station d ∈ D after finishing the charging task p ∈ C, 0 otherwise

wdp

Equals 1 if the charging task p ∈ C is executed by the charger installed in the charging station d ∈ D and is the earliest of all the
charging tasks executed by the same charger throughout the day

􏽢wp d

Equals 1 if the charging task p ∈ C is executed by the charger installed in the charging station d ∈ D and is the latest of all the
charging tasks executed by the same charger throughout the day

􏽢ap Starting time of charging task p ∈ C

􏽢tp Duration of the charging task p ∈ C

Charging and discharging functions
F(l0,􏽢tp) Charging function with l0 (SOC at the start of charging) and 􏽢tp as independent variables and 􏽢ep as a dependent variable

G(l0, tr)
Discharging function with l0 (SOC at the start of charging) and tr (representing ti, tij, tdi

′, ti d
″, t

⌣

ip, t
⌢

pi, tdp,􏽥tp d) as independent
variables and er (representing ei, eij, edi

′, ei d
″, e

⌣

ip, e
⌢

pi, edp, 􏽥ep d) as a dependent variable
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discussed in 4.2.2 and 4.2.4, respectively. Besides, the con-
straints of the battery charger arrangement flowchart are
shown in 4.2.3. Moreover, the energy level constraints and
supplement parts (intermediate variable calculation and

charging and discharging functions) are detailed in 4.2.5,
4.2.6, and 4.2.7.

4.2.1. Objective Function

minZ � cb 􏽘
d

􏽘
i

udi + cc 􏽘
d

􏽘
p

wdp + 􏽘
n

􏽘
p

fnt
n
p

+ ct

􏽘
d

􏽘
i

udi 􏽘
p

􏽢zpi tdp + 􏽢tp + t
⌢

pi􏼒 􏼓 + 1 − 􏽘
p

􏽢zpi
⎛⎝ ⎞⎠tdi

′⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 􏽘
i

􏽘
j,i≠j

xij ti + 􏽘
p

zip t
⌣

ip + 􏽢tp + t
⌢

pj􏼒 􏼓 + 1 − 􏽘
p

zip
⎛⎝ ⎞⎠tij

⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 􏽘
d

􏽘
i

􏽢uid 􏽘
p

zip t
⌣

ip + 􏽢tp + 􏽥tpd􏼒 􏼓 + 1 − 􏽘
p

zip
⎛⎝ ⎞⎠tid

″⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(1)

Objective (1) is to minimize the total cost of constructing
and operating the EB system, which consists of the purchase
and maintenance cost of EBs and chargers, the energy
consumption cost, and time-related in-service cost, such as
wages of bus drivers. *e time-related in-service cost is
proportional to the sum of the pull-out time, the duration of
operating and shifting the service trips, and the pull-in time
of all the EBs. Specifically, 􏽐pzip( t

⌣

ip + 􏽢tp + t
⌢

pj) + (1−

􏽐pzip)tij represents that if the bus implements any charging
task during the shift from service trip i to service trip j

(􏽐pzip � 1), the shift duration is ( t
⌣

ip + 􏽢tp + t
⌢

pj); otherwise,
(1 − 􏽐pzip � 1), the shift duration is tij.

4.2.2. Vehicle Scheduling Constraints

􏽘
i

udi − 􏽘
i

􏽢uid � 0, ∀d, (2)

􏽘
j

xij + 􏽘
d

􏽢uid � 1, ∀i, i≠ j,(3)

􏽘
j

xji + 􏽘
d

udi
⎛⎝ ⎞⎠ − 􏽘

j

xij + 􏽘
d

􏽢ui d
⎛⎝ ⎞⎠ � 0, ∀i, i≠ j,

(4)

ai + ti + 􏽘
p

zip t
⌣

ip + 􏽢tp + t
⌢

pj􏼒 􏼓 + 1 − 􏽘
p

zip
⎛⎝ ⎞⎠tij ≤ aj

+ M 1 − xij􏼐 􏼑, ∀i, j, i≠ j,

(5)

udi ∈ 0, 1{ }, ∀d, i, (6)

􏽢uid ∈ 0, 1{ }, ∀d, i, (7)

xij ∈ 0, 1{ }, ∀i, j, i≠ j. (8)

Constraint (2) shows that the number of pull-out EBs is
equal to that of pull-in EBs in order to maintain the same
daily operational plan. Constraint (3) ensures that each
service trip is executed by exactly one bus. Equation (4)
illustrates that after finishing a service trip, the bus should
perform another operational task (representing service trip,
pull-out from the charging station, or pull-in the charging
station). Constraint (5) indicates that the service trips carried
out by the same bus do not overlap in timeline. Constraints
(6)–(8) define the binary decision variables udi, 􏽢ui d. and xij.

4.2.3. Charger Scheduling Constraints

􏽘
p

wdp − 􏽘
p

􏽢wpd � 0, ∀d, (9)

􏽘
q

ypq + 􏽘
q

􏽢wpd � 1, ∀p, p≠ q,

(10)

􏽘
q

yqp + 􏽘
q

wdp
⎛⎝ ⎞⎠ − 􏽘

q

ypq + 􏽘
q

􏽢wpd
⎛⎝ ⎞⎠ � 0, ∀p, p≠ q,

(11)

ap + tp ≤ aq + M 1 − ypq􏼐 􏼑, ∀p, q, p≠ q, (12)

wdp ∈ 0, 1{ }, ∀d, p, (13)

􏽢wpd ∈ 0, 1{ }, ∀d, p, (14)

ypq ∈ 0, 1{ }, ∀p, q, p≠ q, (15)

ap > 0, ∀p, (16)

tp > 0, ∀p. (17)
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Constraint (9) indicates that a complete charging
schedule for a battery charger should be a close loop that
starts and ends at the same charging station as presented in
the battery charger arrangement flowchart. Equation (10)
ensures that each charging task is performed exactly once
per day. Equation (11) shows the flow constraint of each
charging task in the flowchart of the battery charger ar-
rangement. Constraint (12) ensures that the charging tasks
performed by the same charger do not overlap in timeline.
Constraints (13)–(17) define the range of decision variables
wdp, 􏽢wp d, ypq, 􏽢ap, and 􏽢tp.

4.2.4. Vehicle Scheduling and Charger Scheduling Cross
Constraints

􏽘
i

zip + 􏽘
d

vdp � 1, ∀p, (18)

􏽘
i

zip + 􏽘
d

vdp
⎛⎝ ⎞⎠ − 􏽘

i

􏽢zpi + 􏽘
d

􏽢vp d
⎛⎝ ⎞⎠ � 0, ∀p, (19)

ap + tp + t
⌢

pi ≤ ai + M 1 − 􏽢zpi􏼐 􏼑, ∀i, p, (20)

zip ∈ 0, 1{ }, ∀i, p, (21)

􏽢zpi ∈ 0, 1{ }, ∀i, p, (22)

vdp ∈ 0, 1{ }, ∀d, p, (23)

􏽢vpd ∈ 0, 1{ }, ∀d, p. (24)

Constraint (18) ensures that only one EB can be served
per charging task. Equation (19) enforces that each charging

task is performed between two consecutive operational tasks.
Constraint (20) represents that the bus should not be late for
the next service trip after being charged. Constraints
(21)–(24) define the binary decision variables zip, 􏽢zpi, vdp,
and 􏽢vp d.

4.2.5. Energy Level Constraints

li − 􏽘
p

zip e
⌣

ip ≥ SOCmin, ∀i, (25)

li + ei + 􏽘
p

􏽢zpi e
⌢

pi ≤ SOCmax, ∀i, (26)

SOCmax − vdpedp ≥ SOCmin, ∀d, p, (27)

li + 􏽢ui d 􏽘
p

zip 􏽢ep − e
⌣

ip􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦≤ SOCmax, ∀i, d, (28)

li − 􏽢uid 􏽘
p

zip e
⌣

ip + 􏽥ep d − 􏽢ep􏼐 􏼑 + 1 − 􏽘
p

zip
⎛⎝ ⎞⎠eid

″⎡⎢⎢⎣ ⎤⎥⎥⎦≥ SOCmin, ∀i, d.

(29)

*e start and end of a charging task are the moments
when the EB’s SOC reaches the minimum and maximum
values, respectively, during the daily operation. Constraints
(25)–(28) limit the residual power of buses between SOCmin
and SOCmax at the start and end of any charging task.
Constraint (29) ensures that the SOC of buses is more than
SOCmin when the buses pull in the charging stations.

4.2.6. Intermediate Variable Calculation

li �

SOCmax − 􏽘
d

udi 1 − vdp􏽢zpi􏼐 􏼑edi
′ + vdp􏽢zpi edp + e

⌢

pi − ep􏼐 􏼑􏽨 􏽩, ∀i, while∃udi � 1, ∀d,

􏽘
j

xji lj + 􏽘
p

zjp 􏽢ep − e
⌣

jp − e
⌢

pi􏼐 􏼑 − 1 − 􏽘
p

zjp
⎛⎝ ⎞⎠eij − ei

⎡⎢⎢⎣ ⎤⎥⎥⎦, ∀i, i≠ j, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

d
n
p �

0, ap ≥mn + tn or ap + tp ≤m,

tn, ap ≤mn and ap + tp ≥mn + tn,

tp, ap + tp >mn and ap + tp <mn + tn and ap ≥mn, ∀p, n.

ap + tp − mn, ap + tp >mn and ap + tp <mn + tn and ap <mn,

mn + tn − ap, ap >mn and ap <mn + tn and ap + tp >mn + tn,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Equation (30) defines the calculation of the in-
termediate variables li. If the service trip i is the first
service trip for a particular bus, li can be calculated as the
top branch of equation (30). Otherwise, li can be

calculated as the bottom branch. Equation (31) defines the
calculation method for dividing the whole charging task
into several charging segments according to the electricity
tariff periods.
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4.2.7. Charging and Discharging Functions

􏽢ep � F 􏽢tp􏼐 􏼑 � f · 􏽢tp, ∀p, (32)

er � G tr( 􏼁 � g · tr, ∀r. (33)

In this paper, it is assumed that the charging function
F(l0,􏽢tp) and the discharging functions G(l0, tr) are pro-
portional functions, whichmeans they are independent from
l0 and can be rewritten as F(􏽢tp) and G(tr). Since only EB’s
average discharging power under daily operational condi-
tions is available, the discharging power under any driving
condition is set to the same value. Let f and g be the
charging and discharging power individually. *erefore, the
charging and discharging functions are illustrated as (32)
and (33).

5. Solving Procedure

According to the model formulation, the EB scheduling and
charger deploying mutually influence each other. Besides,
the consideration of the partial charging policy also increases
the complexity of the optimization formulation [39]. In
order to improve the solving efficiency and results reliability,
the adaptive genetic algorithm (AGA) is implemented in the
solving procedure. *e AGA was proposed by Srinivas and
Patnaik [40]. *is method inherits the natural selection
process core of the genetic algorithm and improves the
population diversity and the capability to convergence
compared with the ordinary genetic algorithm. In order to
implement AGA into the proposed SCD-MDVSP, some
special designs in AGA chromosome encoding and adaptive
operator formulating process are proposed. *e detailed
steps of the solving procedure are presented in:

Step 1: AGA initialization. Set up the number of service
trips the EB fleet serves (S), population size (P),
maximum generation (P), and the independent vari-
ables of the probability function for the crossover (Pc1,
Pc2, and kc) and mutation process (Pm1, Pm2, and km).

Step 2: initial solution. In the first generation (g � 0),
a feasible random initialization is implemented.
Service trips in the order of starting time are assigned
randomly to the buses with several previous trips and
enough SOC rather than a new bus. A coding ex-
ample of a chromosome based on the feasible solu-
tion of the illustrative example in Section 3 (see
Figure 2) is illustrated in Figure 3. It is assumed that
the EB departs from the charging station closest to
the starting station of its first service trip. *e op-
erating and charging schedules of EBs during the
transit system’s operating hours are represented in

the chromosome. Specifically, to improve the utili-
zation rate of EBs, it is assumed that EBs are
recharged as long as possible when they are arranged
to be charged in the charging stations. *us, the
starting time of the charging task is the moment the
EB arrives at the charging station, and the duration of
the charging task is the longer of the full-charge
duration and the idling duration between service
trips. Subsequently, the minimum number of char-
gers required for each charging station can be cal-
culated from the daytime charging tasks. After a day
of operations, EBs return to their original departing
charging stations for night-time charging during
EB’s nonservice time, the arrangements of which for
each charging station are generated by the heuristic
random search algorithm. For the night-time
charging demand of EBs in each charging station, the
algorithm randomly assigns EBs to feasible chargers
in order of EBs’ arrival time at the charging station
from late to early. If no feasible charger is available,
an additional charger will be added.
Step 3: fitness function and selection. *ere are con-
siderable differences in magnitude between the in-
dividual’s total cost and the range of them. If we take
the total cost as the fitness of individual, the selection
operation will be ineffective. *erefore, the fitness
function is defined as (34) in this paper, where TCreci
represents the reciprocal of total cost and r is a minimal
positive number:

f �
TCreci − TCreci min + r

TCreci max − TCreci min + r
. (34)

Step 4: crossover and mutation. Both crossover and
mutation are operated within the range of feasible
solutions. To prevent premature convergence and en-
hance search efficiency, improved adaptive operators
are presented as (35) and (36), which can ensure the
crossover probability increases while mutation prob-
ability decreases with the evolution of the population.
Let fmax and favg represent the maximum fitness and
average fitness in the population. f and f′ are defined
as the individual’s fitness before mutation and cross-
over, respectively. kc, Pc1, and Pc2 indicate the change
rate and initial maximum and minimum probability of
crossover, while km, Pm1, and Pm2 define the change
rate and initial maximum and minimum probability of
mutation. *e maximum and minimum probabilities
of crossover and mutation in generations 0 and G are
shown in Table 4. Once the crossover and mutation
operators have finished, g � g + 1. If g<G, return to
Step 3. Otherwise, terminate the AGA process:
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Pc �

Pc1 − Pc1 − Pc2( 􏼁 ·
f′ − f

fmax − f
+

kcg

G
􏼠 􏼡, f′ ≥favg,

Pc1 −
Pc1 − Pc2( 􏼁 · kcg

G
, f′ <favg,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

Pm �

Pm1 − Pm1 − Pm2( 􏼁 ·
f′ − f

fmax − f
−

kmg

G
􏼠 􏼡, f≥favg,

Pm1 −
Pm1 − Pm2( 􏼁 · kmg

G
, f<favg,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)

where 0<Pc1, Pc2, Pm1, Pm2 ≤ 1, kc, km > 0.

6. Case Study and Result Analysis

6.1. Case Descriptions. To validate the effectiveness of the
proposed methodology, a case study was designed based on
the configuration of the inner Anting Town bus system, at
Jiading District, Shanghai, China. *e timetable and transit
network details were obtained from Shanghai Jiading Public
Transportation Co., Ltd. [41]. *e bus system consists of 5
charging stations and 7 ordinary terminals, 8 lines, and 867
daily service trips (see Figure 4). *e operation details are
shown in Table 5. *e deadheading time between any two
terminals was attained from the Gaode API [42].

*e EB vehicle model used in this case is BYD K9, which
is one of the most popular EB vehicle models in Shenzhen
[7]. *e battery capacity, full-charging duration, and max-
imum travelling distance are set as 324 kWh, 3 h, and
250 km, respectively [43]. In line with the general battery
lifetime, the calculation interval of the total cost is set for 3
years, and the discounted cost of purchasing and main-
taining an EB and a charger are 1,500,000 and 450,000 RMB,
respectively. *e technical parameters of BYD K9 and its
battery charger along with other case parameters are dis-
played in Table 6.

*e time-varying electric price pattern of Shanghai is
presented in Figure 5, which was acquired from State Grid
ShanghaiMunicipal Electric Power Company [44].*e price
pattern can be divided into 3 levels. *e highest tariff is
applied during peak hours in the morning and evening, the
lowest tariff occurs during the early morning hours, and the
rest periods are linked to the intermediate tariff.

6.2. Result Analysis. To improve the solving efficiency, the
line-based optimal solution is implemented as the initial
solution in the solving process. *is result is also considered
as a benchmark to check the model’s reliability and effec-
tiveness. *e AGA parameter settings for the EB transit
network optimization are presented in Table 7.

*e SCD-MDVSP considering partial charging policy
and time-of-use electricity prices can be well solved by the
proposed methodology. According to the solving procedure,
67 EBs and 20 chargers are adopted to meet the operational

and charging demands of the EB transit system. *e total
investment over 3 years is 140,579,264.92 RMB, which
consists of bus fleet purchasing cost (100,500,000 RMB,
71.5%), stationary charger deploying cost (9,000,000 RMB,
6.4%), power consumption cost (12,400,390.92 RMB, 8.8%),
and time-related operational cost (18,678,875 RMB, 13.3%).
For the EBs’ operation results, each bus operates 12.94
service trips, serves 1.45 lines, and travels 219.32 km on
average per day.

As shown in Figure 6(a), the charging scheduling scheme
shows an obvious staggered charging pattern. Under the
predetermined time-varying electric price, the charging
demand mainly occurs during the off-peak (51.2%) and flat
(41.2%) periods while the electricity consumed during the
peak periods only accounts for 7.6%. Specifically, Figure 6(b)
demonstrates the flexibility of the charging scheduling
scheme. During low price hours, the number of EBs being
charged is higher and the average charging duration is
longer than those during high tariff hours.*e EBs’ charging
duration during the service time and nonservice time is
22.35min and 111.51min, respectively, which indicates that
the proposed methodology can improve the utilization of
EBs by scheduling long time charging tasks for nonservice
time.

6.3. Comparison and Discussion

6.3.1. Comparison of the Overall Performance. *e line-
based optimization results are set as the benchmark for
optimization result comparisons. *e differences between
the benchmark and proposed network level optimization
results are presented in Tables 8 and 9. Compared with
scheduling 8 lines separately, the EB transit network
scheduling saves over 3 million RMB in total cost, in-
cluding the investment of 1 EB and 5 battery chargers,
while the power consumption and time-related cost rise
slightly.

6.3.2. Comparison of the Utilization of EB and Chargers.
Transit network scheduling can improve both the utili-
zation of the EB fleet and battery chargers. After sorting
EBs in descending order of the travel duration, we make
the difference of travel duration for the first 67 EBs and
plot the empirical cumulative distribution function as
shown in Figure 7. It is indicated that over 70% EBs’ travel
duration in transit network optimization surpasses that in
single line separate optimization. In terms of the utili-
zation of battery chargers, the average daily charging
duration of the battery chargers under transit network
scheduling and single line scheduling is 737.79 and 582.13
minutes, respectively. Figure 8 illustrates that there is less
variation in the average daily charging duration of the
battery chargers across charging stations under transit
network dispatch than that under single line dispatch. So,
EB scheduling and charger deploying at the transit net-
work level can also equalize the depletion of stationary
chargers.
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Table 4: Maximum and minimum probabilities of crossover and mutation in generations 0 and G.

P
Generation

0 G
Pc(fmax) Pc2 −kc · Pc1 + (1 + kc) · Pc2
Pc(favg) Pc1 (1 − kc) · Pc1 + kc · Pc2
Pm(fmax) Pm2 km · Pm1 + (1 − km) · Pm2
Pm(favg) Pm1 (1 + km) · Pm1 − km · Pm2
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Figure 4: *e inner anting town bus system.

Chromosome

No. of service trips

No. of buses

No. of charging stations

1 –1 2 0 3 0 3 –1 2 –1 1 0 1 0 3 0

1 2 3 4 5 6 7 8

t

b c

No. of service trips

No. of charging stations

No. of buses

2 0 3 –1 1 –2 2 0 2 0 1 0 3 0

9 10 11 12 13 14 15

Note: “odd-even” gene locus represents that bus b deadheads to charging station c (c = 0 indicates no charging) after operating service trip t.
The charging station number c is shown as a negative number to distinguish it from the service trip number b.

Figure 3: *e chromosome structure of the individual.
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Table 5: Operational details of the 8 transit lines.

Details Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8

Service time 05:05–23:
20

05:00–19:
00

06:00–20:
00

05:30–19:
00

06:30–19:
00

05:35–22:
30

05:15–19:
35

05:20–20:
00

Length of route 15 km 18.7 km 9.5 km 18 km 11.9 km 7.9 km 14.6 km 15.5 km
Servicing duration 49min 52min 34min 54min 42min 30min 53min 50min
Number of stops 26 28 18 27 15 14 20 16
Number of service trips 206 126 97 66 48 168 66 90
Average interval 11min 14min 17min 25min 33min 12min 27min 20min
Terminal station 1 (the nearest
charging station) 1 (1) 1 (1) 6 (1) 2 (2) 9 (5) 2 (1) 3 (3) 4 (4)

Terminal station 2 (1 nearest charging
station) 4 (4) 8 (4) 7 (1) 10 (5) 11 (5) 12 (5) 5 (5) 5 (5)

Table 6: Parameter settings for the case study.

Notations Meaning Settings
E Total battery capacity 324 kWh
RSOCmax

Ratio of the permitted maximum SOC to total battery capacity 0.95
RSOCmin

Ratio of the permitted minimum SOC to total battery capacity 0.25
f Charging power of the charger 1.8 kWh/min
g Power consumption rate during operation 0.65 kWh/min
cb Purchasing and maintenance conversion cost of an EB 1,500,000 RMB
cc Purchasing and maintenance conversion cost per charger 450,000 RMB
ct Time-related operational cost for an EB 25RMB/h

Table 7: AGA parameter settings for the single line separate optimizations.

Notations Meaning Settings
P Population size 1000
G Maximum generation 2000
r Minimum positive number in fitness function 0.01
Pc1 Initial maximum crossover probability 0.95
Pc2 Initial minimum crossover probability 0.85
kc Generation related variation rate of crossover probability 1
Pm1 Initial maximum mutation probability 0.1
Pm2 Initial minimum mutation probability 0.05
km Generation related variation rate of mutation probability 0.2
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Figure 5: Time-of-use electricity prices in Shanghai.
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Figure 6: Performance of the charging schedules. (a) Charging demand by hourly periods. (b) Overall view of the implementation of charging tasks.

Table 8: Comparison of EB fleet size and charger deployment results.

Optimization scenario Number of EBs Number of chargers
Charging station no.

1 2 3 4 5
Benchmark 68 25 7 6 1 6 5
Proposed model 67 20 6 5 1 5 3
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Figure 7: Difference in EB daily travel duration between the results of transit network scheduling optimization and single line separate
scheduling optimization.

Table 9: Comparison of total cost and 4 components of the total cost1.

Optimization scenario EB fleet investment Charger investment Power consumption Time-related cost Total cost
Benchmark 102,000,000 11,250,000 11,958,399 18,387,331 143,595,730
Proposed model 100,500,000 9,000,000 12,373,517 18,643,288 140,516,805
1Unit: RMB.
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Figure 8: *e average daily charging duration of the battery chargers in each charging station under transit network scheduling and single
line separate scheduling.
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7. Conclusions and Future Research

EB transit system has been regarded as a promising means of
transportation for reducing traffic congestion, air pollution,
and traffic which cities suffered. To promote the electrification
of the public transport system, progress has been made in EB
scheduling problem and charging infrastructure planning.
Unfortunately, most of the previous research has not con-
sidered the joint optimization of these two aspects especially at
the transit network level. To fill this gap, we introduce
a mathematical model for the SCD-MDVSP of the regular
charging EB transit network. *e objective of this model is to
minimize the overall construction and operation cost of an EB
transit system considering partial charging policy and time-
varying electric prices. Accordingly, a solving procedure based
on the improved AGA is proposed. *e proposed model and
solving procedure are applied to the inner Anting Town bus
transit network with 8 individual bus routes and 867 daily
service trips as a case study. *e results validated the effec-
tiveness of the approach and illustrated that the methodology
considering the partial charging policy can arrange the
charging schedule adaptive to the time-of-use electricity prices.
Moreover, it can be drawn from the comparison between the
model results and line-based optimization results that EB
scheduling and charger deploying at the transit network level
can improve the utilization of both EB and stationary chargers
andmake the charging tasks of chargers more evenly allocated.
Since the modeling scenario is well suited to the reality, the
proposed methodology can provide practical support for de-
veloping the EB transit system planning.

Similar to other methodological studies, this study has its
own limitations. First, the model does not consider the vola-
tility of bus travel time. Second, the EB battery charging and
discharging characteristics vary with weather and seasons, so
the EB scheduling plan may need to be adjusted accordingly.
*ird, due to the integer property of most decision variables
and several complicated constraints, the mathematical model is
nonconvex, which makes it hard for the proposed solving
procedure to reach the global optimal solution. Meanwhile, the
convergence speed and searching efficiency of the AGA are not
so satisfactory that the computational cost will increase rapidly
with the growth of the bus network. *erefore, an innovative
algorithm offering higher computational efficiency and large-
scale network adaptability would be a direction for future
studies.
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