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As railway is considered one of the most significant transports, sudden malfunction of train components or delayed maintenance
may considerably disrupt societal activities. To prevent this issue, various railway maintenance frameworks, from “periodic time-
based and distance-based traditional maintenance frameworks” to “monitoring/conditional-based maintenance systems,” have
been proposed and developed. However, these maintenance frameworks depend on the current status and situations of trains and
cars. To overcome these issues, several predictive frameworks have been proposed. (is study proposes a new and effective
remaining useful life (RUL) estimation framework using big data from a train control and monitoring system (TCMS). TCMS
data is classified into two types: operation data and alarm data. Alarm or RUL information is extracted from the alarm data.
Subsequently, a deep learning model achieves the mapping relationship between operation data and the extracted RUL. However,
a number of TCMS data have missing values due to malfunction of embedded sensors and/or low life of monitoring modules.(is
issue is addressed in the proposed generative adversarial network (GAN) framework. Both deep neural network (DNN) models
for a generator and a predictor estimate missing values and predict train fault, simultaneously. To prove the effectiveness of the
proposed GAN-based predictive maintenance framework, TCMS data-based case studies and comparisons with other methods
were carried out.

1. Introduction

Railway infrastructure has been one of the essential infra-
structures not only at a national level, but also across continents.
In terms of ground cargo and freight transport, the railway
system is the most important infrastructure. A number of re-
search studies have focused on detections of aberrant situations
in trains. For instance, unexpected failures in train components
may catastrophically harm the passengers’ safety. Moreover, a
maintenance delay may result in subsequent heavy delays in
overall train schedule. (us, maintenance frameworks for
railway infrastructure have received significant attention. A
number of existing research studies have proposed various
railway maintenance frameworks and relevant applications for
more reliable railroad operations.

Early railway maintenance frameworks are based on
periodic time-based maintenance [1], which is still an ef-
fective technique for checking railway components. Monthly
or quarterly inspection belongs to this type of maintenance.
Recently, maintenance framework has evolved to “preven-
tive maintenance” in contemporary railroad systems. Pre-
ventive maintenance is classified into “time-based
maintenance” and “distance-based maintenance” in general.
Most railway operators utilize both maintenance frame-
works, simultaneously.

Moreover, the maintenance framework is evolving with
the development of technologies of the fourth industrial
revolutions. Of these technologies, Internet of (ings (IoT)
technology is the most relevant for enhancing railway
maintenance. Fraga-Lamas et al. [2] summarized the
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utilization of IoT technologies in train maintenance. IoT-
based embedded systems enable the detection of abnormal
status of railway components in real time, where the signals
are subsequently transferred to a secured database system. In
general, most of the train systems have their own man-
agement systems, such as train control and monitoring
system (TCMS) for storing various train data and for
managing trains. Based on TCMS-based research studies
[3, 4], TCMS is a system with control, communication, and
management functions for all train platforms and applica-
tions. As the system collects operation and management-
based data for trains and their connected cars, a huge
amount of data can be collected and analysed. Several re-
search studies [5, 6] used TCMS data for estimating energy
consumption of trains or for controlling train doors safely.
However, relatively fewer studies on predictive maintenance
were carried out.

(is study focuses on developing a new and effective
predictive maintenance framework using TCMS data. In this
study, remaining useful lives (RUL) of various train modules
are predicted using a proposed deep learning method. In
order to measure RUL of train modules, this study predicts
time periods to the relevant trains’ faults and malfunctions.
In this paper, this time to failure (TTF) for a certain train
fault is defined a RUL of a certain fault. However, prereq-
uisite conditions are necessary to handle data issues in
TCMS. As TCMS data could include missing values, their
handling mechanism must be embedded in a relevant RUL
estimation framework.

(is study applies a generative adversarial network
(GAN) to handle missing values in TCMS. (e following
section provides relevant background knowledge and lit-
erature review. Section 3 examines TCMS data and relevant
data issues. Sections 4 and 5 present a GAN-based predictive
maintenance framework and its verifications using various
numerical analyses, respectively.

2. Background and Literature Review

(is study utilized TCMS data to estimate train component
status and predict their RULs. (e proposed framework is
classified as a predictive maintenance framework in train
systems. As discussed in the previous section, the mainte-
nance paradigm in train transportation has converged with
the technologies of the fourth industrial revolution.(e time
and distance-based maintenance frameworks have been
combined with monitoring-based methods. Several sensing
systems have been developed and installed for more detailed
examinations of trains’ components. Sharma et al. [7] de-
tected breakage of railway tracks using vibration sensors.
Sireesha et al. [8] used a radio frequency-based method to
detect rails’ broken status. (ese sensing systems have in-
tegrated with Internet of (ings (IoT-) based frameworks.
Lee [9, 10] developed various Industrial IoT (IIoT) systems
to monitor abnormal manufacturing signals and estimate
production performance indices in multiple supply chains.
(e detected signals are transmitted to a cloud server, where
industrial big data analytics analyses the collected data and
takes preventive measures for better production controls.

(ese technologies and frameworks have been applied to
various train systems and their relevant monitoring-based/
condition-based maintenance. Hitachi [11] proposed
Lumada IoT Platform© as a monitoring-based maintenance
system for its railway system.

While various monitoring-based methods for detecting
abnormal status of railway components have been intro-
duced, deep learning methods and relevant data analytics
have been integrated into predictive maintenance. Corman
et al. [12] applied a data-driven method to estimate the
remaining life of a light rail braking system in a train.
McKinsey [13] suggested similar approaches to enhance rail
operations using digital maintenance technologies. Ata-
muradov et al. [17] and Liden [18] summarized compre-
hensive overviews on railway infrastructure maintenance.
Table 1 provides various time-based, monitoring-based, and
data-drivenmaintenance frameworks and their applications.

As shown in Table 1, data driven analytics has been
introduced for better rail maintenance. Among a number of
data sets in a train framework, the TCMS data is the most
comprehensive data, as it includes operation, parameter
settings, and other information on train components. Fig-
ure 1 shows the various TCMS subcomponents that are
installed in Korean trains and cars.

In general, TCMS is an essential system for controlling
electrical multiple units (EMU) in each train and car in a
train system. (us, control parameters and operation data
are stored in TCMS. While TCMS is mainly used to control
trains and cars, the usage of TCMS data for various purposes
has been suggested. Table 2 shows various applications that
use TCMS data. As shown in Table 2, most of the appli-
cations that use TCMS data have focused on monitoring-
based maintenance.

While TCMS data have been used comparatively less
with more advanced maintenance analytics, several indus-
trial projects including Shift2Rail [21] have suggested pre-
dictive maintenance frameworks using TCMS data.
However, these projects provide only conceptual frame-
works or experimental-level demonstrations. In particular,
big data analytics and more advanced data mining methods
are seldom applied in TCMS-based predictive maintenance
frameworks. To address this issue, this study proposes a new
and effective predictive maintenance using deep learning
methods and real-time TCMS data handling modules.

3. Missing Value Issues in TCMS Data for
Predictive Maintenance Framework

(e proposed predictive maintenance framework uses
TCMS data for predicting RULs in a certain breakage. As
shown in (1), the RUL (RULj, j ∈ J; J is a set of integers) of a
certain breakage (j) is estimated using the TCMS data (X)

and used as a main reference for setting up train and cars
maintenance schedules. (e function f(·) is modelled using
a deep learning-based network architecture and is explained
in the following section.

RULj � f xi∈I( 􏼁. (1)
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Table 3 summaries the TCMS data used in this study and
the general specifications of the proposed RUL prediction
framework.

As shown in Table 3, the input data of the proposed
predictive maintenance framework is the TCMS data.
Figure 2(a) shows a part of the TCMS data, which is an
encrypted data. In general, TCMS data is classified into two
types: operation data (oper) and alarm data (arm) as shown
in Figure 2(a).(e TCMS data is stored with each car no., the
date, and time. While the “oper” data describes information
such as train identification and operation and other relevant
train parameters, the recorded “arm” data includes various
warning signals and relevant alarm codes. (ese alarm level
information and other warning data are written using the
predefined criteria, such as status levels of train components
and other relevant sensor measuring ranges. (us, “oper”
data is used as input data, while the output of the proposed
RUL estimation framework is driven by the “arm” data. If
“arm” data can be predicted using a series of “oper” data, a

real-time predictive maintenance can be applied. Hence, the
proposed predictive maintenance framework uses “oper”
data as input vector. (e RUL variable is extracted from the
“arm” data and fault/maintenance history. (e fault/
maintenance data clarifies the relationship among “arm”
data and a certain train defect. RUL data is extracted from
the “arm” data and its relationship to a certain defect is
obtained using the mapping between both data.

However, TCMS data cannot be directly used owing to
their encrypted formats andmissing value issue. As shown in
Figure 2(a), both types of data are encrypted for various
reasons, such as data protection, data size reduction, and
sensor driver encryption.(is indicates that the data need to
be decrypted prior to any further data processing.

To decrypt the data, hex data-based decoding is per-
formed as an essential prerequisite procedure using the
encryption rule for TCMS. (en, the hex-formatted data are
converted into number-formatted data for subsequent deep
learning processing. Figure 2(b) shows a program developed

Table 1: Existing time, monitoring, and data-driven maintenance applications in rail systems.

Existing research
studies

Target railway
components Methods and characteristics

Maintenance type
Time/
distance Monitoring Data-

driven
Faiz and Singh
[14] Railway track (i) Detection of track geometry

(ii) Usage of rail profile-based regression model O — —

Sharma et al. [7] Railway (i) Vibration sensor-based estimation of railway breakage — O —

Shaikh et al. [15] Solid axle wheel sets
(i) Installation of additional sensors (vibration sensors for

capturing lateral and yaw dynamics)
(ii) Vibration model-based simulation

— O —

Letot et al. [16] Railway track point
machine

(i) Degradation assessment and data-based RUL
estimation — — O

Corman et al.
[12]

Train breaking
system

(i) Work, maintenance, and failure data-based reliability
estimation

(ii) Usage of Weibull distribution
O O O

Monitoring system in train control car Monitoring and control system
in train driving modules 

Data acquisition
system

in each car 

Figure 1: Train control and monitoring system (TCMS) in Korean trains and cars. (a) Monitoring system in train control car.
(b) Monitoring and control system in train driving modules. (c) Data acquisition system in each car.
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Table 2: Applications that use TCMS data.

Research studies Applications TCMS data

Ito et al. [6] (i) Safe door operation
(ii) Automatic power changer-based driver advisory system (i) EMU functions in TCMS

Neil [19] (iii) Railway safety monitoring-based maintenance (ii) Transaction data in TCMS

Kim et al. [13] (iv) Analysis of train energy consumption considering
driving patterns

(iii) Driving time
(iv) Train’s driving speed
(v) Railway track data

Xu et al. [20] (v) Queuing theory-based maintenance cycle scheduling for
an urban rail transit system

(vi) Running distance, velocity, and mileage data
Maintenance schedule

Shift2Rail project
[21]

(vi) Monitoring of cargo condition
(vii) A conceptual and experimental project

(vii) TCMS data
(viii) Additional sensing systems (e.g., ultrasonic sensor

and other wireless sensors)

Table 3: Specification of the proposed predictive maintenance framework.

Content Classification Issues

Data specification
(i) Data source: TCMS data (2018.6∼2019.05)

(ii) Data from the seventh line in subway system, Republic of
Korea

Big data

TCMS data specification
(i) Number of attributes: 2643 per one record

Existence of a number of missing values in one record
(ii) Data format: encrypted data

(i) Data decryption is needed
(ii) Missing value handling is

needed

Fault/alarm data (i) Number of attributes: 56
(ii) Data format: encrypted text data (i) Data decryption is needed

Predictive maintenance
framework

(i) Data input: TCMS data
(ii) Output: the estimated RUL

(iii) Mechanism: GAN-based deep neural network
—

TCMS
…….

……. TC0L1U1
TC1L1U1

…
…

.

Date/Time
Arm

Oper…
…

.

Encrypted data

(a)

Figure 2: Continued.
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in this study, which converts hex-formatted data to number-
formatted interpretable data. (e “oper” data has 2,643
attributes, which include train identification, operation time,
station time, velocity, sensor data, and other information.
(e “arm” data has 56 attributes such as system failure,
warning, and alarm information.

(e data conversion process is performed as a pre-
processing step. However, the main issue is the frequent
occurrence of missing values in the TCMS data. Missing
values in the TCMS data exist due to various reasons (e.g.,
sudden breakdown of sensors, malfunction of devices, and/
or sudden changes of electric current). Missing input and
output data issues have to be resolved prior to training a
deep learning-based predictive maintenance model. (is is
one of the most common issues in manufacturing [22–24],
transportation, and other data handling processes. Table 4
summaries various methods for handling missing values.

As shown in Table 4, most of the early relevant research
studies tried to remove records with missing values. While
these methods provided complete data for input, it could
result in the lack of a training data. However, this limitation
can be overcome by estimating missing values. (e simplest
estimation method is to consider data in the same attribute
and then extract a probability density function using the data
associated with the same attribute. For instance, the
Gaussian mixture model (GMM) can be applied for cap-
turing the characteristics of the data [30]. (en, a random
number generated using the reasoned GMM model is used
as an estimator for a missing value. However, in this method,
relationships among other attributes are ignored. To address
this issue, another estimation method, missing value esti-
mation method, which considers the overall dependencies
among the data attributes can be used. In general, multi-
variate statistical approaches, regression model, or

multivariate nearest neighbour methods [31] can be applied
for describing data dependencies. (en, the missing values
can be estimated and substituted using Markov Chain
Monte Carlo (MCMC)-based random number generation
methods.

While these methods have worked only for estimating
missing values, the recent methods tend to generate not only
missing data, but also overall data.(e generative adversarial
network (GAN) is the representative method among them.
In industrial big data, one of the issues is the lack of certain
fault data. (e lack of certain types of data may lower
training performances of applied learning mechanisms.
While the initial purpose of adversarial network (G) in GAN
is to increase the classification ability of a classification
network (D), a well-trained adversarial network can generate
data which fits to an objective. Table 5 summarizes the
learning algorithm of GAN.

(e gradients for G and D are driven using

min
G

max
D

fD X′( 􏼁 + fG(Z). (2)

As shown in (2), fD(X′) and fG(Z) denote
EX′[logD(X)] and EZ[log(1 − D( G(Z)) )], respectively.
Several research studies applied GAN for generating fault
data in automotive [22], semiconductor [23], and steel
production processes [24]. (is study used GAN to handle
the missing value issues in the TCMS data as well as to
predict RULs in train components.

4. Generative Adversarial Network-Based
Predictive Maintenance Framework

(eproposed RUL estimation framework predicts the RUL of
a certain defect or a malfunction. To focus on major

(b)

Figure 2: Encrypted TCMS data sample and the developed conversion tool. (a) A TCMS data sample and its encrypted texts. (b) (e
decryption and conversion software program developed in this study.
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malfunctions during train operations, 49 defects are extracted
from the “arm” data in TCMS based on defect frequency and
severity. Figure 3 shows the defect frequency. (e records are
gathered by Korean Railroad Research Institute.

Each defect’s RUL is calculated using the TCMS “arm”
data and relevant fault/maintenance data. (e “arm” data
includes the identification number, occurrence date, and
other relevant information for each defect. Figure 4 shows an
occurrence history of a specific defect (defect code no. 442–
fault of electronic control unit (ECU)). As shown in Figure 4,
the X and the Y axes indicate the occurrence date and defect
code, respectively.

From the information, Faulti,j(t) is extracted. Faulti,j(t)

indicates the jth occurrence time of the ith defect in the TCMS
data. (en, inter-defect time, RULi,j(t) , is calculated using

RULi,j(t) � Faulti,j (t) − Faulti,j− 1(t)􏼐 􏼑. (3)

As shown in (3), Faulti,j(t) denotes the jth sensing time
of the ith defect in TCMS, and RULi,j(t) indicates the inter-
defect time in day between the jth occurrence and (j− 1)th

occurrence of the ith defect. (e obtained RUL is used as
output data for prediction. Subsequently, the RUL is pre-
dicted using TCMS’s operation data (X(t)) and a deep
learning framework as shown in (4).

RULi,j(t) � fn wn · fn− 1 . . . f1 􏽘
i,j

wi · xi(t) + bi
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝

+ bn􏼁,

(4)

X(t) � x1(t), . . . , xi(t), . . . , x2643( 􏼁. (5)

As denoted in (4) and (5), xi(t) is the value of the ith
attribute at time t in the TCMS “oper” data, wi is the weight
value of xi(t), bi is the ith bias, and fi is the ith activation
function.

While a general predictive maintenance estimates RUL
using (4), the equation cannot be directly applied in the TCMS-
based datamining owing to themissing value issue discussed in
the previous section. To overcome this issue, (4) is converted by

Table 5: General learning algorithm of GAN.

Input/parameters

(i) Training data: X
(ii) Learning epoch: k1/· Training epoch: k2
(iii) Step length: η
(iv) Mini-batch size: m

Output
(v) Optimal parameters for G: 􏽢θG

(vi) Optimal parameters for D: 􏽣θD

Learning
algorithm

for 1:k1
Initialize θG, θD

for 1:k2
mini-batch partitioning from X, X′ � x1, . . . , xm􏼈 􏼉

calculate gradient for D and update θD

θD
′ � θD + η · (zfD/zθD)

Generate random vector, Z′ � z1, . . . , zm􏼈 􏼉

Calculate gradient for G and update θG

θG
′ � θG + η · (zfG/zθG)

end
end

Table 4: Various methods for handling missing values.

Methods for handling missing values Detailed methods Related research studies

Removals of data sets with missing values
(i) Ignorance of records with missing values

(ii) Data without missing values are used only for an input
vector

A number of research studies
including [25]

Estimation of missing values (I)

(iii) Estimation of missing values using mean, MCMC, and
nearest neighbours

(iv) Estimation considering only the attribute that has
missing values

Moldovan et al. [26]

Estimation of missing values (II),
multiple imputation

(v) Data estimation considering overall attributes’
dependency

(vi) Missing values estimation using regression and other
statistical methods

Hruschka et al. [27]
Yuan [28]

Generation of a new data set

(vii) Generative adversarial network- (GAN-) based data
generation

(viii) Replacement of the data having missing values with
newly generated data

Kim and Lee [23, 24]
Douzas and Bacao [29]
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introducing a GAN in the RUL estimation. Figure 5 shows the
overall RUL prediction framework using GAN.

As shown in Figure 5, the proposed RUL prediction
framework consists of two phases: learning stage and pre-
diction stage.(emain objective of the first stage is to obtain
a discriminator (D) using a deep learning-based architec-
ture.(e proposed framework applies a deep neural network
for the discriminator. (e discriminator uses a complete
TCMS data (X′(t)), where X′(t) is generated using X(t) and
a generator (G) in the proposed GAN. X′(t) is complete
data, while X(t) is a data set with missing values. As dis-
cussed in the previous section, the TCMS data (X(t)) of a
certain train’s fault may have missing values owing to
various reasons. As shown in (6), these missing values are

estimated initially using multivariate GMM, p(θ|xi) where θ
is the extracted RUL data, xi is the i

th attribute’s data over the
entire time considering xi(t), and |oper| is the data size of xi.

p θ|xi( 􏼁 � 􏽘
k

i�1
ϕi · N μi,Σi( 􏼁 , (6)

where N(μi,Σi) � e− (1/2)·(xi− mui)
T ·Σ− 1·(xi− mui)/

����������

2π|oper| · |Σi|
􏽱

.
(e missing value is generated using Gibbs sampling

method [30, 31]. (e initial completed data (X′(t)) is
inputted to a generator G(·). (e output of G is the
regenerated data (X″(t) ). (e generator has another deep
neural network architecture similar to discriminator D(·) as
shown in (2).(en,D generates X″(t) that satisfies (1) better
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Figure 3: Defect frequency (each fault code is designated by Korean Railroad Research Institute).
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Figure 4: RUL extraction for a specific defect (code no. 442, fault of ECU) from the TCMS “arm” data.
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than the previous estimated X′(t). (e updated X″(t) is
then inputted to D(X″(t)).

As presented in Figure 5, the GAN process shows these
learning processes. Both network models have the deep
learning parameters θ(D) and θ(G) as weight vectors. (e
updating procedures θ(D) are achieved using the gradients
indicated in (7)–(9).

zV

zθ(D)
�

zfD X″(t)( 􏼁

zθ(D)
+

zfG X′(t)( 􏼁

zθ(D)
. (7)

As shown in (7), V denotes fD(X
’′(t)) + fG(X′(t)).

zfD X″(t)( 􏼁

zθ(D)
�

zfD X″(t)( 􏼁

zy
D
i

·
zy

D
i

zv
D
i

·
zv

D
i

zy
D
i− 1

, . . . ,φ v1( 􏼁 · X″(t).

(8)

vi denotes (wi · yi− 1) + bi, and yi is the output of the i
th

deep learning layer, ϕ(vi).

zfG X′(t)( 􏼁

zθ(D)
�

zfG X′(t)( 􏼁

zy
D
i

·
zy

D
i

zv
D
i

·
zv

D
i

zy
D
i− 1

·, . . . , ·φ v1( 􏼁 · X′(t).

(9)

θ(G) is updated using the same procedures. Finally, the
learned D(·) is obtained after the overall learning iterations.

In the second phase (prediction stage), the RUL of a
certain defect is estimated using real-time “oper” data.While
real-time data (X(t)) may have missing values, the RUL is
estimated successfully with D(X″(t)). (e proposed GAN-
based RUL prediction framework considers data with var-
ious missing values that exist frequently in TCMS data.
While TCMS may generate data with missing values due to
various issues, the proposed framework is considered an

effective predictive maintenance framework for handling
missing values. (e following section proves the effective-
ness of the proposed framework using case studies and
TCMS data analyses.

5. Verification and Analysis of GAN-Based RUL
Prediction Framework

To prove the effectiveness of the proposed TCMS-based
predictive maintenance framework, this section provides
prediction performances of several train faults and compares
prediction accuracies with other methods. As explained in
the previous section, each fault type’s RUL was estimated
using its GAN-based framework.

(e prediction accuracy and analyses were performed
using the data of the Korean Railroad Research Institute
(KRRI), which is a Korean government-funded railroad
institute. (e TCMS data from June, 2018, to May, 2019, in
SeoulMetropolitan Subway were used as training and testing
data. Sixteen defects were selected to predict their RULs.
Table 6 provides the fault types and their information. (e
fault code ID and other relevant information were recorded
in the TCMS data of the Seoul Metropolitan Subway.

To prove the verification using the provided GAN-based
missing value estimation, the proposed method was com-
pared with the other three existing methods: (1) ARIMA-
based RUL estimation, (2) estimation with pruning of
missing values, and (3) RUL prediction using mean-value
estimation. Table 7 summaries the architecture, character-
istics, and parameters of the proposed method and the three
existing methods.

(e GAN architecture and other relevant parameters of
the proposed method are provided in Table 8. As mentioned

TCMS data
Arm

Oper

1. Selection of
Rail breakage type 

2. RUL data
extraction 

3. “oper
data classification

4. MCMC-based
missing value

estimation

5. Data generation
using “Generator”

6. Training using
“Discriminator” 

<Generator>

<Discriminator>

GAN process

Phase I : Learning stage

Phase II : Prediction stage

7. Input of real-time
obtained “oper” data 

8. RUL prediction

Figure 5: GAN-based missing value handling and RUL prediction framework.
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in the previous section, the GAN architecture varies for
every defect. (e parameters are provided in Table 8.

(e parameters shown in Tables 7 and 8 were deter-
mined by applying numerical tests on the provided TCMS
data. Figure 6 shows the training and test accuracies of the
proposed RUL prediction for fault code ID 31 (LIU1
communication error in TC1).

As shown in Figure 6, the proposed method performed
99.9% and 83.5% for the training and test accuracies, re-
spectively.(e accuracy was calculated using (10) and (11).(e
root mean squared error (RMSE(RUL)i) for a certain type (i)
of RUL (RULi) was used as a test metric, where 􏽤RULi,j is the j

th

predicted value using the proposed framework and RULi,j is
the jth original RUL value, and n is the size of the test data.

Table 6: Fault types and their information for RUL predictions.

No. Fault code ID Fault information and relevant location
1 31 LIU1 communication error in TC1
2 32 LIU2 communication error in TC1
3 34 LIU2 communication error in TC0
4 38 LIU1 hardware malfunction in TC0
5 39 LIU2 hardware malfunction in TC
6 231 SIV inverter malfunction
7 434 Break malfunction
8 442 ECU malfunction
9 635 TC MFB card/ATC vital malfunction
10 636 Tachometer error
11 640 Main ATC hardware malfunction
12 641 Secondary ATC hardware malfunction
13 647 FSB/ATC error
14 669 ATO-ATC communication error
15 670 ATO-ATC 1 communication error
16 684 ATC DBAU hardware error

Table 7: Four RUL prediction methods.

RUL prediction
method

GAN-based RUL estimation
(the proposed method)

ARIMA-based RUL
estimation

RUL estimation using
“missing value pruning”

RUL estimation with “mean-
value estimation” of missing

values
Missing value
handling
mechanism

O (GAN-based data
generation)

X (removal of records
with missing values)

X (removal of records with
missing values) O (mean-value estimation)

RUL estimation
method Classification using GAN ARIMA-based RUL

estimation Deep neural network Deep neural network

Detailed parameters Refer to Table 8 ARIMA (6, 2, 5)

(i) Learning epoch: 1000
(ii) Learning rate: 10− 3

(iii) Number of layers:10
(iv) Used activation
functions
�(leaky RU for final layer,
Sigmoid for layers #1− #9)

—

Table 8: Detailed architecture and relevant parameters of the GAN-based RUL estimation (case for fault code ID 31).

Classification Detailed architectures

General learning parameters (i) Learning epoch: 1000
(ii) Learning rate: 10− 3

Discriminator (D(·))

(i) Number of Layers:10
(ii) Number of nodes in each layer
�(1, 50, 100, 200, 500, 1500, 2500, 3000, 3500, 2653)
(iii) Used activation functions
�(leaky RU for final layer, Sigmoid for layers #1− #9)

Generator (G(·))

(i) Number of layers: 7
(ii) Number of nodes in each layer
�(2653, 2700, 2800, 3000, 3200, 3500, 2653)
(iii) Used activation functions: Sigmoid function for each layer
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RMSE RULi( 􏼁 �

�������������������

􏽐
n
j�1

􏽤RULi,j− RULi,j􏼐 􏼑
2

n

􏽳

,
(10)

Accuracy (%) � 1 − RMSE RULi( 􏼁􏼂 􏼃 · 100. (11)

(e test data was sampled from the original TCMS data.
As the fault occurrence was very low, the amount of test data
was limited. (e data-based numerical tests were carried out
by comparison with the other methods. Figure 7 shows the
test accuracies using the four methods: the proposed method
and the other three benchmarking methods shown in
Table 7.

As shown in Figure 7, the proposed method had the
highest accuracy compared with the other existing methods.
Table 9 provides the test accuracy for each method.

(e numerical analysis indicates that the missing value
issue was critical for the fault prediction using the TCMS data.
In addition, the estimation of the missing values strongly
influenced the RUL predictions. Using the proposed frame-
work, the RUL prediction system for the 16 train faults was
developed as shown in Figure 8. (e software program was
implemented usingMFC© andMATLAB© onWindows 10©.
Figure 9 shows the test accuracies of the various TCMS faults.

As shown in Figure 9, the proposed framework and its
implemented software resulted in RUL predictions of over
82.07% for all TCMS fault types. Table 10 shows the test
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Figure 6: (e training and the test accuracies of the proposed RUL prediction (for fault code ID 31). (a) (e training accuracy. (b) (e test
accuracy.
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Figure 7: Test accuracies using the four benchmarking methods.

Table 9: Test accuracy for each RUL estimation method (case for fault code ID 31).

RUL prediction
method

GAN-based RUL estimation
(the proposed method)

ARIMA-based RUL
estimation (%)

RUL estimation using
“missing value pruning”

(%)

RUL estimation using “mean-value
estimation” of missing values (%)

Test accuracy 83.5% 56.7 69.7 76.3

Figure 8: (e implementation of GAN-based missing value handling and RUL prediction framework.
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Figure 9: Continued.
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accuracy of the proposed framework for each defect in the
TCMS data.

6. Conclusions and Further Study

(e transportation maintenance has gained substantial at-
tention owing to its significance in societies.(is study focused
on the RUL prediction-based railway maintenance framework.
While initial railway maintenance concentrated on periodic
maintenance framework such as predefined time-based
maintenance or distance-based scheduling, railway mainte-
nance has evolved to condition-based maintenance owing to
the advancement in monitoring devices and information
technologies. (is framework detects abnormal status using
state-of-the-art sensors in a train system.(emonitored signals
are transferred to a server, TCMS.

(is study proposes a new and effective RUL prediction
framework using TCMS data. In general, TCMS data are
classified into operation data and alarm data. To predict the
remaining life of a certain fault or malfunction, this paper
selected 16 faults based on their significance and severity. A
deep learning-based mechanism was developed for each

fault. Firstly, RUL of the target train fault was extracted using
the TCMS alarm data. (en, the data was used as the
predicted output of the proposed deep neural network.
However, the system has a critical issue, which is common in
most sensor-based systems: the existence of missing values.
Existence of missing values in TCMS data could be due to
various reasons such as sensor malfunction and low life of
monitoringmodules. Among several estimationmethods for
replacing missing values, this study used a GAN model to
estimate missing values and predict RULs, simultaneously.
(e developed GAN framework can generate new data that
cover missing values using the prediction objectives. Ini-
tially, the missing values are estimated using GMM and the
estimated data are refined with the proposed GAN frame-
work. In addition, the discriminator in the GAN model has
better predictive performances in generating more accurate
data. (e effectiveness of the proposed maintenance
framework was investigated by comparing it with other
existing methods. (e proposed framework is a new and
effective train predictive maintenance framework that ad-
dresses missing value issue and predicts fault detection in
real time.
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Figure 9: RUL prediction results using the proposed method. (a) Fault code ID 34 (LIU2 communication error in TC0). (b) Fault code ID
231 (SIV inverter malfunction). (c) Fault code ID 434 (break malfunction). (d) Fault code ID 635 (TC MFB malfunction). (e) Fault code ID
640 (main ATC hardware malfunction LIU2). (f ) Fault code ID 669 (ATO-ATC communication error).

Table 10: Test accuracy for each defect using the proposed framework.

Fault code id. Test accuracy Fault code ID Test accuracy Fault code ID Test accuracy Fault code ID Test accuracy (%)
31 83.50 32 88.08 34 88.94 38 82.47
39 86.98 231 99.91 434 96.75 442 95.68
635 85.24 636 85.60 640 92.21 641 89.15
647 93.14 669 97.56 670 82.07 684 80.46
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For further studies, various optimization and meta-
heuristics methods can be applied to the proposed frame-
work. As TCMS data is classified as big data, its learning
could take longer time. Moreover, the framework requires
comparatively higher computational burden. While the
proposed framework uses two deep neural network models
for a generator and a discriminator in its GAN module, it is
expected that application of several optimization methods
could reduce learning time and computation burden. In
addition, prediction of each train fault requires a different
GAN-based framework. While it has an advantage focusing
on the defined fault, real-time prediction may require sig-
nificant computational burden. To resolve this issue, a new
architecture for multiple-fault prediction will be considered
in future studies.
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