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In rainy weather, the accurate prediction of traffic status not only helps road traffic managers to formulate traffic management
methods but also helps travelers design travel routes and even adjust travel time. In this paper, based on six-dimensional data (e.g.,
past and present spatiotemporal traffic status, road network structure, pavement type, water accumulation, and rainfall level), a
fuzzy neural network (FNN) prediction system is proposed to predict traffic status. /e traffic status evolution trend is related not
only to the existing traffic but also to the new traffic demand. /erefore, the FNN prediction system designed includes offline and
online parts using the data of the past and the day separately and avoids the forecast of new traffic demand. /e fuzzy C-means
clustering algorithm is applied to cluster traffic status data under similar rainy weather in the past to form an offline initial dataset,
which is used to train FNN weight parameters. /e online part uses real-time detection data and the parameters trained by the
offline part to further predict the traffic status and returns the prediction errors to the offline part to correct the weight parameters
to further improve prediction accuracy. Finally, the FNN prediction system is verified using real Beijing expressway network data.
/e verification results show that the prediction system can guarantee prediction accuracy and can be used to effectively identify
traffic status.

1. Introduction

/e development of detection technologies allows road data
such as road flatness and water accumulation to be obtained
in detail. Based on these advanced technologies, the traffic
management departments can fully use the road data to
accurately estimate the traffic status to further improve the
level of road management services and alleviate traffic
congestion [1].Withmore realistic road information, drivers
can efficiently plan their travel paths and even departure
time [2].

In cities such as Beijing and Shanghai in China, drivers
usually have multiple route options to reach destinations.
Real-time traffic status and road information can help a
driver to choose a potentially suitable travel route [3]. /e
potentially suitable travel route is not only related to the
current traffic status and road conditions but also related to

the traffic status in the future [4]. /erefore, reasonably
assessing current traffic status and accurately predicting
future traffic status will play an important role in traffic
management and driver travel [5]. However, it is very dif-
ficult to accurately predict traffic status evolution due to
various random factors (e.g., changes in rainfall, the degree
of slippery roads affected by rain, visibility of drivers, etc.)
[6] and the way of congestion spreading [7]. /erefore, in
rainy weather, based on remote sensing road information
and traffic information, it is a great challenge to reasonably
predict the evolution of network traffic status [8].

/e evolution process of road traffic status is not only
related to road structure, rainfall, existing traffic flow, and so
forth but also related to potential traffic demand [2].
/erefore, we cannot predict the evolution of traffic flow at
future time steps using only the traffic status data from the
past of the day, because the new traffic demand cannot be
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well predicted. Similarly, we cannot just use the evolution of
the traffic status of similar rainy days in the past to predict
the evolution of traffic status at future time steps, because the
daily traffic flow status may be affected by even the change of
a certain transportation facility or the repair of roads.
/erefore, a fuzzy neural network (FNN) prediction system
with two parts, online and offline parts, is proposed to
predict the traffic status evolution [9].

We use the fuzzy C-means (FCM) clustering algorithm
to perform cluster analysis on traffic status evolution in the
past similar rainy weather to construct an offline initial
dataset. /is dataset is used by the offline part to train FNN
weight parameters. /e online part uses real-time detection
data and the weight parameters trained by the offline part to
predict traffic status. Moreover, the online part returns
prediction errors and real-time data to the offline part to
further correct the weight parameters to improve prediction
accuracy.

/is paper seeks two contributions to the literature.
Firstly, a fuzzy prediction system including offline and
online parts is proposed. /e offline part takes into account
the new traffic demand by comparison with the traffic status
evolution under similar rainfall weather in the past. /e
comparison between the real-time traffic status evolution on
the day and the prediction results of the online part is
returned to the offline part to further correct the weight
parameters and improve prediction accuracy. Secondly, six-
dimensional data (i.e., past and present spatiotemporal
traffic status, road network structure, pavement type accu-
mulation water, and rainfall levels) are used to predict the
evolution of traffic status during rain. /is result provides a
valuable perspective for future researchers on the evolution
of relevant traffic status.

/e rest of the paper is organized as follows: Section 2
briefly discusses related prediction and clustering methods;
the FNN fuzzy prediction system including online and
offline parts is introduced in detail in Section 3; Section 4
tests the corresponding prediction system by examples; fi-
nally, we summarize the paper and propose relevant ex-
pansion suggestions in Section 5.

2. Literature Review

2.1. Clustering Algorithms. Cluster analysis plays a vital role
in the field of traffic status classification. Cluster analysis
maximizes the similarity of objects in a single class and
minimizes the similarity of objects between different classes.
In traffic data mining, commonly used clustering algorithms
include partition-based k-means algorithm [10, 11], hier-
archical clustering algorithm [12], density-based spatial
clustering of applications with noise algorithm [13, 14], and
FCM clustering algorithm [15–17].

/e k-means algorithm has a fast clustering speed, but it
requires that the number of categories be reasonably esti-
mated, and the selection of the initial category center and
noise have a great impact on the clustering results [10]. /e
hierarchical clustering algorithm includes two methods:
splitting method and agglomeration method [12]. /e
splitting method refers to initially classifying all samples into

a cluster and then gradually splitting the sample points
according to a certain criterion until a certain condition or
the set number of categories is reached. /e agglomeration
method refers to initially treating each sample point as a
cluster and then merging these initial clusters according to a
certain criterion until a certain condition or the set number
of classifications is reached. However, hierarchical clustering
algorithms are often used for automatic grouping of one-
dimensional data.

/e density-based spatial clustering of applications with
noise algorithm also has a fast clustering speed. /is algo-
rithm can effectively process noisy data to find spatial
clusters of arbitrary shapes and does not require entering the
number of clusters during the clustering process [13].
However, when the density of spatial clustering is not
uniform and the cluster spacing is large, the clustering re-
sults obtained by the density-based spatial clustering of
applications with noise algorithm are poor. /e FCM
clustering algorithm is a fuzzy clustering algorithm based on
objectives, which uses membership to determine the simi-
larity of sample points. Road traffic status division has
certain ambiguity. Hence, the FCM clustering algorithm is
chosen to classify the traffic status according to different
rainfall and water accumulation.

2.2. Traffic Status Prediction Algorithms. Over the past few
decades, many scholars have devoted their efforts to improve
the accuracy and effectiveness of traffic status prediction.
/e models used in traffic status prediction studies can be
summarized into three broad categories: parameter models,
nonparameter models, and hybrid models [18]. /e pre-
diction algorithm based on parameter models uses mathe-
matical statistics to process historical traffic data. /e model
is preset based on certain theoretical assumptions, and then
model parameters are estimated using historical data. /e
typical parameter model prediction algorithm used in traffic
prediction is the autoregressive integrated moving average
algorithm [18, 19] and Kalman filtering algorithm [20]. /e
parameter prediction model is relatively simple and has the
advantage of fast calculation. However, this parametric
model prediction algorithm is greatly affected by the vola-
tility of traffic volume. /erefore, this parametric model
prediction algorithm is only suitable for the roads with stable
traffic status and low accuracy requirements. In rainy
weather, low-lying areas are prone to local traffic congestion.
/erefore, the parametric model prediction algorithm is not
suitable for the prediction of traffic status under abnormal
weather such as rain weather.

To make up for the shortcomings of parametric pre-
diction models, some nonparametric models that can ana-
lyze the nonlinear characteristics of traffic status are
proposed. Nonparametric models are roughly divided into
wavelet analysis models [21, 22], chaos theory models
[23, 24], and intelligent prediction models. Although non-
parametric models can well predict the traffic status with
time series characteristics, the model structure is complex,
the calculation amount is large, and the determination of
model parameters is difficult. As data-driven nonparametric
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algorithms, the intelligent prediction models use artificial
intelligence algorithms to make predictions and are widely
used in the field of traffic status prediction. Artificial in-
telligence prediction algorithms mainly include machine
learning models such as k-nearest neighbors algorithm
[25, 26], Bayesian networks [27], and support vector ma-
chines [28, 29] such as least squares support vector machine
[30–32], neural networks [33], and deep learning models
such as back propagation neural networks [34], long-short
term memory [35, 36], deep belief network [37], and gen-
erative adversarial network [38, 39].

Hybrid prediction algorithms refer to the use of two or
more prediction models for traffic status prediction. Hybrid
prediction models take advantage of multiple prediction
models at the same time and are usually more accurate than
using a single prediction model. Hybrid prediction algo-
rithms are currently commonly used for traffic status pre-
diction [40–43]. Based on empirical mode decomposition
and combination model fusion, a novel short-term traffic
flow prediction approach can be used to predict traffic status
[44, 45]. In rainy weather, variables, such as the degree of
slippery roads and the amount of accumulated water, have
uncertain characteristics. Fast and accurate traffic status
prediction helps traffic management departments to control
the traffic and helps travelers to choose travel routs and
travel time more reasonably. Hence, this paper uses a hybrid
prediction algorithm to predict traffic status.

2.3. Congestion Spreading. A large number of studies on the
congestion spreading laws are conducted through complex
networks. By analyzing the topological structure of road
traffic network and the statistical characteristics of traffic
status, the theory uses propagation dynamics models to
obtain congestion propagation laws. /e study in [46] de-
scribed the diffusion mode of traffic congestion with the
susceptible infected recovered model of complex networks.
/e study in [47] studied the influence of network topology
on traffic congestion through an improved macroscopic
traffic flow model and proposed an algorithm to effectively
eliminate traffic congestion. /e study in [48] proposed an
idealized complex network model to analyze and predict
frequent traffic congestion nodes on urban roads. /e study
in [49] using the complex model defined the attraction of
each node in the road network./en the traffic status of each
node was distributed to other nodes, so that the congestion
propagation path was determined in advance.

3. FNN Prediction System

/e framework of the FNN prediction system is discussed in
detail in Section 3.1. Subsequently, the FCM clustering al-
gorithm used to filter the training dataset is discussed in
Section 3.2. Input variables and output variables are dis-
cussed in Sections 3.3 and 3.4, respectively.

3.1.Frameworkof theFNNPredictionSystem. Fuzzy logic has
strong ability to express structural knowledge but usually
does not have the learning ability. Fuzzy logic can only

subjectively learn membership functions and fuzzy rules.
/e neural network has strong self-learning ability and
nonlinear processing ability. Hence, in this paper, the FNN
algorithm combining the fuzzy logic theory with the neural
network algorithm is used to predict the spatiotemporal
traffic status with congestion propagation effect in rainy
weather. /e overall framework of the FNN prediction
system is shown in Figure 1.

/e FNN prediction system proposed in this paper is
divided into two parts: online prediction and offline cor-
rection. Because the forecast of new traffic demand is difficult,
the error of predicting traffic status based only on the data of
the past time step of the day is large./erefore, the offline part
designed trains the FNN algorithm based on the data from
days with rain in the past to obtain training parameters, which
are input as initially training parameters for the online
prediction part. Under different weather, the traffic status
evolution is different. /erefore, in order to obtain suitable
offline input data, this paper clusters historical data by the
FCM clustering algorithm (see Section 3.2) based on rainfall
and accumulated water. /en, according to the rainfall and
accumulated water of the predicted day, the appropriate
dataset is selected to train the offline part parameters. Based
on the trained parameters of the offline part, the online part
can make better use of real-time detection information to
predict traffic status. /en the online part transfers the
prediction errors and real-time information to the offline part
to again adjust the training parameters to improve prediction
accuracy. Based on the prediction results and other con-
gestion instructions, the traffic management department
understands the congestion’s spreading range and influence
degree in advance to make corresponding decisions to relieve
traffic congestion.

3.2. FCMClusteringAlgorithm. Due to the ambiguity of road
congestion level, the most widely used FCM clustering al-
gorithm among many fuzzy clustering algorithms is applied
[15]. By optimizing the objective function, the FCM clus-
tering algorithm can obtain the membership degree of each
sample point to all cluster centers, so as to determine the
type of sample points to realize automatic classification of
sample data. In this paper, the rainfall and water accumu-
lation are extracted as data feature attributes.

For a given dataset P � p1, p2, . . . , pn􏼈 􏼉, n represents the
total number of samples, i denotes a sample, and N denotes
the set of samples (i.e., i ∈ N). Each sample pi(i ∈ N) in-
cludes k characteristics, where pi � (pi1, pi2, . . . , pik). In this
paper, each sample contains two characteristics (i.e., k � 2):
rainfall vi and water accumulation fi. /e standardized
rainfall pi1 and water accumulation pi2 are defined as

pi,1 �
vi − vmin

vmax − vmin
, (1)

pi,2 �
fi − fmin

fmax − fmin
, (2)

where vmin � mini∈N vi􏼈 􏼉, vmax � maxi∈N vi􏼈 􏼉,
fmin � mini∈N fi􏼈 􏼉, and fmax � maxi∈N fi􏼈 􏼉.
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/e objective function to minimize is

Jm � 􏽘

n

i�1
􏽘

CL

j�1
u

m
ij pi − clj

�����

�����
2

, (3)

where CL is the number of clusters. um
ij represents the

membership degree of the ith sample belonging to the jth

category with weight indexm. clj denotes the category center
of category j. /en, solving equations (4) and (5), we can use
the iteration method to update the category center clzj and
the degree of membership um

ij of category j at the zth
iteration:
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(2/(m−1))
, j � 1, 2, . . . ,CL, i � 1, 2, . . . , n.

(5)

/e algorithm of FCM clustering is shown in Figure 2,
where e represents the termination error of the FCM
clustering algorithm.

3.3. Input Variables of the FNN Prediction System. In this
paper, six variables (e.g., the static network structure, the
past and present traffic status, pavement type, water accu-
mulation, and rainfall level) from different information
sources are selected to understand whether the congestion
occurs and calculate the spread range of traffic congestion.
/e input data is explained in detail as follows.

3.3.1. 1e Static Road Network Structure. /e degree of
nodes in the static network structure, the connection length,
and the number of links are important indicators that affect
the connectivity performance of the road network. We
simplify the road network into a directed graph G(A, E) as
shown in Figure 3, where A is the set of nodes, representing
intersections, and E is the set of edges representing road
links. /rough the directed graph G(A, E), we can distin-
guish upstream and downstream traffic and can determine
the topology of the road network.

3.3.2. 1e Dynamic Past and Present Traffic Status. Road
traffic presents dynamic characteristics. A large amount of
data processing will cause the prediction system to delay the
evaluation of traffic status. /erefore, in order to predict the
traffic status in real time, the FNN prediction system in-
cludes both offline and online parts. /e offline part con-
tinuously adjusts the parameters of the FNN prediction
algorithm based on the past traffic status. /e online part is
used to predict the evolution of the traffic status through
real-time traffic status data and transfers the prediction
errors and real-time information to the offline part to again
adjust the training parameters to improve prediction
accuracy.

3.3.3.1e Pavement Types. /e type of roads can already be
accurately detected by remote sensing equipment. On
rainy days, low-lying areas are prone to water accumu-
lation. Small low-lying areas may unintentionally affect
the driving speed of vehicles, while in large low-lying
areas, drivers may actively reduce the speed of vehicles to
avoid flooding. /e IRI (International Roughness Index)
can be used to classify pavement types. IRI is a road
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Figure 1: /e overall framework of the FNN prediction system.
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surface flatness that is stated by the number of vertical
changes in the road surface for each unit of road length
[50]. /erefore, according to Table 1, this paper divides
the pavement into three categories: small low-lying
pavement, large low-lying pavement, and smooth
pavement.

3.3.4. 1e Water Accumulation and Rainfall Level. We
select a total of seven water accumulation points in
Beijing, of which five large water accumulation points and
two small water accumulation points are used to measure
the amount of water accumulation. /e rainfall level is
divided into three levels: light rain, moderate rain, and
heavy rain. Based on water accumulation and rainfall
level, the offline input data can be obtained through the
FCM clustering algorithm. /rough the amount of water
accumulation, we can further study the cumulative effect
of congestion. Meanwhile, combining the water accu-
mulation and rainfall level of the predicted day, the ap-
propriate data are selected to train the offline part
parameters.

3.4.1e Output of the FNN Prediction System. Generally, the
topology of the road network affects congestion propaga-
tion. However, in rainy weather, water accumulation points
will cause the water accumulation to increase continuously
over time. /erefore, water accumulation points may be-
come the specific key node of road network and may cause
the increase of the effect of the congestion propagation on
traffic status evolution. In this paper, the road congestion
level under rainy weather is used as the basis for judging the
road operation status. Vehicle speed is the key indicator of
road congestion level. /e online part predicts the vehicle
speed combining real-time detection information and initial
training parameters. /e road network tested in this paper is
the expressway network in Beijing. /erefore, according to
Table 2, the speed can be converted to the road congestion
level of the expressway network [51].

/e speed performance indexes are defined as follows
[51]:

Rv �
V

V
max, (6)

where Rv denotes the speed performance index, V represents
the average speed of links in km/h, andVmax is themaximum
speed limit of links in km/h.

4. Case Study

In this section, the accuracy of the proposed FNN prediction
system is evaluated through the actual traffic status data of
Beijing’s expressway network (see Figure 4). /e expressway
network includes four ring roads (second ring, third ring,
fourth ring, and fifth ring) and 15 urban express roads. As
the expressway network is responsible for more than 50% of
daily motor vehicle trips, the expressway network can be
selected to represent the approximate level of Beijing’s traffic
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Figure 2: /e framework of FCM clustering algorithm.
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Figure 3: /e directed graph of the road network.

Table 1: Evaluation indexes of pavement types.

Pavement types Average of IRI (m/km)
Smooth pavement ≤8.0
Small low-lying pavement 8.1∼12
Large low-lying pavement ≥12
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network. /e road network can be further divided into 244
road links. We use the data provided by Beijing Traffic
Management Bureau for the three years of 2015, 2016, and
2017. /e data sampling interval is 5 minutes, and there are
22162169, 22709459, and 20465423 basic pieces of data in
these three years. /e regression model filling method is
applied to supplement missing data [52]. We select the
morning peak period (7:00 to 8:00 a.m.) of June 23, 2017 as
the forecast time period. Five large water accumulation
points marked in blue and two small water accumulation
points marked in red shown in Figure 4 are selected.

/e FNN model is implemented using Python 3.5.4 and
Pytorch 1.50 deep learning framework. Data preprocessing
is conducted with the packages NumPy and Pandas. /e
dataset of GPS is divided into three subsets for the traffic
status prediction under rainy weather: a training set, a
validation set, and a test set. To effectively use the limited
dataset and avoid overfitting during training, k-fold cross
validation is applied, where the number of training set folds
are set to 9, and the last month dataset is utilized for val-
idation. In this study, the number of hidden layers is set to
two. /e number of neurons and batch size are set as 20 and
16. /e number of epochs is manually set to 200 and the
mini-batch learning method with a batch size of 16 is
adopted. /e membership is set to 3. To prevent overfitting
on the training set, an early stop is set when the loss is no
longer reduced in 20 consecutive training cycles.

4.1. Performance Measures. Four measurement methods,
named the mean absolute percentage error (MAPE), the
mean absolute error (MAE), the root mean square error

(RMSE), and R2, are used to evaluate the prediction accuracy
of vehicle speed. MAPE and MAE can accurately evaluate
the size of prediction errors. RMSE and R2 are the difference
between the measured value and the predicted value. /ese
four methods can evaluate the accuracy of prediction from
different aspects:

MAPE �
1
η

􏽘
λσ − 􏽢λσ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

λσ
× 100%, (7)

MAE �
􏽐 λσ − 􏽢λσ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

η
, (8)

RMSE �

����������

􏽐 λσ − 􏽢λσ􏼐 􏼑
2

η

􏽶
􏽴

, (9)

R
2

�
􏽐 λσ − λ􏼐 􏼑 􏽢λσ − λ′􏼐 􏼑􏼐 􏼑

2

􏽐 λσ − λ􏼐 􏼑
2

􏽐 􏽢λσ − λ′􏼐 􏼑
2, (10)

where λσ is the measured value of link σ, 􏽢λσ is the predicted
value of link σ, and η is the total number of predicted links. λ
is the average observed value and λ′ is the average prediction
value. /e above models can be used to evaluate the pre-
diction results of speed.

4.2. Forecast Accuracy Assessment. In order to evaluate the
prediction accuracy of vehicle speed, we choose eight areas
with dense water points as the evaluation objects (see Figure 5).
Six cases with different input variables (see Table 3) are tested.
/e detailed prediction results of average speed are shown in
Figure 6. /e prediction errors of the six cases from MAPE,
RMSE, R2, and MAE are shown in Figure 7.

From Figure 6, we can find that when all variables are
considered, the accuracy of prediction is improved. Case I
and Case II, which do not consider the road network
structure, have the largest prediction errors. /e prediction
results of Case I and Case II are similar. When more water
accumulation points are included in the prediction areas, the
prediction errors increase. As the number of water accu-
mulation points in the prediction area decreases, prediction
accuracy is improved. /e results of Case III, Case IV, and
Case V are similar, because the pavement structure, water
accumulation, and rainfall can better reflect the impact of
rainfall on traffic status. From Figure 7, we can clearly find
that, for all areas, the prediction accuracy of Case VI is the
highest, and the prediction accuracy of Case I is the lowest.
Furthermore, the results of Case II and Case I are similar,
indicating that the road static network structure has a greater
influence on the prediction of vehicle speed.

4.3. Comparison of Different Forecasting Algorithms. In this
section, in order to compare with the FNN algorithm used in
this paper, the other two prediction algorithms, convolu-
tional neural network (CNN) and artificial neural network
(ANN), are used to predict traffic status. For the sake of

Table 2: Evaluation indexes of road congestion level.

Level I II III IV
Average speed (km/h) ≥45 35∼45 20∼35 ≤20
Speed performance indexes 0.86∼1 0.66∼0.85 0.41∼0.65 ≤0.40

1.Zizhu bridge;
2.Guantoutielu bridge;
3.Dinghuisi bridge;
4.Huilongguantielu bridge;
5.Dongjietielu bridge;
6.Xizhimen bridge;
7.Guangqumen

Figure 4: /e expressway network studied and the distribution of
water accumulation points.
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Area 2Area 3

Area 4
Area 5
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Area 8

Figure 5: Eight selected areas used to evaluate prediction accuracy.

Table 3: /e FNN prediction system with different input variables.

Road network structure Pavement type Water accumulation Rainfall level Speed
Case I ✓
Case II ✓ ✓ ✓ ✓
Case III ✓ ✓ ✓ ✓
Case IV ✓ ✓ ✓ ✓
Case V ✓ ✓ ✓ ✓
Case VI ✓ ✓ ✓ ✓ ✓
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Figure 6: Continued.
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Figure 6: /e prediction results of average speed. (a) Area 1, (b) area 2, (c) area 3, (d) area 4, (e) area 5, (f ) area 6, (g) area 7, and (h) Area 8.
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simplicity, all tests are based on Case VI shown in Table 3.
/e CNN is based on the time-space-time structure pro-
posed by Yu and Zhu [53]. /e number of all CNN
convolution kernels is 1. /e number of input channels of
the first time-gated convolution network in the spatio-
temporal convolution block is 1, the output channels are
32, and the excitation function is GLU. /e number of
input channels of the spatial graph convolutional neural
network is 32, the number of output channels is 32, and the
excitation function is ReLU. /e number of input channels
of the second time-gated convolutional network is 32, the

number of output channels is 64, and the excitation
function is ReLU. RMSprop is used to minimize the mean
square error of 50 rounds to train the model, the batch size
is 50, and the initial learning rate is 0.001. For the ANN,
this paper uses one hidden layer and nine hidden layer
units. Four prediction error evaluation methods are ap-
plied to evaluate the prediction results, and the results are
shown in Figure 8. From the results, we find that, com-
pared with other two prediction algorithms, the FNN
prediction algorithm used in this paper can get good
prediction results in some areas.
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Figure 7: Prediction errors with different input variables.
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4.4. Road Traffic Status Forecast. For the prediction of traffic
status, we predict the vehicle speed and then convert it to the
speed performance indexes presented in Table 2 to show the
road congestion level. /e prediction results are shown in
Figure 9. In general, with the increase of rainfall, the overall
road congestion level continues to decrease, especially in the
vicinity of large water accumulation points. Subsequently, we
select a small water accumulation point 1 presented in Figure 4

to construct a three-dimensional road congestion level evo-
lution diagram. /e evolution diagram is shown in Figure 10.
From Figure 10, we can find that the water accumulation point
is more prone to large-scale congestion in the surrounding
area. /e water accumulation point causes a large number of
drivers to consciously reduce the speed of vehicles, so it is easy
to form a longer queue length and stop-and-go congestion
waves.
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Figure 8: Prediction errors with different prediction algorithms.
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(a) (b)

(c) (d)

Figure 9: /e traffic status prediction results. (a) 7:00 a.m., (b) 7:20 a.m., (c) 7:40 a.m., and (b) 8:00 a.m.

t 7:00a.m. 7:20a.m. 7:40a.m. 8:00a.m.

Figure 10: /ree-dimensional congestion propagation diagram.
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5. Conclusion

In rainy weather, the prediction of traffic status not only
helps traffic managers to formulate traffic management
methods but also helps travelers choose appropriate travel
routes and departure times. Predicting the traffic status of
future time steps based only on the historical data of the past
time step of the day cannot take into account the changes in
travel demand, especially the new traffic demand. However,
predicting the evolution of traffic status based on the data
from similar rainy weather in the past will cause a drop in
prediction accuracy. /erefore, this paper proposes a FNN
prediction system consisting of online and offline parts. /e
offline part uses the data filtered by the FCM clustering
algorithm to train the weight parameters of the FNN pre-
diction algorithm./is parameter is entered as initial weight
parameter in the online part. /en the online part uses real-
time detection data to predict the traffic status. /e online
part returns the errors between the predicted and actual
traffic status to the offline part to further correct weight
parameters to further improve prediction accuracy. /e
FNN prediction system is applied to the traffic status pre-
diction of the expressway network in Beijing.

In this paper, the online and offline parts only use the
FNN prediction algorithm to predict the evolution of traffic
status. /erefore, other prediction algorithms such as ma-
chine learning and deep learning algorithms will be further
used to improve prediction accuracy. /e accumulation
water data used in this paper are based on measurements.
When there are many accumulation water points and the
rainfall time is long, it is unrealistic to measure the accu-
mulation water volume in real time, so the image-based data
processing algorithm is worth further study.
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