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.e presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes
vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and
unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and
validation of the system, real on-site acceleration data were used. .e resulting theoretical and practical challenges are discussed.

1. Introduction

A key and irreplaceable part of every railway track is its
switches and crossings (S&C). In terms of dynamic effects,
these are some of the most loaded track sections. .ey not
only interrupt runway continuity but also see a change in
track stiffness. S&C represent only a small part of a railway
network in terms of the length of track; however, their
maintenance (which includes special rail structures such as
road crossings), relative to conventional tracks, can involve
high maintenance costs [1–3]. .e primary reason for this is
the complex force effect that enables the train to pass
through the S&C section; another factor is the requirement
to maintain the upkeep of the many components that make
up the S&C. As well as the significant direct costs, the
maintenance of these sections generates indirect costs (due
to delayed trains because of maintenance or slower travel,
alternative train routes, and even alternative forms of
transportation). .erefore, it is essential that any mainte-
nance of such sections should be planned carefully. How-
ever, currently, there is no reliable device which can tell us

when it is time for maintenance [4]. Moreover, it is a well-
accepted fact that structures respond in a very uncertain
manner to probabilistically different motion events while
there is very limited a priori knowledge on the structural
behaviour [5].

For the above reasons, condition monitoring of railways
(not only S&C) is a very current topic. In recent years,
various sensors and methodologies for measuring and
evaluating results have been developed [6–13].

According to [14], machine learning (ML) methods in
S&C are often used for condition monitoring and evaluation
in data-based fault detection and diagnosis systems. In these
cases, they help in large data to search for features that match
different failure mechanisms.

.is paper is focused on the first part of the self-diag-
nostic system for railway switches and crossings (S&C)—
Train Identification System (TIS). A similar system for
predictive maintenance for rail switches is, for example,
Konux [15] or ESAH-M [16].

TIS is based on real on-site data from the acceleration
sensor and in the future is assumed use of embed vibration
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acceleration sensors. Accelerometers provide various ben-
efits including the following temperature stability (over a
wide range of temperatures), wide frequency response,
linearity, adaptability, and ruggedness. As such, they are
suitable for fully operational online measurement in the long
term. Different dynamic effects can be observed for each
train type [17, 18]. To obtain an accurate comparison of these
effects, it is vital that the same train types are compared at the
same passing speeds. A precise comparison can help in the
detection of faults and/or deterioration at the very early
stages. .e main benefits of this approach are use of pre-
dictive maintenance which can reduce costs [19] and better
planning of the regular maintenance and decision support
for infrastructure manager about maintenance activity (such
as tamping, component replacement, and surface build-up
welding).

.is research was part of an initiative whose aim is to
investigate, develop, validate, and initially integrate radically
new concepts for switches and crossings that have the po-
tential to lead to increases in capacity, reliability, and safety
while reducing investment and operating costs.

.e first part of the article is dedicated to the description
of measurement of the data, selection of datasets, their
analysis, and building of a vector for machine learning. .e
second part deals with the application of support vector
machine and validation of the results.

2. Dataset

2.1. Measured Data. .e used data were collected during
several measurement campaigns which took place in the
years 2013 and 2014. .e measurements were made pri-
marily on two locations: Choceň and Úst́ı nad Orlićı and on
two S&C per each location. .e accelerometers were mostly
placed around the crossing because of the maximal dy-
namical effects on rails and bearers during the train passage.
.e placement of the sensors is shown in Figures 1 and 2.

All data were acquired with measuring system Dewetron
DEWE 2502 and acceleration sensors triaxial piezoelectric
Brüel &Kjær 4524 B001 (for rail) and piezoelectric Brüel &
Kjær 4507 B004 (for bearer). Sampling frequency was set on
10 kHz, high-pass filter frequency 3Hz, and low-pass filter
frequency on 1000Hz [20].

.e train speed was measured by radar speed gun
Bushnell.

Acceleration is measured at several points along the
crossing. .e observed magnitude is chosen as the vertical
acceleration of the bearer under the crossing nose, as this is
the point at which the greatest dynamic effects on bearers
occur. Undoubtedly, any damage to the trackbed or the
crossing would influence the frequency response. Figure 3
shows an example of an acceleration plot, which was ob-
served during the passing of a train.

2.2. Measurement Selection. .e full dataset consists of
over 100 complex measurements (in addition to the ac-
celeration, which was measured at several S&C locations,
train speed and rail displacements were also measured),

taken from trains passing through crossings at a number
of stations. However, for building successful classifier, it is
required to have data that were obtained under the same
or very similar conditions. In Figure 4 are shown dif-
ferences in vectors obtained from Ústı́ nad Orlicı́ and
Choceň. .e individual columns (i.e., the corresponding
scalars of the individual vectors) were normalized and
these normed scalars were assigned a colour shade on a
scale between yellow and orange based on the value. .e
locations have different types of bearers, and therefore, the
acceleration signals are incomparable. It is easy to see that
first two and second two rows are from distinct locations.
Due to the higher number of measurements, the data from
Choceň were chosen. .ough there are measured signals
from two S&C from this location, it was not possible to use
them for training of one classifier as each one has different
dynamical behaviour due to the distinct conditions of
stiffness of its support. Because of all these restrictions,
there left very little data suitable for training and testing
artificial intelligence (AI). Another complication with
data comparability was the renovation of the common
crossing that was done between the measurement cam-
paigns and so the latter passages were measured under
other conditions. Because of the lack of the training data,
it was decided to keep these passages. At the same time,
this allowed to verify the robustness of the classifier for
this kind of S&C reparation.

2.3. Train Details. .e available dataset was able to meet the
requirements mentioned for only four trains. However, the
number of measurements was still sufficient to build the
minimum number of data subsets for training and testing.
.e mechanical properties of the trains are given in Table 1.
.e trains are shown in Figure 5.

2.3.1. Locomotive Classes 151, 362, and 380. .ese loco-
motives are very similar, in terms of both geometry and
design. .ey were made by Czech industrial conglomerate
Škoda Works. All the locomotives are electrical; however,
class 151 can be powered only by direct current (3 kV) while
both 362 and 380 are adapted for other standardised voltages
and current (362 is equipped with double system 3 kV DC/
25 kV 50Hz and 380 is equipped with even triple system
3 kV DC/25 kV 50Hz/15 kV 16,7Hz). .e maximal speed is
160 km/h for type 151, 140 km/h for 362, and 200 km/h for
380. Locomotives 151 and 380 have the same fixed wheelbase
and pivot spacing.

2.3.2. Leo Express. Leo Express train is Stadler Flirt IC five-
car electric multiple unit. .at means the train signal
should always have 12 peaks. .e major difference be-
tween LE and previously mentioned trains is system of
chassis. .e LE has two powered bogies (at both ends of
the train) and 4 Jacobs bogies [21] between the carriages.
.ese characteristics allow well distinguishing the Leo
Express signal from other train types. .e maximal travel
speed is 160 km/h.
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3. Data Analysis

.ere are 3 considered groups of methods: (i) complex time-
frequency methods, (ii) methods based on statistical pro-
cessing, and (iii) combination of the two previously
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Figure 1: Measurement methodology used for data acquisition from the crossing part of the S&C.

Figure 2: On-site installation of the sensors according to measurement methodology above.
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Figure 3: Acceleration plot of the bearer under the crossing nose.
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Figure 4: Comparison of data vectors from Úst́ı nad Orlićı (rows 1
and 2) and Choceň (rows 3 and 4).

Journal of Advanced Transportation 3



mentioned..e first group analyses signal simultaneously in
both time and frequency domains. .ere are several time-
frequency distribution functions, such as wavelet transform
(WT), Wigner–Ville transform (WVT), and short-time
Fourier transform (STFT). With these methods, it is possible
to conduct a sufficiently detailed analysis of the structure’s
frequency response to reveal minor differences in the in-
dividual signals that can suggest that there are vehicle and
track faults. However, the major disadvantage of these
methods is their significant requirement for data perfor-
mance and, hence, for computing resources. .is is prob-
lematic when attempting to ensure long-term in situ
measurements for multiple S&C. .e use of expensive
sensors is also necessary to ensure the high quality of the
signals; however, this may not align with other deployment
objectives.

.e second group of analysis methods can be used as an
alternative, and these are based on statistical processing. For
example, it is possible, with these methods, to evaluate the
maximum amplitudes, as well as their count, standard de-
viation, and long- and short-term variance. .is group of
methods is, in essence, the opposite of the time-frequency
methods because they have little sensitivity to imperfect
input signals, their computational difficulty is negligible (in
comparison with the first group of methods), and the device
built as a result can be inexpensive. However, the main
disadvantage of the second group is that there is limited
information in the frequency domain, meaning that the
detection of any defects might be too late to be of use.
Nonetheless, the time domain of the signal provides very
accurate information.

.e methods in the third group are a combination of the
two approaches mentioned previously, enabling the time
domain of the signal to be analysed using statistical methods.
In identified areas of interest (for example, maximum

amplitude axles), a simple frequency analysis can be con-
ducted using the selected signal subsection’s frequency
spectrum and its statistical properties. .is method is ad-
vantageous for our research because it is economical on
computer performance while being able to adequately de-
scribe the signal.

3.1. Signal Evaluation in the Time Domain Using Statistical
Methods. .e use of statistical methods was inspired by
previous research [22] that focused on train detection and
classification. .is innovative method evaluates the accel-
erometer record as a windowed variance of acceleration,
based on 12–20 records at a sampling rate of 100Hz, a
sensitivity of ±4 g, and a resolution of 10 bits. Despite the
minimalistic resolution (as well as the minimal power and
hardware requirements), the system can achieve very ac-
curate results as well as detect and classify trains with over
95% precision. It has a battery capacity of 180mAh (units of
percent of conventional smartphone battery capacity), en-
abling the device to take measurements for approximately
two weeks. An SD card is used to store the results.

As a truly economical system, this can easily be scaled
and expanded to other variables (as demonstrated in Fig-
ure 6), including maximum number, standard deviation,
and absolute and local maximum, requiring minimal power
and hardware. To identify short signal sequences, time-based
input analysis can be used when a more detailed analysis is
conducted in the frequency domain (as shown in Figure 7).

3.2. Signal Evaluation in the Frequency Domain Using Sta-
tistical Methods. Evaluation is performed in the frequency
domain with the Seewave package [23], using R language to
process the model example. Practical deployment would
require a lower level of programming language, probably at

Table 1: Mechanical properties of the trains.

Locomotive class 151 362 380 Leo
Distance between pivots (m) 8.3 8.3 8.7 16.0
Axle spacing (m) 3.2 3.2 2.5 2.7
Max. axle loading (t) 20.5 21.75 21.5 —
Weight (t) 82.0 87.0 86.0 150.01
1Total weight of the whole five-car unit.

(a) (b) (c) (d)

Figure 5: Train types: (a) 151, (b) 362, (c) 380, and (d) Leo Express.
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the firmware level. However, the frequency analysis is very
complex, and therefore, only a limited sample of data is
performed. Statistical methods are used for sample selection

in the time domain. As a result, the processing is compu-
tationally efficient, particularly regarding the amount of
memory used. Described by a relatively short vector of
statistical properties, the spectrum transforms into a discrete
probability density (as illustrated in Figure 8).

.e analysis is supplemented further by the maximum
and minimum frequencies at three density intervals
(0.0001–0.00015, 0.00015–0.0002, and 0.0002–0.0004).
Combining the scalar features of the statistical properties in
the frequency and time domains enables a vector to be
obtained that represents the signal in the time-frequency
domain but with minimum resources in comparison with
traditional methods such asWTor STFT. However, it should
be noted that not all vector values are relevant.

3.3. Machine Learning Methods: Building a Vector. A wide
variety of data and formats can be used as inputs for ML. A
high-resolution accelerometer signal (such as 10 kHz) as an
input is likely to be the simplest option. However, this would
require a particularly powerful computing subsystem with
substantial memory, which would render the method un-
suitable for use in situ or on larger scales. In addition, it is

40000

30000

V
ar

ia
nc

e (
–)

20000

10000

0
0 100 200 300

M
ea

n 
of

 am
pl

itu
de

 (m
.s–2

) 50

25

0

–25

0 100 200
Window

300

M
ax

im
um

 o
f a

m
pl

itu
de

 (m
.s–2

)

600

400

200

0
0 100 200 300

Figure 6: LEO Express train signal windowed variance (three passages). Window size: number of samples/300. Top: windowed variance
value. Middle: windowed maximum. Bottom: windowed mean.

15000

10000

V
ar

ia
nc

e (
–)

5000

0

0 100
Window

200 300

Figure 7: Peak detection of windowed variance. Window size:
number of samples/300. Defines the area in the time domain; the
analysis is then conducted in the frequency domain.

Journal of Advanced Transportation 5



not guaranteed that such a procedure will lead to the best
results. .erefore, the selection of the descriptive features is
an important step in the ML-based identification process,
along with the creation of a sequence of n scalar features (or
representations) by reducing the recorded acceleration time
history. .e representations will include event duration,
total amount of vibration caused by the train, number of
peaks extracted from the windowed variance, average dis-
tance between peaks, maximum peak value, average peak
amplitude, average peak area under the curve, total area
under the curve, and variance of peak distances. .e
computational power requirements are reduced by several
orders of magnitude by using the combined time-frequency
characteristics vector defined in the previous section.
However, it is highly likely that some of the features will be
random or similar for each individual train, and including
such features in the calculation could easily confuse the
machine (e.g., SVM or neural network), leading to incorrect
results.

.e initial set of 27 scalar features contains number of
peaks (number of axles), their minimum and maximum,
standard deviation, and total sum. Furthermore, the mean
of the signal, standard deviation, median, standard error
of the mean, 25% and 75% quantile, interquartile range,
centroid, skewness, kurtosis, spectral flatness measure,
and minimum and maximum frequencies for a given
interval of discrete probability density. .is vector was
reduced to 5 using an iterative optimisation process,
whereby accuracy was maximised by the minimisation of
training time, evaluation time, and classifier memory and
loss. .e initial set of 27 scalar features contains number
of peaks (number of axles), their minimum and maxi-
mum, standard deviation, and total sum. Furthermore, the
mean of the signal, standard deviation, median, standard
error of the mean, 25% and 75% quantile, interquartile
range, centroid, skewness, kurtosis, spectral flatness
measure, and minimum and maximum frequencies for a
given interval of discrete probability density. .e use of
the whole vector was considered; however, due to the low
number of data and the large number of possible pa-
rameters, this is an overdetermined problem, and

therefore, according to the authors, it did not make sense
to do a detailed sensitivity analysis. Figure 9 shows vi-
sualization of velocity and scalar features which were
selected for description of the individual train passages.
.e data are sorted by train type. It can be seen that values
of some scalar features of some classes are correlated with
the train type, and hence, they are clustering whereas
other classes have values widely scattered. For this reason,
there is a need to have more than one scalar features to
correctly classify the signal. However, as was said earlier, it
is not advantageous to use all 27 scalar features not only
because of high computational demands but also because
of the well-known phenomenon of curse of dimension-
ality [24]. Velocity was not selected into the vector be-
cause it is secondarily included in the other characteristics
and for some S&C may be strongly influenced by the
position in the track and not by the train type.

.e following scalar features were chosen to describe the
train passage:

(i) npeaks: number of peaks detected during windowed
variance. .e R language findpeaks function was
used for the detection. .e number represents the
number of axles on the train.

(ii) peakssum: sum of maximum values of npeaks de-
tected. To a certain extent, this expresses the ab-
solute amount of dynamic energy that is transmitted
to the sleeper

(iii) sem: the random sampling process is described
using the standard error of the mean. .e variation
in measurements is described using the standard
deviation of the sample data. .e sem is a proba-
bilistic statement that describes how the sample size,
considering the central limit theorem, will provide a
better boundary on estimates of the population
mean.

(iv) IQR: the interquartile range, which is also known as
the midspread or the middle 50% (or, technically,
H-spread), is a measure of statistical dispersion,
which is equal to the difference between the upper
and lower quartiles, or between the 75th and 25th
percentiles..e IQR value represents the bandwidth
of energy transferred to the sleeper.

(v) prec: the spectrum’s frequency precision.

4. Machine Learning-Based Analysis

.e aim of this study is to confirm the hypothesis regarding
the possibility of using recorded acceleration data to identify
specific train types at rail S&C. Utilisation of ML methods
[25] seems appropriate due to the unique and complex
dynamic interactions involved in the process, including
those involving the vehicle itself and the wheel, as well as
railway S&C components and ballast, and also the recorded
signal’s stochastic components. A further consideration is
that ML might be able to identify not only a specific train
type but also any possible damage to the wheel surface and
parts of the S&C [26].
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Figure 8: Discrete probability density plots of the Leo Express.
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An in-depth literature review showed that the use of
measured acoustic or acceleration signals with ML to
identify train type was performed successfully on a segment
of plain-line railway [22]. However, no record was found of
the successful application of ML, genetic algorithms, or
pattern recognition [27] for train type identification at S&C.

4.1. Comparison of ML Methods. Currently, there are many
machine learning methods that differ in the structure and
complexity of the algorithm and the suitability for use with
different types and sizes of input data. Based on recom-
mendations derived from the literature review, as well as
initial investigations using the available ML methods at
Mathematica [28], the support vector machine (SVM) was
identified as an optimal classifier. .e following methods
were considered:

(i) A decision tree [29] is a structure designed as a
flowchart. Internal nodes represent “tests” for
particular features; branches represent the out-
comes of the tests; and the leaves represent classes
or value distributions.

(ii) Gradient boosting [30] is anML technique used for
regression and classification problems. It produces
an ensemble of trees that represent a prediction
model. .e trees are trained in sequence with the
aim of compensating for the weaknesses of pre-
vious trees.

(iii) Logistic regression [31] uses a linear combination
of numerical features to model the log probabilities

of each class. However, its biggest disadvantage for
our task is strong sensitivity for outliners.

(iv) In a Markov model [32], each class has a computed
n-gram language model during training. During
testing, each class’s probability is computed
according to Bayes’ theorem.

(v) A naive Bayes [33] uses an assumed probabilistic
independence of features. .is method is conve-
nient for large datasets with high dimensionality
because it can identify the most significant
features.

(vi) Nearest neighbours [34] use instance-based
learning. It is easy to implement and works well for
multiclass problem, but as the datasets grow, speed
and efficiency of the algorithm decline fast. An-
other disadvantage is sensitivity for outliners and
problems associated with curse of dimensionality.

(vii) .e random forest [35] uses ensemble learning for
classification and regression. It operates by con-
structing a number of decision trees. .e predic-
tion offered by the forest is obtained using the most
common class or the mean value of the tree pre-
dictions. .e training set is divided such that each
decision tree is trained on a random subset of
features. .is algorithm is easy to train because
there are not many options for tuning. When there
are large input datasets, random forest gives robust
model.

(viii) A neural network (NN) [36] is made up of stacked
layers. Each layer performs a simple computation.
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Starting from the input layer to the output layer,
information is processed one layer at a time. .e
neural network is trained to minimise the training
set’s loss function using gradient descent and
naturally learns nonlinear decision boundaries;
however, it often converges to local minimums and
can start to consider noise as a part of pattern and
therefore overfit the classifier. .e NN is para-
metric; this means that its size is constant with
growing input datasets. .ere are many setting
possibilities and it requires experience to set up the
algorithm correctly. For this reason, the NN is not
advantageous for TIC, which should be operated
by engineers not by scientists.

(ix) Unlike neural network, the support vector ma-
chine [37] can produce reliable results even with
small input datasets. Moreover, it is not sensitive
to outliners. .e principle is to find an optimal
hyperplane dividing areas of different classes. .e
word “plane” can be somewhat misleading be-
cause it does not always have to be a flat plane (or
line in 2D). .e SVM is linear in its natural form,
but it is possible to use other kernel functions that
allow to operate in multidimensional space
without calculating data coordinates. .is can
greatly save computing time. In this classifier was
used radial basis function kernel. Another dis-
tinction is that SVM is nonparametric, and
therefore, its complexity increases with the
number of training samples. .is means that
SVM may be beneficial for this research, where is
only small input datasets, but in actual imple-
mentation with multiple train type classes with
higher number of passages, the calculation may
take too long.

In this research, machine learning and its postprocess
were performed in Wolfram Mathematica 11.1 [28]. .e
same analysis with the same inputs was also run in version
11.2 but with worse results. Even the choice of SVM as a best
method was not validated in the newer version and gave
better results for neural network. .is may be caused by
distinct setup of the embedded algorithm in both versions.

Comparison of ML methods shows the accuracy,
training times, and required computation memory for some
of the previously mentioned methods (Table 2). It can be
seen that SVM gives the highest accuracy, but training takes
twice as long as the second slowest method and even nearly
50 times longer than the fastest. However, it should be noted
that the nearest neighbour method is the fastest because it
does not need any training time—samples are sorted
according to the class of their nearest neighbour (or k-
neighbours).

4.2. Support Vector Machines. In terms of implementation,
SVMs are regarded as binary classifiers [25]. Features are
extracted from the examples using a kernel function. During
training, the classifier locates the maximum-margin

hyperplane that separates the classes. .en, the problem of
multiclass classification is reduced to a set of problems of
binary classification (using a strategy of one-versus-one or
one-versus-all). .e LibSVM framework in C/C++ is used in
the implementation.

Although classification using SVM can be controlled in a
number of ways [28], such as gamma scaling parameter,
kernel type, polynomial degree, and multiclass strategy, the
training dataset is characterised reasonably well by the
automatic settings. However, the training dataset is some-
what limited in terms of repeated identical observations (i.e.,
the same train on the same switch at a similar speed), which
means that a detailed analysis of the effects of any particular
setting is difficult.

Full validation of the classifier is impossible due to the
limited number of comparable train passages. In the smallest
classes, it is only possible to use one train passage for val-
idation, whereas it is possible to use the remaining four
comparable train passages for training..is is the case for all
combinations. In total, 19 train passages are used, with the
recorded acceleration time history being reduced to 5 scalar
features.

4.3. Building of Train and Test Sets. Due the low number of
comparable train passage in the classes, the reliability of the
classifier highly depends not only on the selection of the
scalar features, but also on the choice of the vectors (pas-
sages) for the training set. To avoid cherry-picking and
decrease possibility of incorrect results due to the inap-
propriate selection of data for training and testing, the
bootstrap analysis was performed. Bootstrapping is a
compute-intensive method for statistical data analysis [38].
.e train passages for the training subset were chosen
randomly for each class and the spare ones were used for
testing. .at means, as the smallest class has only 5 com-
parable train passages, the training set has 4 vectors per class
and one vector for testing. According to [39], the imbalance
in the size of the classes can significantly influence the re-
sults. .erefore, all classes for training have the same size of
4 passages. Figure 10 shows visualization of all train passages
used for ML. .e vectors (each containing 5 scalar features)
were projected into two-dimensional space with Mathe-
matica built-in function “DimensionReduce.” .e class 362
has two outliners which can easily confuse the classifier if
selected into training subset or be falsely classified during
validation. Furthermore, it can be seen that there is no clear
boundary between classes 151 and 380. However, it is
possible that, with a larger number of samples, the sepa-
ration of groups would be more obvious.

4.3.1. Implementation of SVMs. As soon as the sets were
ready, the ML was performed and classifier was built. .e
result of the consecutive testing was confusion matrix. .is
process of building subsets, training and testing, was re-
peated 1000 times. As the outcome of this repetition process,
1000 confusion matrices were obtained (i.e., one matrix per
one subsets selection).

8 Journal of Advanced Transportation



In ML, a confusion matrix (also known as an error
matrix [40]) is a very specific table layout that allows the
performance of the supervised learning to be visualised (it is
most frequently known as a matching matrix in unsuper-
vised learning). Each row of the matrix indicates instances in
a predicted class; each column indicates instances in an
actual class (or vice versa). .e name of the matrix is taken
from the fact that it enables the user to check whether the
system is confusing (i.e., mislabelling) two classes. It is a
particular type of contingency table that has two dimensions
(an “actual” and a “predicted” dimension), as well as
identical sets of “class” in each dimension (each combination
of dimension and class is identified as a variable in the
contingency table). .ere are three random examples of
confusion matrices from the analysis in Figure 11.

From all 1,000 matrices, one average matrix was eval-
uated (i.e., total sum of all results on the same location in
matrix was divided by number matrices). For easier un-
derstanding, values in each row of the matrix were rescaled
to give total sum of 1 so it is possible to seen probability of
(miss)classification for this class. Because the test sets were
not the same size, the colour of each field tells the infor-
mation about significance of the testing—the darker, the
higher number of test samples. .at means that if there are
in test subset, for example, 6 train passages from the same
train type for testing and it gives the probability of correct
classification 0.9, it is more reliable than if there is only 1
testing passage.

.e confusionmatrix shown in Figure 12 shows a perfect
match for the train type Leo Express. .is result was ex-
pected due to the big differences in train construction (Ja-
cobs bogie). For the locomotive classes 151, 362 and 380, the
prediction is worse due to the fact that the trains are very
similar (weight, number, and distance of axes) and there was

too little data for capturing such subtle differences. .e
locomotive class 151 is correctly classified in 70% of cases
and in 25% of cases is falsely classified as a 380. In the
opposite case, class 380 is classified correctly in 61% of cases
and confused with 151 in 39% of cases. .e classification of
class 362 is reliable in 70%.

Although the data contain passages from before and after
the common crossing was renovated, the identification
method is sufficiently robust, based on the probabilities, to
allow for railway crossing component modification, pro-
vided that measurements are obtained at the same locations,
and as long as the primary objective is TIS only, not con-
dition assessment.

5. Summary and Concluding Remarks

In this paper, the authors have conceptually approached the
AI-assisted Train Identification System (TIS), a component
of the self-diagnostic system for S&C, utilizing real on-site
acceleration data from TEN-T railway lines in Czech Re-
public. .is research is part of the S-CODE project; the
overall aim is to investigate, develop, validate, and perform
initial integration of radically new concepts for S&C with the
potential to increase their capacity, reliability, and safety,
while reducing investment and operational costs. Presented
approach is unique in attempting the TIS based onmeasured
acceleration time histories in S&C rather than in straight
track.

.e presented accuracies of the various 5ML classifiers
are clearly limited due to the number of uncontrollable
variables and uncertainties, as well as due to limited number
of comparable train passages, considering the dimension-
ality of both the physical problem and the abstract models.
As the classification procedure can be sensitive to unequal
class sizes, all training classes (train types) have the equal size
of 4.

Although a bootstrapping analysis has been performed
(1,000 training and testing subsets) in order to fully utilize
the experimental evidence and to more objectively select the
data for training and testing, the resulting average confusion
matrices show prohibitive probabilities, which can be at-
tributed to similarities of the 151 and 380 locomotives, low
number of observations, and complex dynamic interactions
at S&C in general.

Nevertheless, based on the presented theoretical and
practical arguments, it can be concluded that the support
vector machines (SVM) can be recommended as most
suitable ML method. .is conclusion is in line with the
published evidence (TIS based on straight track measure-
ments) and is supported by the presented comparison of
alternative ML methods. .e obvious trade-off for highest
accuracy, the increased training time, and memory,

Table 2: Comparison of ML methods.

Method SVM Neural net. Log. reg. Nearest neigh. Rnd. forest
Accuracy (%) 75 58 67 58 50
Train. time (s) 2.0715 0.9397 0.293 0.0406 0.0529
Memory (kB) 323.384 219.512 189.240 126.824 199.520

Param. 2 (–)

Param. 1 (–)

151.
362.

380.
Leo Express

Figure 10: Visualization of clustering of scalar features for indi-
vidual train passages sorted by train type.
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however, is relatively cheap considering the efficiency and
availability of current low (energy harvested battery pow-
ered) powered computer modules and relative to hardware
resources required for statistical preprocessing of the
recorded vibration time histories.

In fact, the average accuracy of 75% for SVM-based TIS
at S&C cannot be considered entirely off if the published
results from straight track TIS using SVM yields accuracy of
96%, and considering the inherently more complex and
uncertain response of S&C compared to straight track and
the clear similarities of the 151 and 380 locomotives.

For future applications within the system of early
warning, it would be advisable to implement the SVM
method, use it within the experimental envelope, avoid
excessive extrapolation (as can be generally recommended
for all ML methods), and combine the diagnostic from S&C
with straight track measurement, where it is possible to
identify defects on carriage, such as a flat wheel. .is would
dramatically improve the sensitivity and specificity of the
TIS by, e.g., avoiding false positives from boogie defects.
Although current optical systems can be used to identify

trains by detecting and evaluating the mark placed on each
locomotive, these systems are relatively expensive and
sensitive to maintenance and weather conditions, compared
to the vibration data-driven ML models.

One of the contributing factors to the overall uncertainty
is the variable number of passengers in each wagon, sig-
nificantly affecting the dynamic characteristics of the train
formation. .is particular aspect can be approached by
trimming the signal so that only the locomotive remains,
resulting in easier-to-classify data while simultaneously
reducing hardware requirements. However, it would be
necessary to define objective and universal applicable
method of trimming, due to the complex interference of the
vibrations caused by the locomotive and the following car,
the nonuniform number of locomotive axles, or the presence
of Jacobs bogie. In addition, by shortening the signal, some
data that can provide valuable information about the con-
dition are lost, and, most importantly, for evaluating the
locomotive-only signal, analytical approaches are typically
sufficient (classification based on, e.g., distance and number
of axles), i.e., ML methods are not required at all.

From a pure TIS perspective, best input would clearly be
represented by repeated passages of (specially scheduled)
separate locomotives; however, such system could hardly be
considered as an early warning system, but a preventive
monitoring, as is routinely done, e.g., in the field of struc-
tural health monitoring of bridges with scheduled passages
of specialized instrumented vehicles.

Although the cross-validation options available clearly
limit the statistical significance, the results are unique in
demonstrating that

(i) ML- (SVM-) based TIS at S&C is feasible if, within
the S&C, the monitoring location is consistent. In
cases in which the monitoring location is not
consistent, identification is not successful.

(ii) Specifically the approach using SVM is insensitive to
common crossing renovation, i.e., data from before
and after the renovation can be combined, if only
TIS without S&C condition assessment is
considered.

(iii) .e input vector that reduces full recorded time
histories to a set of scalar characteristics must always
be chosen subjectively so that it characterises all
important features sufficiently while maintaining
realistic hardware requirements stemming from the
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Figure 11: .e 3 random confusion matrices obtained by random selection of train and test sets.
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Figure 12: An average confusion matrix calculated during cross-
validation using the SVM classifier. .e accuracy is relatively poor
at 61%, but this can be attributed to the lack of training data and
train similarities.
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intended in-situ implementation on energy har-
vested battery powered modules.

(iv) During an iterative optimisation process in which
accuracy is maximised and training time, evaluation
time, and classifier memory and loss are minimised,
the initial vector of 27 scalar features is reduced to 5.

Abbreviations

AI: Artificial intelligence
S&C: Switches and crossings
ML: Machine learning
TIS: Train Identification System
NN: Neuron network
SVM: Support vector machine
LE0: Leo Express train
WT: Wavelet transform
WVT: Wigner–Ville transform
STFT: Short-time Fourier transform.
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