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Since the number of bicycles is critical to the sustainable development of dockless PBS, this research practiced the introduction of a
machine learning approach to quantity management using OFO bike operation data in Shenzhen. First, two clustering algorithms
were used to identify the bicycle gathering area, and the available bike number and coefficient of available bike number variation
were analyzed in each bicycle gathering area’s type. Second, five classification algorithms were compared in the accuracy of
distinguishing the type of bicycle gathering areas using 25 impact factors. Finally, the application of the knowledge gained from
the existing dockless bicycle operation data to guide the number planning and management of public bicycles was explored. We
found the following. (1) -ere were 492 OFO bicycle gathering areas that can be divided into four types: high inefficient, normal
inefficient, high efficient, and normal efficient. -e high inefficient and normal inefficient areas gathered about 110,000 bicycles
with low usage. (2) More types of bicycle gathering area will affect the accuracy of the classification algorithm. -e random forest
classification had the best performance in identifying bicycle gathering area types in five classification algorithms with an accuracy
of more than 75%. (3) -ere were obvious differences in the characteristics of 25 impact factors in four types of bicycle gathering
areas. It is feasible to use these factors to predict area type to optimize the number of available bicycles, reduce operating costs, and
improve utilization efficiency. -is work helps operators and government understand the characteristics of dockless PBS and
contributes to promoting long-term sustainable development of the system through a machine learning approach.

1. Introduction

-e public bike system (PBS) also called a bicycle sharing
system (BSS), which was born in 1965 in Europe, has been
developed for three generations [1]. PBS is economical, eco-
friendly, healthy, more equitable, produces ultralow carbon
emissions, and has rapidly emerged in many cities all over
the world [2]. Since 2016, a relatively new model of PBS,
known as the free-float bike sharing system, has increasingly
gained its popularity. -e FFBS is based on the mobile app
and GPS which eliminates stations and docks (also called
dockless bike). Passengers can easily pick up and drop off a
bike anywhere using their cell phones. -is system is quite
spread nowadays through enterprises as OFO and Mobike

since early 2016 in China. Dockless PBS brings new expe-
riences and conveniences as well as some problems, and an
important issue is to consider the number of bicycles
available. It has two sides:(1) assuming that the surrounding
roads are suitable for cycling when a large number of
dockless bicycles are concentrated in an area with a low cost
to use, we can think it is providing “adequate” bike supply,
which can help us fully understand the bike demand in this
area; (2) in fact, if the number of available bicycles is too
large, it will cause a series of waste. Many problems are
related to the number of shared bicycles especially for the
dockless PBS which is an important issue to be considered.
But it is seldom involved in the existing research. -e
number of available bicycles is the core indicator. Excessive
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bicycles can affect the cost and efficiency of operation, which
is not conducive to the long-term sustainability of the
system. -e government and scholars have paid more and
more attention to the question of how to rationally develop
dockless PBS in the city.

Computational intelligence, such as artificial neural
networks, fuzzy systems, and evolutionary computing, has
achieved significant results in modeling, learning, and search
and optimization problems for smart city applications [3, 4].
-e characteristics of machine learning make it attractive for
analyzing smart city data with complex nature [5], such as
modes (streams, time series, images, videos, and texts), large
amounts (continuous data generated by millions of sensing
devices), space-time dependence, etc. Researchers in smart
cities have applied machine learning in many areas, such as
urban human mobility [6], public space utilization [7], and
public bus charging station placement [8]. Since the number
of bicycles is critical to the sustainable development of
dockless PBS, this research practiced the introduction of a
machine learning approach to quantity management. Four
issues are discussed from the existing shared bicycle oper-
ation data. (1) How to identify the gathering area of dockless
shared bicycles? (2) How to measure the number of bicycles
and activity characteristics in the bicycle gathering area? (3)
What are the differences between classification algorithms in
predicting the types of bicycle gathering areas? (4) How to
use activity pattern to guide dockless PBS rationally develop
in the city? In this study, first, two clustering algorithms were
used to identify the bicycle gathering area, and the available
bike number and coefficient of available bike number var-
iation were analyzed in each bicycle gathering area’s type.
Second, five classification algorithms were compared in the
accuracy of distinguishing the type of bicycle gathering areas
using impact factors. Finally, the application of the
knowledge gained from the existing dockless bicycle oper-
ation data to guide the number planning andmanagement of
public bicycles was explored.

-e rest of this paper is organized as follows. Section 2
presents a literature review on the systems perspective of
public bike research. Section 3 introduces the indicators and
methods used. Section 4 briefly describes bicycle operation
data and influencing variables. In Section 5, we discuss the
bicycle gathering area type’s recognition, prediction, and
application. Finally, Section 6 summarizes the results of this
study and provides direction in future studies.

2. Previous Work

PBS is involved in many areas of research, and it is broadly
based on two perspectives: user perspective and systems
perspective [9]. In this study, we only focus on a systems
perspective according to the goals.

2.1. Bike Sharing Rebalance. For PBS, the lack of resources is
the major issue: a user can arrive at a station that has no bike
available or wants to return her bike at a station with no
empty spot. Based on the practical usage, several studies
focused to deal with public bike rebalancing problem using

intelligent algorithms. Fricker and Gast [10] proposed a
stochastic model of homogeneous PBSs to study the effect of
users’ random choices on the number of problematic sta-
tions. -ey also computed the rate of which bikes must be
redistributed by trucks to ensure a given quality of service.
You et al. [11] provided an integrated model to resolve the
problems of fleet sizing, empty-resource repositioning, and
vehicle routing for bike transfer in multiple station systems.
O’Mahony and Shmoys [12] tackled the problem of reba-
lancing PBS during rush hour. An optimization problem
whose goal is to plan truck routes to make PBS as balanced as
possible in night shift was studied, and novel methods were
developed for optimizing rebalancing resources. Chen et al.
[13] addressed the layout planning of public bicycle system
within the attracted scope of a metro station. Locations of
different PBS service stations and the optimal route options
for the implementation of the redistributing strategy were
considered. Lozano et al. [14] proposed a multiagent model
that provides visualization and prediction tools for PBS.

2.2. Bike Demand Estimation. -ese studies examine the
influence of PBS infrastructure, transportation network
infrastructure, land use and urban form, meteorological
data, and temporal characteristics on PBS usage. Faghih-
Imani et al. [15] collected station-level occupancy data and
then transformed station occupancy snapshot data into
station-level customer arrivals and departures. -ey devel-
oped a mixed linear model to estimate the influence of
bicycle infrastructure, sociodemographic characteristics,
and land-use characteristics on customer arrivals and de-
partures. In the work of Krykewycz et al. [16], various de-
mographic, land use, and infrastructure factors understood
to be favorable for bike share usage were spatially analyzed to
define a primary market area. El-Assi et al. [17] investigated
the effects of weather, socioeconomic and demographic
factors, and land use and the built environment on bicycle
share ridership. A regression analysis was performed on
three different levels. Hampshire and Marla [18] employed a
panel regression model to explain the factors affecting the
bike sharing trip generation and attraction in the presence of
unobserved spatial and temporal variables. -e data used
included PBS’s usage data in Barcelona and Seville, nine
census demographic data, and the location of points of
interest (POIs). Zhang et al. [19] employed a multiple linear
regression model to examine the influence of built envi-
ronment variables on trip demand as well as on the ratio of
demand to supply at bike stations in China. Faghih-Imani
et al. [15] investigated factors affecting bicycle share demand
at the station level using real-time ridership data. -e results
showed that stations close to major roads had lower trip
activities compared to stations that were situated around
minor roads and bicycle lanes. A number of land use and
built environment variables, temporal characteristics, and
weather variables such as temperature were investigated.
Maurer [20] used a pairwise suitability analysis to under-
stand the effects of variables such as job density, household
income, and alternative commuters on public bicycle share
ridership to propose the locations of bicycle stations in
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Sacramento, California. Gebhart and Noland [21] used real-
time ridership data for Capital Bikeshare in Washington
D.C. to investigate the impact of weather variables and
proximity of bike share stations to metro stations on rid-
ership levels. Buck and Buehler [22] investigated the in-
fluence of bicycle infrastructure, population density, land
use mix around stations, and the number of households
without a car using bicycle share systems using ridership
data from Capital Bikeshare. Wang et al. [23] evaluated the
effect of sociodemographic, land use, built environment, and
transportation infrastructure variables on bicycle share
ridership. Rixey [24] explored the influence of socio-
demographic characteristics such as education, income, and
employment and population density on monthly ridership
data from three states of the USA.

2.3. Spatial and Temporal Patterns of Bike Use. -ese studies
explore the spatial and temporal patterns of bike use over the
time of day, using data mining and visualization techniques.
Clustering is frequently used to identify mobility patterns in
BSS usage by partitioning the stations into different clusters
having a similar usage. Wong and Cheng [25] presented the
insights of imbalanced public bicycle distributions through
the analysis of spatiotemporal activity patterns of bike
stations. -e clustering algorithm was used to analyze how
station activity patterns were geographically distributed
based on their usage patterns. -ey also explored how these
activity patterns relate to underlying cultural and spatial
characteristics of Taipei City in China. Temporal and spa-
tiotemporal patterns among bike stations of Barcelona bike
sharing system were explored by Froehlich et al. [26].
Numerous research studies also used a hierarchical clus-
tering method to generate clusters and investigate usage
patterns geographically distributed in the city to understand
the impact of the inhomogeneity of the city on the long-run
activity of stations [27–29]. Brien et al. [30] proposed a
classification of bike shares based on the geographical
footprint and diurnal, day-of-week, and spatial variations in
occupancy rates. Etienne and Latifa [31] presented an au-
tomatic algorithm based on a new statistical model to au-
tomatically cluster PBS stations according to their usage
profile. Zhou [32] investigated the spatiotemporal biking
pattern in Chicago by analyzing massive BSS data from July
to December in 2013 and 2014. Bike flow similarity graph
was constructed with a fast greedy algorithm to detect spatial
communities of biking flows.

Scholars have achieved rich results in measuring the
indicators of the bicycle system and the factors affecting
cycling. -e methods of research mainly involve regression
models. -e knowledge gained most comes from the dock
PBS except a few studies [33–35].

3. Methodology

3.1. Indicators of Dockless PBS. -ere are many indicators to
measure the PBS, including the number of bicycle use, arrival
rate, and departure rate. -is study focused on the number of
available bicycles and their changes, so two indicators were used.

3.1.1. Average Available Bike Number. Unlike the dock PBS,
the maximum available bike number is fixed and determined
by the number of docks of station. For the dockless PBS, the
maximum available bike is not subject to parking restric-
tions. It is related to the initial bike quantity status of de-
ployment by the system and varies as the bike flows. We
proposed the average available bike number to explore the
dockless PBS. It represents the number of bicycles available
in a bike service area. -is metric is used to measure the
bicycle resource. -e number of bikes available per hour
(Abni) can be calculated by equation (1).
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􏽐
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where i represents the ith hour in a day; d represents the dth
workday of a week; Abni

d is the number of available bicycles
in the ith hour of the dth day; Abni is the average number of
available bicycles in hour i in work day; and abn DAY in
equation (2) is the average available vehicle for bike service
area throughout the day.

3.1.2. Coefficient of Available Bike Number Variation.
-e coefficient of variation is used to compare the degree of
dispersion of the two sets of data, which can eliminate the
influence of measurement scale and dimension. In this
study, the coefficient of variation was used to compare the
changes in available bicycles in 24 hours of a day among
bicycle service areas.-e calculation formula is shown in the
following equation:

cv �
s.d abni( 􏼁

abn DAY
× 100, (3)

where s.d(abni) is the standard deviation of available bi-
cycles number in 24 hours in a service area. Obviously, cv is
affected by the two statistics of mean and standard deviation
of available bike number. -is metric is used to measure the
variation in bicycle usage with average available bike
number.

3.2. Clustering and Classification in Machine
Learning Approach

3.2.1. Clustering Algorithm. Clustering is an unsupervised
learning algorithm of classifying and organizing members in
datasets which are similar [36].

(1) k-Means Clustering Algorithm. Given a set of data, the
k-means algorithm divides the data into k clusters repeatedly
according to a distance function. -e algorithm operates on
a set of d dimensional vectors, D � xi|i � 1, . . . , N􏼈 􏼉, where
xi ∈ d denotes ith data point. -e algorithm is initialized by
picking k points in d as the initial k cluster representatives or
“centroids.” Techniques for selecting these initial seeds in-
clude sampling at random from the dataset, setting them as
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the solution of clustering a small subset of the data, or
perturbing the global mean of the data k times. -en, the
algorithm iterates between two steps till convergence. About
the value of k, we can choose from reasonable guessed or
predefined number, but it is better to know whether k

clusters is better or worse than k − 1 or k + 1 clusters. -e
method of With he Sum of Square (WSS) is often used to get
reasonable K value. WSS is the sum of the square of the
distance between all points and their nearest centroid point.
-e calculation is shown in equation (4). pi represents the
point i, and qi represents the nearest centroid point to i; if all
data points are relatively close to their respective centers,
then the WSS is relatively small. If K + 1 clusters do not
significantly reduce the WSS value of K clusters, then the
classification is of little significance.

WSS � 􏽘
N

i�1
d pi, q

i
􏼐 􏼑

2
. (4)

(2) Mean Shift Clustering Algorithm. Mean shift clustering is
a general nonparametric cluster finding procedure introduced
by Fukunaga and Hostetler [37], and it does not depend on
any explicit assumptions on the shape of the point distri-
bution, the number of clusters, or any form of random ini-
tialization. Mean shift treats the clustering problem by
supposing that all points given represent samples from some
underlying probability density function, with regions of high
sample density corresponding to the local maxima of this
distribution. To find these local maxima, the algorithm works
by allowing the points to attract each other, via what might be
considered a short-ranged “gravitational” force. Allowing the
points to gravitate towards areas of higher density, one can
show that they will eventually coalesce at a series of points,
close to the local maxima of the distribution. -ose data
points that converge to the same local maxima are considered
to bemembers of the same cluster. For amathematical details,
see Comaniciu and Meer [38]. In the next sections, we il-
lustrate application of the algorithm to a couple of problems
using the python package SkLearn which contains a mean
shift implementation.

3.2.2. Classification Algorithm. Classification is a kind of
supervised learning algorithm of training a classifier in a
group of samples that already know the class label so that it
can classify an unknown sample. In the field of machine
learning, there are hundreds of classifiers to solve real-world
classification problems [39], and in this research, five
commonly used classification algorithms are selected: ran-
dom forest classifier, K-nearest neighbor classifier, logistic
regression, support vector machine, and artificial neural
network. -e five algorithms used in this study are based on
the Python platform Scikit-learn package free from https://
scikit-learn.org.-e parameters of each algorithm have been
adjusted to ensure the optimal performance of the algo-
rithm. In the analysis of shared bicycles, the accuracy and
robustness of these five classification algorithms will be
compared.

(1) Random Forest Classifier. Random forest classifier (RFC)
is the most widely used supervised machine learning al-
gorithm. It is very powerful and usually gives good results
without the need to repeatedly adjust the parameters. -e
basic unit of random forests is the decision tree. A random
forest is a classifier that contains multiple decision trees, and
the category of its output is determined by the mode of the
category of the individual tree output [40]. For an input
sample,N trees will haveN classification results.-e random
forest integrates all the classification voting results and
specifies the category with the highest number of votes as
output. It has several advantages: it enables to handle
thousands of input variables without variable deletion and
gives estimates of what variables are important in the
classification.

(2) K-Nearest Neighbor Classifier. K-nearest neighbor
(KNN) is a method of measuring the distance between
different feature values for classification. Given a training set
D and a test object z, the test object is a vector composed of
attribute values and an unknown category label. -e algo-
rithm needs to calculate the distance (or similarity) between
z and each training object. In this way, the list of nearest
neighbors can be determined.-en, assign the category with
the dominant number of instances in the nearest neighbor to
z. -e advantage is that it is easy to understand, and good
performance can be obtained without excessive adjustment.
-e disadvantage is that the prediction speed is slow and the
dataset with many characteristics cannot be processed. It is
vulnerable to data imbalance. And the interpretability of the
output is not strong.

(3) Logistic Regression. Logistic regression (LR) is essentially
a linear classifier, which refers to the establishment of a
regression formula on the classification boundary line based
on the existing data to classify. -e calculation cost of this
method is not high, and it is easy to understand and im-
plement. -e fitted parameters can clearly see the impact of
each feature on the result. And most of the time is used for
training, and classification is fast after training is completed,
but it is easy to underfit and the classification accuracy is not
high. -e main reason is that LR is linear fitting, but in
reality, many things do not satisfy linearity.

(4) Support Vector Machine. Support vector machine (SVM)
maps the data to a multidimensional space in the form of
points, thereby converting the nonlinear separable problem
in the original sample space into a linear separable problem
in the feature space so that the optimal hyperplane for
classification can be found.-en, classify the set according to
the hyperplane. SVM can make good predictions on data
outside the training set and has a low generalization error
rate, low computational overhead, and easy-to-interpret
results, but it is too sensitive to parameter adjustments and
kernel function parameters.

(5) Artificial Neural Network. Artificial neural network
(ANN) is an information processing system based on imi-
tating the structure and function of the brain’s neural
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network. -e ANN algorithm is a set of continuous input/
output units, where each connection is associated with a
weight. In the learning stage, by adjusting the weights of the
neural network, the correct class label of the sample to be
learned can be predicted. -e advantages of the ANN al-
gorithm are high classification accuracy and strong dis-
tributed parallel processing capabilities. Artificial neural
networks have strong robustness and fault tolerance for
datasets containing a large amount of noisy data, but the
learning process cannot be observed, and the output results
are difficult to interpret, which will affect the reliability and
acceptability of the results. It also requires a large number of
parameters, such as network topology, initial values of
weights, and thresholds.

4. Study Area

4.1. OFO Dockless PBS in Shenzhen. -is paper focuses on
China’s fastest urbanizing city, Shenzhen, to lay a foun-
dation for empirical analysis of the intensity of usage of the
OFO dockless bike sharing system. It provides a unique
case study as it is one of the largest bike share programs
located in a metropolis. OFO bicycle sharing system was
launched in Shenzhen in December 2016 with more than
2200,00 bicycles. We scanned the working status of these
bicycles every 15 minutes in one week of September 2017.
-ere are about 57.6 million bicycle status records in a day.
For a bicycle ID, we first judge whether the bicycle is used
by comparing whether its position has changed. If
changed, we saved the time and position of the bicycle.
-en, according to the average travel speed and travel
distance of the bicycle, the abnormal bicycle use record is
rejected. Figure 1 demonstrates the bike service area in
Shenzhen.

Figure 2 shows the trip summary of shared bicycles in 24
hours in a workday. -ere are two distinct peaks in shared
bicycle use in a workday. -e morning peak is between 08:
00-09:00, and the evening peak is between 18:00–21:00. It is
reasonable to assume that bikes are used for commuting. In
the morning peak, the trip number of bicycles exceeded
50,000.-e trips in evening peak were slightly lower than the
early peak, but still more than 40,000. During the period of
01:00–06:00, bicycle usage is stable and the lowest with about
5,000 trips per hour. At noon period from 12:00 to 15:00, the
bicycle use is about 20,000 per hour. -e amount of bicycle
use dropped from 40,000 to 10,000 per hour at the night
period which is from 22:00 to 24:00.

4.2. Influencing Factor of Bike Use. In the previous studies,
factors influencing public bike usage are grouped into four
categories: transportation, land-use/build environment,
population, and meteorological data. -e weather variables
are not considered in our study. A total 25 factors were
selected including 6 categories of variables: population,
point of interest (POI), road network, public transportation,
distance, and building function. -e detailed factors are
listed in Table 1.

5. Results and Discussion

5.1.<e Identification of BicycleGatheringArea. We used the
mean shift clustering method to identify the clustering area
of bicycles based on the position of the bicycle at 09:00. In
the choice of bandwidth, we considered two bandwidths: 300
meters and 500 meters, because the area identified by these
two bandwidths is approximately equal to the grid area size
of 500m∗ 500m and 1000m∗ 1000m. -e minimum
number of bicycles included in each category is set to 100.
When the bandwidth is 300 meters, a total of 492 bicycle
gathering areas are obtained.-e 492 bicycle gathering areas
contain a total of 140,000 bicycles, accounting for 63.6% of
all bicycles. When the bandwidth is 500m, a total of 270
gathering areas are obtained, including 140,000 bicycles.
Considering that the bicycles contained in the 492 clusters
are more compact, we finally selected 492 clusters as the
analysis objects.

Figure 3 shows the OFO bicycle gathering area identified
by mean shift clustering. In Figure 3, each cluster has a
center point and the buffer analysis was proposed to obtain
the range of the bicycle gathering area.-e buffer is a kind of
influence range or service scope of the geospatial target,
which refers to the polygons of a certain width which are
automatically established around the point, the line, and the
surface entity. 300 meters of buffers were established by
ArcGIS based on all cluster center points, thus to calculate
the indicators of dockless PBS and influencing factor of
bicycle gathering area.

5.2. Performance of Five Classification Algorithms. After
calculating the available bike number and coefficient of
available bike number variation of bicycle cluster area, the
k-means algorithmwas executed to group these areas. Figure
4 shows the WSS curve, and we made WSS values from 2
clusters to 19. When k is increased from 2 to 8, WSS de-
creases significantly.When k> 8, the improvement ofWSS is
very linear so the cluster centers have similar characteristics.
-e larger the kmeans the more the classifications of bicycle
cluster area which is likely to impact on the accuracy of the
classification algorithm. It is necessary to find an optimal k
value to balance between the accurate cluster and accurate
classification prediction. -is research adopts an experi-
mental strategy to select k from 3 to 8 and then uses five
classification algorithms to compare the prediction accuracy.
-e bicycle gathering areas in the same cluster are marked
with the same label using k-means clustering. Five classi-
fication algorithms were compared in the accuracy of dis-
tinguishing the type of bicycle gathering areas using 25
impact factors. -e experimental process is divided into two
stages including training and application. At the stage of
training, the 492 gathering areas are randomly divided into
two parts. -e first part containing 75% of areas is used for
training data, and the second part as the test data is used to
verify the accuracy. Figure 5 shows the accuracy of the five
classification algorithms in the training set and the test set
when k takes different values.
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In the training set, the performance differences of the
five algorithms are obvious. For different K values, the RFC
always maintains the highest accuracy rate, which is higher
than 90%. -e ANN also has a high accuracy rate. When K
is 3-4, the accuracy rate is above 90%, and when the k value
is 5–8, the accuracy rate drops to above 80%. KNN algo-
rithm performance is in the middle of the five algorithms.
When the K value is 3-4, the accuracy rate is above 70%,
and when the K value is 5–8, the accuracy rate drops to
above 60%. As the k value increases, the accuracy of SVM
drops from 63% to 48%.-e worst-performing algorithm is
the LR algorithm. As the k value increases, the accuracy rate
drops from 58% to 37%. In addition, in the trend that the
accuracy rate changes with the value of k, the accuracy rate
of the RFC algorithm fluctuates little, and the other al-
gorithms have the highest accuracy rate when the value of K
is small. As the value of k increases, the accuracy rate
decreases, and When k= 8 with ANN, the accuracy rate has
increased. In the test set, the accuracy of the five algorithms
is lower than that of the training set. -e most accurate

performance is still the RFC algorithm. When k = 4, RFC
has the highest accuracy rate of 76.97%, which is the only
case in the test set where the accuracy rate exceeds 75%.
When k = 3, its accuracy rate is 73%. For ANN, the highest
accuracy rate is 71% when k = 4. -e accuracy of KNN in
the training set is better than that of SVM and LR, but its
performance in the test set is not much different from SVM
and LR. -e accuracy of these three algorithms is low. In
addition, RFC, ANN, and LR all have the highest accuracy
when k = 4.

Comprehensive comparison of the performance of the
five algorithms in the training set and the test set shows that
RFC and ANN have better performance in the prediction of
the type of bicycle clusters. -e accuracy of ANN, SVM,
and LR in the training set is quite different, but the dif-
ference in the test set is not obvious. Basically, when the k
value is greater than 4, as the K value increases, the accuracy
of the five classification models has a downward trend.
When K� 4, RFC and ANN have the highest test accuracy.
We choose k� 4, which means that the bicycle aggregation
is divided into 4 types for further analysis.

5.3. <e Analysis of Bicycle Gathering Area

5.3.1. <e Clustering of Bicycle Gathering Area. Table 2
shows the description of the cluster center when k� 4.
-e table mainly lists four indicators, which are the
standard and original values of Abn_DAY, and the stan-
dard and original values of the coefficient of variation (in k-
means clustering, standard values were used).-e four
cluster centers have obvious characteristics. We first divide
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the four clusters into inefficient and efficient groups according
to the value of cv. A high cv indicates that the number of
available bicycles in the gathering area is more appropriate, and
the use of regional bicycles is efficient. A low cv indicates that
the number of available bicycles in the gathering area is large,
which does not match the number of active bicycles, and the
use of bicycles is inefficient. We call clusters with z_cv lower
than 0 as an inefficient group and clusters with z_cv greater
than 0 as an efficient group. -en, each group is divided into
two subtypes according to Abn DAY and cv.

(i) Cluster A: z_ Abn_DAY> 1, z_cv< 0: this cluster
can be called high efficiencymode.Abn_DAY in this
group is reaching 416, but the average daily change
of vehicles is very few, with an average of only
51.-ere are excessive bicycles deployed or stayed in
the area, and the activity of more than 300 bicycles is
not high.

(ii) Cluster B: z_Abn DAY< 0, z_cv< 0: we call it a
normal inefficient mode. Its z_cv< 0 is as same as
Cluster A, but z_ Abn_DAY< 0 compared with A
indicating that the number of bicycles in the cluster
area in this group is less than A.-ere are about 185
bicycles with an average of 17 bikes daily used, and
more than 150 are not very active.

(iii) Cluster C: z_Abn DAY< 0, z_cv＞ 2: this cluster has
the highest cv value among the four clusters, indicating
that the number of available bicycles in this group
matches the demand for bicycles, and there are not too
many idle bicycles available. -e average number of
available bicycles in this group is 213, and the average
daily change is 117. More than half of the bicycles are
used, so it is called high efficient mode.

(iv) Cluster D: z_Abn DAY< 0, z_cv＞ 0: this cluster is
similar to C, except that the z_cv value is lower than
that of the C class but exceeds the average. In this
group, the average number of available bicycles is
almost similar to C, but Abn DAY is about half of
that of C, and its average cv is 2-3 times that of
groups A and B. -e use efficiency of bicycles is
higher than that of A and B but lower than C, so it is
called normal effective mode.

In general, high inefficient mode of cluster A has the max
average number of available bikes and high efficiency mode
of cluster C has the largest average coefficient of variation.
-e difference between A and B is in the average number of
available bikes, and the difference between B, C, and D is in
the coefficient of variation. From the number of the clusters,
cluster A and cluster B together account for about 73%, so

Table 1: -e influencing factors of bike use.

Factor type Factor Unit Calculation
Population Population Number Count the number of residents in the service area

POI

Restaurant Number

Count the number of POIs of the corresponding category in the service areaCompany Number
Small store Number
Car park Number

Road network

Length of main road m

Calculate the total length of the corresponding road level in the service areaLength of secondary
road m

Length of branch road m

Public
transportation

Bus stop Number Calculate the number of bus stops in the service area

Distance to subway m Calculate the distance from the center of the service area to the nearest subway
station

Distance

Distance to university m

Calculate the distance from the center of the service area to the closest
corresponding place

Distance to government m
Distance to
supermarket m

Distance to hub m
Distance to square m
Distance to park m
Distance to school m
Distance to hospital m

Building function

Office building m2

Calculate the total floor area of the corresponding building in the service area

Industrial building m2

Public building m2

Commercial building m2

Residential building m2

Urban village building m2

Warehouse m2

Building number Number
Cover ratio % -e ratio of the projected area of all buildings to the area of the service area
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the main mode is inefficient mode. -ese two groups have
gathered a total of 110,000 bicycles which used low effi-
ciency. -e efficient mode area accounts for about 27% of all
regions, of which the high efficient mode area accounts for
10%, with 10,000 bicycles, and the normal efficient mode
accounts for 17%, totaling 17,705 bicycles. A total of 27,000
bicycles are gathered in these two groups, and the bicycle use
efficiency in these areas is higher.

5.3.2. <e Impact of Clustering of Bicycle Gathering Area.
Figure 6 shows the spatial distribution of four clusters. -e
high inefficient mode is mainly distributed in the central area
of Shenzhen (Futian and Luohu) and Baoan and shows the

characteristics of spatial clustering. Normal inefficient areas
are distributed on the periphery of urban built-up areas, and
efficient mode areas are scattered between normal inefficient
and high inefficient areas. It is worth noting that in Futian
and Luohu districts where the subway network density is
high, the main distribution mode is inefficient. In order to
better understand the influencing factors that affect the types
of bicycle service clusters, we analyzed the importance of the
factors that determine the types of bicycle service clusters
based on the RFC model with the highest accuracy.

-e importance indicates how important the variables
are in the RFC model. -e sum of the importance of all
variables is 1. Figure 7 shows the importance of 25 factors in
the RFC model in ascending order when K= 4 and the
average importance is 0.04 (1/25). -e importance of pop-
ulation and buildings number is significantly higher than
other factors which are key factors. -e least important
factors are the length of the branch road, the number of bus
stops, and the area of public buildings. -e importance of
these three variables does not exceed 0.02 lower than the
average. -e importance of the main road length and the
restaurant number ranked third and fourth, indicating that
they are important reference variables for identifying bike
gathering area type. -e importance of resident building
area, building coverage, distance to universities, and small
shops is slightly larger than average. -e distance to the
subway station ranks only ninth in importance, which is
about the same as the commercial building area and the
company number. -e sum of the importance of the top 10
variables accounted for 54%. Existing studies have shown
that the area around subway stations is the most active area

N

Metro line

Figure 3: -e OFO bicycle gathering area identified by mean shift clustering.
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Figure 4: -e WSS curve in determining the number of clusters.
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for bicycle activities, but our research has found that the
distance from the subway station is not the most important
factor in judging the activity type of bicycle gathering areas.
-e population, the number of buildings, the length of the
main road, and restaurants are four important variables for
judging the active types of bicycle clusters. In addition,
among the 25 influencing factors in Figure 7, except for the
variables with higher and lower importance, the importance
of most of the variables in the middle is more evenly dis-
tributed, indicating that the active types of bicycle clusters
have more and more complex influencing factors.

Figure 8 shows a comparison of the average values of
the standard values of 25 factors. -e color of the heat map
clearly shows that there are obvious differences in the
values of 25 variables between the four groups. We found

that extreme values of variables tend to appear in groups A
and C. Group A is significantly higher than the other three
groups in the seven variables of population, number of
buildings, length of main roads, number of restaurants,
building coverage, number of parking lots, and number of
bus stops. -e number of population buildings and the
length of secondary roads in group C are significantly lower
than the other three groups, and the distance to school,
industrial building area, office area, and distance to the park
are significantly higher than the other three groups. Al-
though the variables in groups B and D rarely have
maximum or minimum values, the characteristics of the
variables between them are quite different. -e classifica-
tion is based on average available number and the coeffi-
cient of variation, but the 25 variables between the classes
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Figure 5: -e accuracy of the five classification algorithms.

Table 2: -e description of four clusters.

Cluster A B C D
Description High inefficient Normal inefficient High efficient Normal efficient
z_ Abn DAY 1.03 −0.73 −0.52 −0.55
z_ cv −0.39 −0.59 2.35 0.75
Abn_DAY 416 185 213 209
cv 0.12 0.09 0.55 0.30
Abn_DAY ∗ cv 51 17 117 63
Total available bike number 78588 31574 9986 17705
Cluster number 189 171 47 85
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have obvious differences in value, indicating that the ac-
tivity types of bicycles are related to these factors. -e
values of these variables can be used to judge the activity
types of bicycles.

5.3.3. Guiding Public Bicycle Planning and Management.
Let us assume a scenario: to provide a dockless public bicycle
service in a new area in Shenzhen. Considering that the
influencing variables are easy to obtain, we apply the RFC to

Population
Building number

Main road
Residential building

Cover ratio
Distance to university

Small store
Distance to subway

Commercial building
Company

Distance to school
Distance to hub

Industrial building
Secondary road

Distance to hospital
Office building

Distance to park
Distance to square

Distance to government
Car parking

Distance to mall
Public building

Bus stop
Branch road

Fa
ct

or
s
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Figure 8: -e heatmap of factor in four clusters.
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Figure 9: -e predicted results of activity patterns in the new service area.

Journal of Advanced Transportation 11



predict the activity pattern of the new service area. -e built
area of Shenzhen which does not provide OFO service is
divided into 1459 grids, and the influence factors are cal-
culated. Figure 9 shows the predicted results of the RFC
model for activity patterns. Note that the prediction assumes
that the existing bike operational and deployment strategies
of OFO remain unchanged. Yellow grids belonging to cluster
B have the largest number about 1025. -ere are 146 blue
grids which are cluster D.-e remaining area is 162 red grids
and 126 green grids. Most girds are normal inefficient types.
Table 2 and the service area type can provide information to
public bicycle quantity management. We can get theoreti-
cally the minimum number of bicycles needed according to
the grid’s cluster and the total number of bicycles required. It
is possible to optimize the number of available bicycles
according to bike activity of the grid, reduce operating costs,
and improve utilization efficiency.

6. Conclusions

-is research practiced the introduction of a machine
learning approach to quantity management using OFO bike
operation data in Shenzhen. -e contributions are mainly
reflected in the following three aspects. First, we proposed a
method for identifying the cluster area of dockless shared
bicycles, which can accurately calculate the impact factors of
shared bicycle systems. Second, different from previous
research perspectives, this research discusses the perfor-
mance and optimization possibilities of the shared bicycle
system from the number of available bicycles in the gath-
ering area and its changes. At last, this work shows the
applicability and operability of machine learning methods in
solving urban planning and management problems, which is
inspiring for people with urban management background to
use computational intelligence.

-e bicycle gathering area type’s recognition, prediction,
and application in this study are meaningful for the sus-
tainable development of shared bicycles. (1) -ere were 492
OFO bicycle gathering areas containing more than 140,000
bicycles, accounting for 63.6% of all bicycles in Shenzhen. (2)
More type number of bicycle gathering area will affect the
accuracy of the classification algorithm. -e random forest
classification had the best performance in identifying bicycle
gathering area with an accuracy of more than 75%. (3)
Shenzhen OFO dockless public bike gathering areas can be
divided into four types: high inefficient, normal inefficient,
high efficient, and normal efficient. -e main area types are
high inefficient and normal inefficient which gathered about
110,000 bicycles with low usage.(4) -ere were obvious
differences in the characteristics of impact factors in four
types of bicycle gathering areas. It is feasible to use these
factors to predict area type to optimize the number of
available bicycles, reduce operating costs, and improve
utilization efficiency. So, the knowledge from the existing
dockless bicycle operation data can be used to guide public
bicycle planning and management. -e potential activity
patterns and the minimum number of bikes in new service
areas can be obtained in advance. Operating companies can
make optimization strategies based on this information.

Our study also has some limitations. First, due to the
limitations of data acquisition, the working day operational
data used only contain one week, so the results of the analysis
may be biased.-e data we analyzed did not include data for
nonworking days. Weekend public bicycle usage patterns
may differ fromweekday. Second, themodes analyzed in this
study rely heavily on operational data and may not be ap-
plicable elsewhere. When the strategy of bicycle operation
changes or the number of bicycles is reoptimized, the activity
modes will be affected. After a period of operation, according
to the indicators and models of this study, a new mode of
activity will be formed. Last, this paper focuses on the
number of available bicycles, and the activity indicators of
dockless PBS need to be further explored.
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