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+is paper aims to analyse possibilities of train type identification in railway switches and crossings (S&C) based on accelerometer
data by using contemporary machine learning methods such as neural networks.+at is a unique approach since trains have been
only identified in a straight track. Accelerometer sensors placed around the S&C structure were the source of input data for
subsequent models. Data from four S&C at different locations were considered and various neural network architectures
evaluated. +e research indicated the feasibility to identify trains in S&C using neural networks from accelerometer data. Models
trained at one location are generally transferable to another location despite differences in geometrical parameters, substructure,
and direction of passing trains. Other challenges include small dataset and speed variation of the trains that must be considered for
accurate identification. Results are obtained using statistical bootstrapping and are presented in a form of confusion matrices.

1. Introduction

Railway switches and crossings (S&C) are important com-
ponents of railway infrastructure. Dynamic effects of passing
trains are higher than in case of a straight track and are
affected by factors such as train speed, S&C geometry,
fastening stiffness, and substructure material [1]. With in-
creasing traffic and growing demands on the infrastructure,
reliability and safety of S&C must be ensured. Large de-
mands on maintenance occur especially on high-speed
tracks [2]. Generally, three different maintenance ap-
proaches can be applied—corrective, preventive, and pre-
dictive [3].

Modern predictive approaches require real-time moni-
toring and data collection to evaluate S&C condition and
apply appropriate countermeasures when needed [4]. Ac-
celerometer or deflection sensors are simple and reliable
devices that can bemounted directly in the S&C structure for

monitoring the dynamic response. Gradual changes over
time for the same train type and speed may indicate an
emerging defect in S&C structure [5] and provide an early
warning to the infrastructure operators.+erefore, train type
must be recognized from the data to evaluate changes in
S&C.

Project S-CODE (Switch and Crossing Optimal Design
and Evaluation [6]) presented requirements for the next
generation of S&C [7] and also introduced next generation of
control, monitoring, and sensing system that, among others,
will be able to determine the type of passing train based on
accelerometer data. +is system is referred to as Train
Identification System (TIS). Recent studies also proposed to
utilize machine learning techniques for predictive mainte-
nance [8]. Train type was already successfully identified in a
straight track [9]. Identification of trains in S&C is a more
challenging task as more factors affecting sensor measure-
ments must be considered.
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Data can be obtained either from sensors mounted on
trains or track. For successful train identification, it is im-
portant to recognize defects on trains such as flat wheels and
not consider data from defected trains in S&C evaluation.
Train defects such as wheel flats have been already detected
by sensors mounted on trains [10] or track [11]. Critical
samples containing defected wheels can be identified from
the accelerometer signal by state-of-the-art pattern recog-
nition techniques [12].

Machine learning methods can be used with benefit for
processing a large amount of data. Methods such as support
vector machines (SVMs) have already been incorporated for
condition monitoring of railway infrastructure [13]. In this
paper, neural networks are used for train identification as
they are suitable for time series classification problems
[14, 15]. Once trained, neural networks are also advanta-
geous in terms of performance which may be useful for
future in situ TIS.

+e aim of this paper is to introduce possibilities of train
type identification directly in S&C using neural networks
and accelerometer data.+is approach is unique and has not
been attempted to date. Two locations and four S&C are
considered, and several use case scenarios are presented in
order to evaluate the transferability of machine learning
models between different locations. Results for multiple
train classes as well as various neural network architectures
are discussed.

2. Data and Methods

2.1.DataAcquisition. Data used for train identification were
obtained by in situ measurements from multiple acceler-
ometer sensors placed in different positions around the
common crossing of the S&C. +e common crossing con-
tained no movable parts. +erefore, passing trains caused
increased acceleration impulses due to interruption of the
rail continuity as wheels of the train hit the crossing nose. In
a case of a movable crossing that is used in some S&C
designs especially for high-speed tracks, these impulses
would be lower but still detectable [16].

+e full dataset contains signals from 6 single-axis ac-
celerometers in Z-direction, 2 three-axis accelerometers in
X, Y, and Z directions, and 8 displacement sensors in Z-
direction as shown in Figure 1. +e sampling frequency of
the sensors was 10 kHz. Sensors were placed either on ballast
bed, sleeper, or directly on a rail near the crossing nose.

2.2. Characteristics of Locomotive Classes. Seven locomotive
classes were chosen for identification as they vary in ge-
ometry, weight, or undercarriage stiffness: class 150/151
(denoted as 151), classes 162/163 (denoted as 163), class 362/
363 (denoted as 363), class 380, Pendolino 680 (denoted as
680), Stadler 480 (denoted as 480), and class Siemens
ES64U2/ES64U4 (denoted as Taurus). Geometrical param-
eters and weights for each class are shown in Table 1.

Data were obtained from two nearby locations on the
same railway corridor in the Czech Republic: Choceň (re-
ferred to as Location 1) and Úst́ı nad Orlićı (referred to as

Location 2). Two S&C were present in each location and
their parameters differed between locations. Both S&C in
Location 1 had different geometry (suitable for higher
speeds), substructure parameters, and also an opposite di-
rection of train passages compared to the S&C in Location 2.
Another difference was that trains with locomotive class 363
had lower mean speed in Location 2 as they stopped in a
nearby station. +e speed of the trains was measured by a
radar velocity gun with ±2 km/h accuracy. Measurements
for each locomotive class and their speeds are listed in
Table 2 for Location 1 and Table 3 for Location 2.

2.3. Localization of the Locomotive Part. Locomotive part of
the accelerometer signal was used for the identification since
locomotives are usually better maintained compared to the
regular carriages. +e variance of locomotive weights is also
lower. Approaches used for locomotive localization from the
whole signal were based on peak detection. Root mean
square (RMS) value was calculated by equation (1) using a
sliding window of size d � n1 − n2 for peak localization.
Grouping of nearby peaks was done by mean shift clustering
with bandwidth parameter α:
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+e size of the sliding window for RMS was chosen to
d � 0.02 s. Peaks were then limited by a minimal amplitude
value that was calculated dynamically using quantile of the
whole signal between qlim � 0.85 ∼ 0.95. Mean shift clus-
tering with bandwidth parameter α � 0.03 ∼ 0.033 s distance
was applied in order to group nearby peaks. All parameters
were chosen empirically based on mean train speed. +ese
methods served only for preprocessing of the given dataset
and are not the aim of this research.

Each peak in an accelerometer signal represents an axle
of a train and a two-peak group represents a bogie.
+erefore, the signal can be divided into four-peak groups
where the first group represents a locomotive which is
followed by carriages as subsequent groups. +is algorithm
proved itself useful in data preprocessing and automatic
extraction of the locomotive part of the signal as it was
applied on a dataset which containedmostly signals with low
levels of noise.

Example of an accelerometer signal generated by train
with a locomotive of class 380 at speed 162 km/h passing
through a S&C is shown in Figure 2. All axles of the train can
be easily recognized as peaks in the signal. Detail of the
locomotive part of this signal is shown in Figure 3.

2.4. Methodology for Classification. +e high cost of cor-
rective maintenance and risk of accidents require a robust
solution for train type identification as it will be part of the
S&C real-time monitoring system. +e S-CODE project was
proposed to incorporate accelerometer signals to determine
the type of passing train [6]. Accelerometer sensors will be
mounted in situ in the S&C structure and it is expected that a
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large amount of data will be collected over time, so ap-
propriate methods must be chosen for further data
processing.

As stated in [13], machine learning methods, such as
support vector machines (SVMs), are often used for

monitoring and evaluation of the condition of railway in-
frastructure components [17] or for train defect detection
from sensor data [11]. Using neural network-based models
for time series classification is a common problem [18], and
recent research mostly focuses on developing novel network

Table 1: Geometrical parameters and weights of different locomotive classes.

Locomotive class 151 163 363 380 480 680 Taurus
Distance between pivots (m) 8.3 8.3 8.3 8.7 16.0 19.0 9.9
Axle spacing (m) 3.2 3.2 3.2 2.5 2.7 2.7 3.0
Weight (t) 82.0 84.0 87.0 86.0 150.01 57.0 87.0
1Total weight of the whole five-car train.

Table 2: Location 1: measured locomotives and their speeds.

Locomotive class 151 163 363 380 480 680 Taurus
Number of measurements (-) 10 8 8 9 6 7 6
Mean speed (km/h) 133.2 106.5 129.6 147.4 159.3 154.4 145.3
Speed standard deviation (km/h) 15.5 35.5 13.0 13.0 4.4 4.7 9.8
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Figure 1: Sensor placement layout around the common crossing of the S&C used for data acquisition.
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architectures such as modifications of residual neural net-
work (ResNet) [19]. Convolutional neural networks are often
used for the classification of time series data with an out-
standing performance [20, 21] and are also widely used for the
classification of accelerometer data and human activity rec-
ognition [14, 22]. In railway engineering, deep neural net-
works were successfully applied in areas such as fault diagnosis
on trains [23] or for rail degradation prediction [24].

Given the high complexity of the train type identification
problem in S&C, multiple neural network architectures will
be examined in this paper in order to find an optimal design.

2.5.NeuralNetworkDesignandTraining. Six different neural
network architectures were evaluated for locomotive clas-
sification. Four multilayer perceptrons with either one
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Figure 2: Accelerometer signal (Z-axis) during train passage over a crossing.+e locomotive part is highlighted in red and shown in detail in
Figure 3.
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Figure 3: Detail of the locomotive part of the signal shown in Figure 2.

Table 3: Location 2: measured locomotives and their speeds.

Locomotive class 151 363 380 480 680
Number of measurements (-) 10 8 12 12 12
Mean speed (km/h) 122.0 91.9 128.1 147.0 128.5
Speed standard deviation (km/h) 5.7 14.8 4.9 12.7 4.3
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(MLP1), two (MLP2), or three (MLP3a, MLP3b) fully
connected hidden layers. Hidden layer size was set to 100
neurons in all cases except MLP3b where 500 neurons were
used. All perceptron models employed rectified linear ac-
tivation function (ReLU) between layers except the output
layer where softmax activation was applied. Using the
softmax activation function in the output layer is a common
practice [25] which has an advantage that the vector of
output probabilities sums to 1.

A convolutional neural network (CNN) consisted of a
convolutional layer with 64 filters of length 5 followed by a
max-pooling layer of length 5 and a hidden layer of size 100.
ReLU was used as an activation function between layers and
softmax activation at the output.

+e sixth and final architecture was a long short-term
memory recurrent neural network (LSTM) with one LSTM
layer with 50 hidden states followed by a fully connected
layer with output softmax activation function.

+e input size for all models was set to 1000, and the
output size was the number of classified train types (i.e., 5
and 7). +e training was done in 12 epochs and data were
forwarded through the model in batches of size 4. +e
learning rate of the models was fixed to 0.001. Adam op-
timizer was selected for automatic differentiation [26], and
mean squared error was used as a loss function. +e number
of trainable parameters and the number of layers for dif-
ferent neural network architectures are presented in Table 4.

2.6. Normalization of Input Accelerometer Signals. Specific
features from the data can be selected as input to the neural
networks to decrease complexity and improve training
times. However, a whole accelerometer signal may be used
without a need for extensive and domain-specific pre-
processing.+is approach also removes bias due to manually
selected features [18] and improves performance, especially
for in situ device.

In the first step, signals were normalized in both X- and
Y-axes to prevent locomotive misclassification for different
train speeds. +e number of samples in available locomotive
signals spanned between 1 · 103 and 1 · 104 depending on the
sampling frequency of the sensors, train speed, and loco-
motive geometry. In the X-axis, signals were resampled to
the input size which was chosen to 1000. +is number of
samples is sufficient as it preserves enough information with
a lower number of samples than in the original signal (see
Figure 4). In the Y-axis signals were normalized between
values −1 and 1.

2.7. Use Case Scenarios. Four accelerometer channels A0Z,
A2Z, A3Z, and A7Z were selected for train identification as
they were similar in terms of phase shift and noise. Sensors
A2Z, A3Z, and A7Z were placed on a sleeper under the
crossing nose and sensor A0Z was placed in a ballast bed
nearby as shown in Figure 1. +ese four channels were used
separately in order to augment data and increase its vari-
ability as the sensors can generally be placed in arbitrary
position around the crossing nose.+e full dataset contained
108 train measurements from Location 1 and Location 2

giving in a total of 432 samples. To evaluate classification
models for a different variety of data, these two locations
were considered both independently and together, using
only locomotive classes present in both locations (5 classes).

Four use case scenarios were considered as shown in
Table 5. In scenarios A and B, the models were trained on all
the samples from Location 1 and Location 2, respectively. In
scenario C, the data from these two locations were com-
bined. Size of the dataset remained relatively small despite
using four accelerometer channels independently.+erefore,
the bootstrapping technique [27] was utilized for scenarios
A, B, and C in order to produce statistically relevant results.
10 models were trained and tested for each neural network
architecture and each scenario, and the results were averaged
to evaluate the overall performance of the given architecture
[28]. For every model, the scenario dataset was shuffled and
split in the way that at least two locomotive passages (i.e., 8
samples) for each class were available for testing.

Finally, the use case scenario D used data from Location
2 for training and the data from Location 1 for testing. +is
scenario aimed to evaluate a situation when the model for
train identification is trained on the currently available data
and then applied to another S&C.

3. Results

Substantial differences of classification accuracy between the
use case scenarios, locomotive classes, and neural network
architectures were observed due to factors such as the
variance of train speeds, undercarriage geometry, or dy-
namic response of S&C structure. Despite these factors, the
accuracy of the presented models is still relatively high
compared to random classification.

Baseline accuracy (random classification) for scenario A
is 14.3% and for scenarios B to D is 20.0% and is given by the
inverse of the number of classified classes. Mean model
accuracy for different scenarios spanned between 52.3% and
80.6% and is presented in Table 6 and Figure 5. +e dif-
ference in the mean accuracy in the considered two locations
(scenarios A and B) was 28.3% and has to be addressed to the
higher data variability in Location 1 as more locomotive
classes were classified and also the train speeds were more
variable. Training models on data from one location and
testing on the other (scenario D) resulted in a mean accuracy
of 55.0%. Combining data from both locations together
(scenario C) exhibited a mean accuracy of 72.9%. Confusion
matrices were used for the evaluation of results.

Differences can also be observed between different
neural network architectures (Table 6 and Figure 5). +e
flexibility of models varies as the number of trainable pa-
rameters differs (see Table 4). CNN shows the best accuracy
in all scenarios compared to the other models since the
convolutional layer enhances the ability of feature recog-
nition in time series data. +is architecture also contains the
largest number of trainable parameters. All multilayer
perceptrons (models MLP1, MLP2, MLP3a, and MLP3b)
have only low variance in accuracy and with slightly de-
creasing trend for deeper architectures. Relatively poor
mean accuracy was observed in LSTM due to difficulties in
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Figure 4: Effect of signal resampling to a different number of samples. (a) Original signal with 5791 samples. (b) Resampled to 100 samples.
(c) Resampled to 200 samples. (d) Resampled to 500 samples. (e) Resampled to 1000 samples. (f ) Resampled to 2000 samples.

Table 4: Number of layers and number of trainable parameters for the evaluated neural network architectures.

Model MLP1 MLP2 MLP3a MLP3b CNN LSTM
Number of layers 2 3 4 4 4 2
Number of trainable
parameters 100 605 110 705 120 805 1 000 005 1 280 989 260 605

Table 5: Setup of evaluated use case scenarios.

Scenario Location Bootstrapping
(no. of repeats) No. of classes Dataset size Training size Testing size

A Location 1 Yes (30) 7 216 152 64
B Location 2 Yes (30) 5 216 164 52
C Location 1 and 2—mixed Yes (30) 5 376 308 68

D Location 2 (training), Location 1
(testing) No 5 376 216 160

Table 6: Mean accuracy (with standard deviation if applicable) for different neural network models and different scenarios. Baseline
(random) accuracy is denoted as “Base.” Visualization of this table is shown in Figure 5.

Model/Scenario Base (%) Mean (%) MLP1 (%) MLP2 (%) MLP3a (%) MLP3b (%) CNN (%) LSTM (%)
A 14.3 52.3± 7.9 50.9± 4.4 52.3± 8.2 51.4± 7.0 49.5± 8.2 60.0 ± 6.3 49.7± 7.2
B 20.0 80.6± 12.0 82.9± 5.7 87.3± 7.0 83.3± 6.0 81.2± 6.0 89.2 ± 6.9 59.8± 9.7
C 20.0 72.9± 9.9 76.2± 7.1 74.1± 5.2 73.7± 9.2 73.5± 4.9 80.6 ± 6.9 59.3± 9.8
D 20.0 55.0 57.5 58.8 53.7 53.1 72.5 34.4
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the training process. Mean confusion matrices for the most
accurate CNN architecture are presented in Figures 6–9.

Locomotive classes were also classified with varying
accuracy. Pendolino 680, Stadler 480, and class 380 were
identified with the highest mean accuracy due to their
specific undercarriage geometry. On the contrary, mean
accuracies in scenario A for the three mutually geometrically
similar classes 151, 163, and 363 were lower. Differences in
the classification accuracy for the same locomotive classes in
different scenarios are to be addressed to the variance of
speed. An overview of the mean accuracy of classification for
each locomotive class is shown in Table 7.

4. Discussion

Results showed differences in accuracy for different sce-
narios, locomotives, and machine learning models which
can be addressed to factors such as complex dynamic in-
teraction of the train and S&C structure, multiple loco-
motive classes, similarities in locomotive undercarriage
geometries, speed variance, and a relatively small amount of
training data. +e test scenario C that used data from one
location for training and the other location for testing
presented that neural network-based classifiers are generally
transferable to S&C in different locations. Nevertheless, the
model performance has to be improved by using a larger
training dataset and more advanced architectures of the
neural networks. Additionally, high uncertainty in case of
trains with high-speed variance requires partitioning trains
with different speeds into separate classes.

+e highest classification accuracy of CNN was expected
since it is the most commonly used architecture for this type
of problem [18]. On the other hand, the lowest accuracy of
LSTM compared to the other evaluated models may be
attributed to the long input sequence as this architecture is
generally suitable for time series classification [29]. Adding a
convolutional layer to LSTM may also increase its accuracy
as this architecture was successfully applied in a number of
time series classification or prediction problems [30, 31].

Trains with different undercarriage geometry were
identified with the highest accuracy contrary to the trains
with similar geometry that were oftenmutually misclassified.
Large speed variability should also be addressed for the poor
classification accuracy for class 363.

It is expected that more accelerometer data from train
passages through S&C will be available in the future. Ad-
vanced network architectures such as LSTM with con-
volutional layers [30] or ResNet [19] will be examined as well
as more refined optimization of hyperparameters. Also, data
augmentation techniques can be employed to increase
dataset size and variability [32]. Another possible solution is
to use transfer learning [22] and utilize a large amount of
data available in other industries. Here, machine learning
models can be trained on similar time series data and then
fine-tuned for the locomotive classification problem.

+e ultimate goal is to develop a full-featured solution
for locomotive identification in order to evaluate changes in
the dynamic response of S&C for the same train types and
speeds as well as to detect defected trains and exclude them
from the dataset to improve classification accuracy.
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Figure 5: Mean model accuracies with standard deviation (if applicable) for different use case scenarios. Baseline (random) accuracy is
denoted as “Base” and is marked in black.
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5. Conclusions

Train identification based on accelerometer data in S&C
using different neural network architectures was presented
in this paper. +e most important findings can be sum-
marized as follows:

(i) Train type identification in S&C is feasible despite
the increased complexity of the problem compared
to a straight track.

(ii) Transferability of machine learning models between
different locations is also possible. Models can be
trained on data from one location and then applied
to another, previously unseen location, with rela-
tively high classification accuracy in spite of dif-
ferences in S&C parameters. However, both
locations evaluated in this paper are positioned on
one railway corridor. It is therefore desirable to
further verify the transferability of models between
unrelated locations.

(iii) Accelerometer signals can be classified without a
need for manual feature selection with respect to the
limited computational capacity of the in situ device.

To enhance the robustness of evaluated models, only the
locomotive part of the signal was used as locomotives are less
variable in terms of weight and wheel geometry. However,
locomotives with largely different speeds were incorrectly
classified despite normalization of input data. Grouping of
locomotives into speed categories is required in order to
improve classification accuracy. Additionally, defected

trains must be identified in advance and excluded from the
dataset for successful train identification and subsequent
evaluation of the dynamic response of S&C.

Comparison of four use case scenarios and six neural
network architectures showed higher model performance
for data with lower variability and vice versa. +e best
performing convolutional neural network proved to be a
suitable baseline architecture for the locomotive classifica-
tion problem. In further research, more advanced neural
network architectures, as well as hyperparameter optimi-
zation, will be investigated.
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Figure 9: Confusion matrix for the best performing CNN for scenario D.
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