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In the industrial sector, transportation plays an essential role in distribution. (is activity impacts climate change and global warming.
One of the critical problems in distribution is the green vehicle routing problem (G-VRP). (is study focuses on G-VRP for a single
distribution center. (e objective function is to minimize the distribution costs by considering fuel costs, carbon costs, and vehicle use
costs. (is research aims to develop the hybrid butterfly optimization algorithm (HBOA) to minimize the distribution costs on G-VRP.
It was inspired by the butterfly optimization algorithm (BOA), which was by combining the tabu search (TS) algorithm and local search
swap and flip strategies. BOA is a new metaheuristic algorithm that has been successfully applied in various engineering fields.
Experiments were carried out to test the parameters of the proposed algorithm and vary the speed of vehicles. (e proposed algorithm
was also compared with several procedures of prior study. (e experimental results proved that the HBOA could minimize the total
distribution cost compared to other algorithms. Moreover, the computation time is also included in the analysis.

1. Introduction

In distribution, transportation plays an essential role in the
industrial sector. It proposes to distribute products from
warehouses to customers [1]. Transport and logistics are also
significant in the economic development of the world [2].
However, these activities impact climate change and global
warming [3, 4]. In China, 30% of the total carbon emissions
are caused by the goods transportation sector [5]. Fur-
thermore, in the United States, 28.5% of greenhouse gas is
caused by the transportation of goods [6]. Global climate
change prevention was declared at the Copenhagen global
climate summit in 2009 [7]. Generally, vehicles use fossil
fuels as the source of engine-driving energy. (erefore, air
pollution is mostly caused by the transportation sector [8, 9].
One of the efforts to solve this problem is determining the
right route. (e problem of minimizing carbon emissions
and fuel energy on this vehicle route is classified as a green
vehicle routing problem (G-VRP) [10, 11]. (is issue has

attracted the attention of many researchers [12, 13]. G-VRP
is the development of the classic vehicle routing problem
(VRP). (e VRP aims to minimize the total cost [14, 15] and
the distance of travel [16–18]. However, the G-VRP aims at
reducing the environmental impacts, such as reducing fuel
consumption and carbon emissions caused by the distri-
bution process [19, 20]. (erefore, several effective proce-
dures have been developed to solve G-VRP. In recent years,
there has been an increase in research interest in this
problem.

(e researchers classify G-VRP as NP-hard problem
[21–23]. (ey argue that the search for solutions to these
problems is difficult to find at the time of polynomials.
Recently, one popular procedure is metaheuristics [24].
Several researchers investigate the issue of G-VRP to reduce
fuel consumption and carbon emissions partially. In the fuel
consumption problem, some metaheuristic algorithms have
been used to solve this problem. Cooray and Rupasinghe
[25] proposed genetic algorithms (GA) to reduce energy
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consumption. Particle swarm optimization (PSO) was
proposed by Poonthalir and Nadarajan [26] in a fuel-effi-
cient G-VRP with varying speed. PSO was also used by
Norouzi et al. [27] to minimize fuel consumption with time
dependency. Zhang et al. [28] offered the ant colony opti-
mization (ACO) algorithm for minimizing fuel consump-
tion in multidepot. Other studies to minimize fuel
consumption such as simulated annealing (SA) have been
proposed by Kuo [29] and Normasari et al. [30], the revised
hybrid intelligent algorithm was developed by Wang et al.
[31], and Andelmin and Bartolini [32] offered the heuristic
multistart local search procedure. Meanwhile, Macrina et al.
[33] proposed a hybrid extensive neighborhood search, and
Wang and Lu [10] developed the memetic algorithm with
competition.

Besides, some researchers have resolved G-VRP to
minimize carbon emissions. Some popular algorithms for
this problem are GA [34, 35], tabu search (TS) [36–38], the
Clarke and Wright algorithm [39], and GA with dynamic
programming [40]. (e differential evolution algorithm was
developed by Kunnapapdeelert and Klinsrisuk [41] to solve
G-VRPwith pickup and delivery problems. Molina et al. [42]
proposed the TS with neighborhood variables to reduce
pollutant emissions. On the other hand, several studies on
G-VRP to minimize carbon emissions and energy con-
sumption simultaneously have been carried out successfully
by researchers. Li et al. [43] proposed a modified PSO to
reduce the total costs, including quality loss cost, vehicle
operating cost, penalty cost, product freshness cost, emis-
sions cost, and energy cost. TS was offered by Poonthalir and
Nadarajan [26] to solve G-VRP by considering heteroge-
neous fixed fleet. Zhang et al. [7] also proposed the TS al-
gorithm to reduce the total distribution costs, including fuel
costs, carbon costs, and vehicle use costs. Hybrid GA was
offered by Wang et al. [44] to minimize total cost distri-
bution, which includes carbon emission costs. Shen et al.
[45] developed PSO and TS to reduce minimum distribution
costs, including penalty costs, the driver salary, fuel costs,
and carbon emissions costs. Improved ACO algorithm was
proposed by Li et al. [46], and Karagul et al. [47] employed
the SA algorithm. Based on the trend of problem-solving
methods, advanced metaheuristic algorithms have gained
popularity in solving G-VRPs. Even a hybrid algorithm is
used to solve this problem, and it has the advantage of
solving NP-hard problems. Unfortunately, little research has
addressed the use of a hybrid algorithm to solve G-VRP.

Recently, one of the advanced algorithms is the butterfly
optimization algorithm (BOA). It is a new algorithm that can
solve optimization problems proposed by Arora and Singh
[48]. BOA has been effectively used to solve problems in
various fields. Wen and Cao [49] applied a predicting model
for exploring household CO2 emission mitigation strategies.
BOA was implemented by Sharma et al. [50] in compression
string design, welded beam design, and pressure vessel
design. Yıldız et al. [51] used BOA to design automobile
suspension components. Several studies have applied the
BOA to solve several problems. However, there has not been
any research about solving G-VRP using the hybrid butterfly
optimization algorithm (HBOA). (ose reasons motivate

the author to conduct this research. Moreover, although
some researchers have investigated G-VRP, minimizing
carbon emissions and energy still receives little attention in
the research literature. One interesting issue of G-VRP was
investigated by Zhang et al. [7]. (ey solved the G-VRP to
minimize the total distribution costs by considering fuel
costs, carbon costs, and vehicle use costs with the TS al-
gorithm. Unfortunately, the study of Zhang et al. [7] and
previous studies do not consider computation time, and it is
an essential aspect of optimization. (erefore, we propose
the HBOA to minimize distribution costs that include fuel
consumption, carbon emission, and vehicle use costs. (ere
are two main objectives of this research: (1) developing the
HBOA to minimize distribution costs of G-VRP and (2)
comparing the performance of the proposed algorithm
computation time. (e HBOA was tested with several ex-
periments to find out the best parameters. It is also com-
pared to several algorithms. (is research provides a
significant contribution as the HBOA is a new algorithm in
the G-VRP.

(is paper structure is presented as follows: Section 2.1
describes assumptions, notations, and problem description;
Section 2.2 explains the HBOA algorithm; Section 2.3
presents data and experimental procedures; Section 3 pro-
vides results and discussion; and Section 4 presents con-
clusions and future work.

2. Materials and Methods

2.1.Assumptions,Notations, andProblemDescription. In this
section, assumptions, notations, and problem descriptions
are based on studies from Zhang et al. [7]. We consider
transportation with one distribution center and a set of
nodes. Vehicles have equal capacity (homogeneous). (e
distribution cost considered is fuel consumption cost, car-
bon emission cost, and a used vehicle cost. Highly total
distribution costs require proper distribution management.
(erefore, distribution centers need to manage the right
transportation routes to minimize the total distribution
costs. In this problem, vehicle fuel consumption is based on
the distance traveled from node s to node s+ 1. We assume
that the weight of the additional load M of the vehicle in-
creases fuel consumption p percent. Furthermore, the fuel
consumption of unloaded vehicles is also considered in the
total distribution costs. Assumptions, notations, and
problem descriptions are described in the following section.

2.1.1. Assumptions and Notations. (is study employed
several assumptions in G-VRP, including the following: (1)
the route begins and ends at the distribution center; (2) the
costs consist of fuel consumption cost, carbon emission cost,
and vehicle rental cost; (3) the vehicle has a fixed load ca-
pacity for each trip; (4) fuel, emissions, and vehicle usage
costs are fixed; (5) vehicle speed is fixed; (6) the demand for
each node is fixed; (7) each customer service time is fixed;
and (8) this problem considers one distribution center. (is
study used notations to make it more practical to decipher
the problem description. (e notations are as follows:
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TDC: total distribution cost
Rs

r: the sth node on the rth route (for example, R3
2 � 1,

the 2 path is 0-3-1-7-0, and node in the 3 is 1)
d(Rs

r)(Rs+1
r ): distance in rth route from node s to node

s+ 1
FC(Rs

r)(Rs+1
r ): total fuel consumption in rth route from

node s to node s+ 1
KPL(Rs

r)(Rs+1
r ): the traveled distance per unit fuel in rth

route from node s to node s+ 1
LPH(Rs

r)(Rs+1
r ): the fuel consumption per unit time of

unload vehicle in rth route from node s to node s+ 1
v(Rs

r)(Rs+1
r ): the average speed of unloaded vehicles

L(Rs
r)(Rs+1

r ): load of vehicle in rth route from sth node to
s+ 1 node
M: additional load weight
p: percentage increase of fuel
N: number of vehicles or number of routes
Vr: number of nodes on route r, r� 1, 2, . . ., N
stRs

r
: service time at the sth node on the rth route

qRs
r
: demand at the sth node on the rth route

Q: vehicle capacity
Cf: fuel consumption cost (fuel prices)
Ce: emission carbon cost per unit of fuel consumption
CV: vehicle usage cost per unit time

2.1.2. Problem Description. (is study made a mathematical
model to describe the problem. (e mathematical model is
used to minimize distribution costs. (e distribution costs
considered are fuel cost, carbon emissions cost, and vehicle
usage cost. Furthermore, the problem description illustrated
is modeled as follows:

MinTDC � 􏽘
N

r�1
􏽘

vr−1

s�1
Cf + Ce􏼐 􏼑 ×( LPH Rs

r( ) Rs+1
r( )

×
d Rs

r( ) Rs+1
r( )

V Rs
r( ) Rs+1

r( )
×( 1 + p ×

L Rs
r( ) Rs+1

r( )

M
) )

+ 􏽘
N

r�1
􏽘

Vr−1

s�1
CV ×

d Rs
r( ) Rs+1

r( )

V Rs
r( ) Rs+1

r( )
+ stRs

r

⎛⎝ ⎞⎠,

(1)

subject to

􏽘

Vr−1

s�2
qRs

r
≤Q, ∀r � 1, 2, . . . , N, (2)

L Rs
r( ) Rs+1

r( ) � 􏽘

Vr−1

s′�s+1

q
Rs′

r

, ∀r � 1, 2, . . . , N, (3)

R
1
r � R

Vr

r � 0, ∀r � 1, 2, . . . , N, (4)

N≥ 0, Vr ≥ 0, R
s
r ⊂ V, ∀r � 1, 2, . . . , N, ∀s � 1, 2, . . . , Vr.

(5)

Equation (1) formulates the objective function in min-
imizing the total distribution cost, including vehicle use cost,
fuel consumption cost, and carbon emissions cost. (e cost
of fuel consumption and carbon emissions cost considers the
increase in fuel consumption (p) for each additional load
(M). (e fuel consumption per unit time of the unloading
vehicle in rth route from node s to node s+ 1 also is con-
sidered. Constraints (2) and (3) describe formulas to ensure
that the total load does not exceed the vehicle capacity. On
each route r, the total vehicle load must not exceed the
vehicle capacity. (e total vehicle load must be ensured that
it does not exceed the capacity. It becomes essential in the
G-VRP. Constraint (4) shows that the first and last nodes of
each vehicle route are the distribution center. As a G-VRP
with one distribution center, this constraint ensures that
each route starts at the distribution center and also ends at
the distribution center. Constraint (5) formulates well-de-
fined decision variables. (is constraint defines the number
of nodes and routes ≥0, and it describes the decision variable
at the sth node on the rth route.

2.2. 1e Proposed Hybrid Butterfly Optimization Algorithm
(HBOA). (is study offered HBOA to solve G-VRP. (e
proposed algorithm was inspired by a BOA metaheuristic
algorithm by combining the TS heuristic algorithm and the
local search strategy. (e main inspiration for the proposed
algorithm was from BOA. (e BOA was initially proposed
by Arora and Singh [48] in 2019. (ere are two main
characteristics in BOA, namely, the fragrance and move-
ment of butterflies. (ese characteristics distinguish BOA
from other algorithms. (e basic BOA is shown in Figure 1.

Although the BOA has been proposed, this algorithm has
not yet been satisfactory as it can only solve continuous
problems. Meanwhile, the proposed algorithm is expected to
solve G-VRP that constitutes sophisticated and discrete
characteristics. G-VRP is categorized as an NP-hard com-
binatorial problem that must be addressed by a discrete
search space.(erefore, this study offered a new approach to
solve G-VRP. (is research proposed five main steps on
HBOA, such as (1) convert search agent position to travel
order with large rank value (LRV), (2) change the position of
10% search agent based on the TS algorithm, (3) fragrance
update, (4) movement of butterflies, and (5) local search.
(is study proposed an LRV procedure for converting
continuous values to discrete values. To improve the BOA
performance, this study combined TS and local search al-
gorithms. Swap and flip rules were suggested in the local
search strategy. (e proposed algorithm is shown in Fig-
ure 2.(e five stages of the proposed algorithm are described
in the following section.

2.2.1. Convert Search Agent Position to Travel Order with
Large Rank Value (LRV). In this section, initializing the
search agent position was generated randomly according to
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the upper and lower limits. (e upper and lower limit values
were set to determine the position of the BOA agent. At this
stage, the search agent’s position was ensured with no re-
peating numbers on the same search agent (Figure 3).

Furthermore, we proposed the principle of LRV to
convert from the position of the search agent (continuous
value) to the order of travel (discrete value). LRV is a popular
method to convert from continuous value to discrete value
in combinatorial problems [52–55]. At this stage, each
search agent position value was sorted from the largest value
to the smallest one. (e LRV representation is shown in
Figure 4. However, the illustration of Figure 4(b) could not
be applied because, in one position, the search agent had the
same value (0.43). In other words, the search agent position
could not be applied as the order/route of vehicles visited the
same two places.

2.2.2. Tabu Search Algorithm. In this section, this study
proposed that 10% of the initial search agent positions were
adjusted to the tabu search (TS) algorithm solution. (e TS
algorithm is a popular heuristic algorithm widely used to
solve G-VRP. (is study used the TS procedure developed
by Poonthalir and Nadarajan [26]. To solve G-VRP, the five
main stages [37] of the TS algorithm comprise (1) repre-
sentation of solution, (2) initial solution, (3) neighborhood
solution, (4) tabu list, and (5) criteria for aspiration and
dismissal. Figure 5 represents the stages of the TS algorithm.
(e TS algorithm used three neighborhood solution rules.
(ese rules were swap (Figure 6), flip (Figure 7), and slide
(Figure 8). Swap is a rule in which it swaps two nodes. Flip is
the rule of a node exchange by reversing the order of the
node.

Meanwhile, a slide is an exchange of nodes by shifting
their sequences. For the tth iteration to t, the swap and flip
rules were repeated n(n − 1)/2 times. (e slide rule was
repeated n2 times in each tth iteration. For the solution
inspection stage, the TS algorithm checked the tabu test by
using the tabu list. It was to avoid repetition in finding a
solution. In the aspiration criteria stage, the TS algorithm
compared the new solution in the iteration t to the previous
solution in the iteration t − 1. (e new solution would be
listed as the best solution if it had a better quality than that of
the previous one. Furthermore, the stopping criteria used in
the TS algorithm referred to the number of fulfilled iteration.

As mentioned earlier, this study proposed that 10% of
search agent positions were adjusted to the TS algorithm’s
solution. (erefore, the position of the new search agent had
to be adjusted to the TS solution. (is study also suggested a
new position adjustment procedure. (e illustration of

Determine objective function f(x), X = (X1, X2, ..., Xdim), dim = no of dimension
Solve the G-VRP using tabu search for 10% search agents 
Initialize the first population of n butterfly randomly Xi = (i = 1, 2, ..., n)
Adjustment position 10% search agents from the population use tabu search 
Determine of stimulus intensity (/), sensor modality (c), power exponent (a), and switch 
probability (p) 
Apply Large Rank Value (LRV) for travel sequence
Calculate the fitness of butterfly 
Find the best butterfly and assume it as the elite (determined optimum)

W∗ = �e best search agent 
t = 0 
while (t < iteration) 

for every Butterfly (population) 
Calculate fragrance using equation (6)

Generate random number r from [0, 1] 
If r < p then 

Move toward best butterfly/solution using equation (7) 
else 

Move randomly using equation (8) 
End if 

If Wt < W∗

W∗ < Wt

If Wt < W∗

W∗ < Wt

If Wj < W∗

W∗ < Wj

End if 
end for 
Apply local search
For i = 1: node

Perform swap on the W∗. Ensure no repeated swap in the W∗

End if 
End for 
For j = 1: node 

Perform flips on the W∗. Ensure no repeated swap in the W∗

End if 
End for 
update value a

end while 
Return elite 

Figure 2: Pseudocode of hybrid butterfly optimization algorithm
(HBOA).

Determine objective function f(x), X = (X1, X2, ..., Xdim), dim = no of dimension
Initialize the first population of n butterfly randomly Xi = (i = 1, 2, ..., n)
Determine stimulus intensity (/), sensor modality (c), power exponent (a), and switch 
probability (p) 
Calculate the fitness of butterfly 
Find the best butterfly and assume it as the elite (determined optimum)
W∗ = the best search agent 
t = 0 
while (t < iteration) 

for every butterfly (population) 
Calculate fragrance using equation (6)

Generate random number r from [0, 1] 

Move toward best butterfly/solution using equation (7) 
else 

Move randomly using equation (8) 
End if 
If Wt < W∗

W∗ = Wt

End if 
end for 
update value a 

end while 
Return elite

If r < p then

Figure 1: Pseudocode of butterfly optimization algorithm (BOA).
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converting TS solutions to the position of the search agent is
exemplified in Figure 9.

2.2.3. Update Fragrance. In BOA, each butterfly has a
unique fragrance and personality. It is one of the main
characteristics that distinguish BOA from any other meta-
heuristic algorithms. All BOA behaviors are based on the
sensory modality (c), stimulus intensity (I), and exponential
strength (a). Fragrance (f ) is formulated as a function of the
physical intensity of the stimulus from BOA.(e f formula is
presented as follows:

f � c.I
a
, (6)

where f is the value of fragrance that changes in every it-
eration. (is value shows how strong the fragrance is felt by
other butterflies. (e butterfly stimulus intensity is for-
mulated as I. a is the power exponent that depends on the
modality. c formulates the sensory modality. Values of a and
c on the used butterfly are in the range [0, 1].

0.12 0.29 0.11 0.81

3 2 4 1

Apply LRV

(a)

3 32 1

Apply LRV

0.61 0.82 0.43 0.43

(b)

Figure 4: LRV representation. (a) Correct travel sequence and (b) wrong travel sequence.

4

4

3

3

1

1

2

2

Figure 6: Swap illustration.

(1) Accepted population

(2) Rejected population 

Populasi = 
0, 12 0, 29 0, 11 0, 81

0, 760, 880, 430, 61
0, 55 0, 72 0, 94 0, 96

Populasi = 
0, 12 0, 33 0, 71 0, 71

0, 430, 430, 820, 61
0, 55 0, 76 0, 94 0, 94

Figure 3: Initialization of the search agent position.

Start

Generate
random route

Create candidate solution

Evaluation of the solution

Find best solution
Update tabu list and
aspiration criterion

Optimum solution
and iteration < max

iteration?

End

Figure 5: Flowchart of the tabu search algorithm.

4

4

3

3

1

1

2

2

Figure 7: Flip illustration.

4 3 1 2

1 4 3 2

Figure 8: Slide illustration.
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2.2.4. Movement of Butterflies. (is section explains the
phase of the movement of butterflies. (ere are two main
phases in the basic BOA, namely, the initial phase and the
movement of the butterfly phase. In the butterfly phase
movement, the butterflies move their position as many times
as the number of iterations. In this phase, all butterflies in the
solution room move to a new position. (en, the fitness
value of each butterfly is evaluated. In each iteration, the
fitness value of all butterflies is updated. Furthermore, the
butterflies produce fragrance in their calculated position
based on equation (6). Two movements in BOA are the
global search phase and the local search phase. In the global
search phase, butterflies take steps towards other butterflies
that have the best solution. (e global search phase for
butterflies is represented in equation (7). Meanwhile, the
local search phase is shown in equation (8):

X
t+1
i � X

t
i + r

2
g
∗

− X
t
i􏼐 􏼑fi, (7)

where Xt
i is the vector solution Xi for the ith butterfly in the

iteration t. r shows a random number in the range [0, 1]. g∗

indicates the best solution in the current iteration. (e ith
butterfly fragrance is represented by fi.

X
t+1
k � X

t
i + r

2
X

t
j − X

t
k􏼐 􏼑fi. (8)

Equation (8) indicates the local butterfly search formula.
Xt

j and Xt
k are the j-th and k-th butterflies from the solution

room. r is the random number in the range [0, 1]. Movement
of butterflies stops until the termination criteria are met.(e
stopping criterion used is the maximum number of the
achieved iteration. After the movement of butterflies, the
algorithm produces the best solution based on the fitness
values.

2.2.5. Local Search. To improve the BOA performance, this
study proposed the local search procedure. Swap and flip
were the two local search rules chosen to improve the BOA
performance. Figure 6 illustrates the proposed swap rules. In
this rule, two positions (nodes) were chosen randomly and
exchanged. Another local search rule used was flip. In this
rule, two nodes were selected randomly and continued to
reverse the order of the selected nodes.(is rule is illustrated
in Figure 7. In the proposed HBOA, for each iteration t, the
swap and flip operations were repeated as many as the
number of nodes.

2.3. Data and Experimental Procedure

2.3.1. Data. In this study, the data of the number of nodes,
coordinates, vehicle capacity, and demand were taken from
Gaskell [56] and Christofides and Eilon [57].(ey used cases
with nodes as many as 22 nodes (Table 1) [56], 32 nodes
(Table 2) [57], and 50 nodes (Table 3) [57]. Distance
(d(Rs

r)(Rs+1
r )) in rth route from node s to node s + 1 is based on

formula d(Rs
r)(Rs+1

r ) �

�����������������������

(Xs − Xs+1)
2 + (Ys − Ys+1)

2
􏽱

. Mean-
while, the data of the costs and speed data were obtained
from Zhang et al. [7].(e fuel cost was 7.3 yuan/liter [7].(e
carbon emissions were 0.64 yuan/liter [7]. Furthermore, the
vehicle usage fee was 80 yuan/hour [7]. (is research
employed three categories of vehicle speed (high, medium,
and low speed). (e high, medium, and low speeds were
107 km/hr, 63 km/hr, and 43 km/hr, respectively. Nine
variations of problems (three nodes and three-speed vari-
ations) were carried out in this study. Service time for each
customer is 0.1 hours. (e increase in fuel consumption (p)
for each additional load M� 50 is 2%.

2.3.2. Experimental Procedure. (e experiments were
designed to determine the effect of HBOA (iteration and
population) and speed parameters on the distribution cost
and computation time. (e experiments were carried out
with different parameters. (e parameters included the
number of populations and iterations. (e population pa-
rameters used three different levels (10, 50, and 100 pop-
ulations). (e iteration parameters also employed three
levels (10, 50, and 100 iterations).(is study used the sensory
modality of 0.01 and power exponent of 0.1 from BOA
parameters. Eighty-one trials were designed in this study.
Each result of the trial was recorded for cost and compu-
tation time.

(e HBOA was compared to other algorithms such as
BOA [48], TS [7], SA [29], ACO [28], PSO [27], and GA [58].
To compare with several algorithms, this study used one
hundred iteration parameters at each vehicle speed in every
algorithm. One hundred populations were used in the BOA
experiment. Moreover, we used an initial temperature pa-
rameter of 1000 and the cooldown factor based on the Kuo
[29] formula. One hundred ant populations were adopted
for the ACO algorithm. One hundred particles and an inertia
weight of 0.5 are used in the PSO algorithm. 100 populations,

Route solution by tabu
search

Initial position search
agent

New position search
agent position based on

tabu search

2

–8.0492

–8.0492

–4.4300

–4.4300

Position adjustment of search agent based on tabu search

9.1051

9.1051

9.2978

9.2978

0.9376

0.9376

1 4 3 5

Figure 9: Illustration of tabu search converted solution to the position of search agent.
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a crossover probability of 0.8, and a mutation probability of
0.25 were applied in the GA algorithm experiment. (e
performance was measured using relative error percentage
(REP) as presented in equation (9). A positive REP showed
that the proposed algorithm is better than the other algo-
rithms. However, a negative REP showed that the proposed
algorithm is not competitive as compared to other
algorithms.

REP �
costother algorithms − costproposed algorithm

costproposed algorithm
× 100%. (9)

Besides, this study also compared the computation time
in all cases. It was carried out to determine the time effi-
ciency of solving G-VRP. (e effect of iteration (t) on
distribution costs was also analyzed. (is analysis was
carried out in 50 nodes, 100 populations, and 100 iterations
in the case of medium-speed vehicles. Furthermore, all
experiments were conducted with the means of Matlab
R2014a software on Windows 8 Intel Celeron with x64-64
2GB RAM processor.

3. Results and Discussion

3.1.1e Comparison of Varied Parameters and Speed towards
Costs. Table 4 shows the results obtained from eighty-one
experiments with variations of nodes, speed, iteration, and
population. It shows that the minimum distribution cost
solution is produced in the population parameters and high
iterations. (erefore, overall, these results suggest that
population parameters and significant iterations effectively
minimize distribution costs for G-VRPs . It is interesting to

note that with successive increases in both iteration and
population, the distribution cost declined. It shows that the
number of iterations and large population minimized the
total costs. Besides, the speed of the vehicle affects the total
distribution cost. Low speed requires high distribution costs.
Average distribution costs are produced from medium-
speed vehicles. However, high speed results in small dis-
tribution costs. (erefore, this result shows that the high
speed reduced the total costs in the case of G-VRP. Overall,
these findings are consistent with the findings reported by
Zhang et al. [7]. Overall, these findings are consistent with
Zhang et al. [7], which indicate variation, speed, iteration,
and population effect in the distribution cost.

(e results of the iteration (t) effect on the distribution
costs are shown in Figure 10. It illustrates the algorithm ef-
fectiveness that can be seen from the impact of iteration on the
distribution costs. From the data in Figure 10, the cost of
distribution decreased as the iteration was added. Besides, the
effect of iteration on the distribution costs shows that the
convergence curve on HBOA is better than other algorithms.
(e HBOA produces better total distribution in each iteration
compared to BOA [48], TS [7], SA [29], ACO [28], PSO [27],
and GA [58]. (e results of this study indicate that the pro-
posed algorithm is effectively used to solve the G-VRP.

3.2.1e Comparison of Varied Parameters and Speed towards
Computation Time. Table 5 illustrates the experimental
comparison between the varied parameters and speed to-
wards the computation time. Small populations and itera-
tions result in less computation time. However, large
populations and iterations require considerable

Table 1: Problem of 22 nodes.

Node
Coordinate

Demand
X Y

Depot 266 235 0
1 295 272 125
2 301 258 84
3 309 260 60
4 217 274 500
5 218 278 300
6 282 267 175
7 242 249 350
8 230 262 150
9 249 268 1100
10 256 267 4100
11 265 257 225
12 267 242 300
13 259 265 250
14 315 233 500
15 329 252 150
16 318 252 100
17 329 224 250
18 267 213 120
19 275 192 600
20 303 201 500
21 208 217 175
22 326 181 75
Capacity: 4500.
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computation time.(erefore, the most apparent finding that
emerges from the analysis is that the number of iteration and
large population increased the computational time. Another
important finding is that different vehicle speed did not
appear to affect the computation time. Low speed, medium
speed, and high speed produce relatively the same com-
putation time.

Furthermore, the number of nodes affected the com-
putational time. Cases with 22 nodes need little computation
time. However, in the case of 50 nodes, the computation
time required is considerable. (erefore, the experimental
results show that the number of nodes increased the
computing time. (e comparison between the proposed
algorithm’s computation time and several other algorithms
in the medium speed is presented in Figure 11. It can be seen
that the proposed algorithm provided a relatively higher
computation time as compared to several other algorithms,
such as BOA [48], TS [7], SA [29], ACO [28], PSO [27], and
GA [58]. Besides, the addition of nodes also increased the
time significantly. (erefore, it can be concluded that the
number of nodes has a significant effect on the computa-
tional time. It confirms the findings of Oesterle and

Bauernhansl [21] and Braekers et al. [23], stating that VRP is
an NP-hard problem. Based on these results, further re-
search is expected to be carried out to reduce the compu-
tation time so that the algorithmmay become more efficient.

Although HBOA produces considerable computation
time, the resulting total distribution costs are minimal. (e
small total cost of distribution is one of the most critical
decisions in operations management. Decision-makers
prefer to choose decisions with minimal total distribution
costs because they provide benefits. Conversely, decision-
makers pay less attention to computation time because short
computing time does not guarantee a minimal total dis-
tribution cost.

3.3. 1e Comparison of Algorithms. Table 6 shows the
comparison of the REP values between the proposed al-
gorithm and other algorithms. As shown in Figure 3, the
REP values (based on equation (9)) of BOA [48], TS [7], SA
[29], ACO [28], PSO [27], and GA [58] were 9%, 46%, 27%,
31%, 28%, and 23%, respectively. (e positive values from
REP indicate that the proposed algorithm is more effective in

Table 2: Problem of 32 nodes.

Node
Coordinate

Demand
X Y

Depot 292 425 0
1 298 427 700
2 309 445 400
3 307 464 400
4 336 475 1200
5 320 439 40
6 321 437 80
7 322 437 2000
8 323 433 900
9 324 433 600
10 323 429 750
11 314 435 1500
12 311 442 150
13 304 427 250
14 293 421 1600
15 296 418 450
16 261 384 700
17 297 410 550
18 315 407 650
19 314 406 200
20 321 391 400
21 321 398 300
22 314 394 1300
23 313 378 700
24 304 382 750
25 295 402 1400
26 283 406 4000
27 279 399 600
28 271 401 1000
29 264 414 500
30 277 439 2500
31 290 434 1700
32 319 433 1100
Capacity: 8000.
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solving G-VRP. Data processing results show that there is no
REP average, which results in a negative REP value in the
comparison algorithm. (e order of the algorithm that has
the smallest to largest positive REP is BOA [48], GA [58], SA
[29], PSO [27], ACO [28], and TS [7]. (us, the findings

confirm that HBOA is more competitive as compared to
other algorithms. In other words, HBOA can significantly
improve the quality of the G-VRP solution.

(e experimental results show that the HBOA can
produce a minimal total distribution cost. (is result is an

Table 3: Problem of 50 nodes.

Node
Coordinate

Demand
X Y

Depot 30 40 0
1 37 52 7
2 49 49 30
3 52 64 16
4 20 26 9
5 40 30 21
6 21 47 15
7 17 63 19
8 31 62 23
9 52 33 11
10 51 21 5
11 42 41 19
12 31 32 29
13 5 25 23
14 12 42 21
15 36 16 10
16 52 41 15
17 27 23 3
18 17 33 41
19 13 13 9
20 57 58 28
21 62 42 8
22 42 57 8
23 16 57 16
24 8 52 10
25 7 38 28
26 27 68 7
27 30 48 15
28 43 67 14
29 58 48 6
30 58 27 19
31 37 69 11
32 38 46 12
33 46 10 23
34 61 33 26
35 62 63 17
36 63 69 6
37 32 22 9
38 45 35 15
39 59 15 14
40 5 6 7
41 10 17 27
42 21 10 13
43 5 64 11
44 30 15 16
45 39 10 10
46 32 39 5
47 25 32 25
48 25 55 17
49 48 28 18
50 56 37 10
Capacity: 80.
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Figure 10: Effects of iteration (t) of each algorithm on distribution cost in the medium speed.

Table 4: Results of the comparison between varied parameter and speed towards costs (yuan).

Vr Iteration
High speed Medium speed Low speed
Population Population Population

10 50 100 10 50 100 10 50 100

22
10 2814.4 2813.1 2385.9 2971.5 2967.7 2654 3949.6 3621.7 3442
50 2786.3 2666.9 2403.5 2909.3 2587.5 2518.5 3739.3 3577 3180.5
100 2211.8 2161.0 2020.7 2857.2 2423.6 2300.9 3511.1 3065.7 2808

32
10 3392.6 2806.5 2687.4 3955 3777 3261.5 4487.9 3889.5 3753.8
50 2955.9 2732.6 2412.9 3627.3 3295.9 3068.5 4171.3 3657.5 3049.6
100 2922.1 2647.3 2399.6 3116.6 2836.3 2614.5 3442.3 2922.2 2998.3

50
10 7629.0 7398.3 6950.1 9127 8528.5 8381.7 11391 11078 10095
50 7090.3 7002.6 6289.5 9090 8321.3 7987 10991 9806 9066
100 6876.9 6614.3 6097.2 8883 8193 7327.4 10423 9333 8836
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Figure 11: Comparison between the computation time of the proposed algorithm and several other algorithms in the medium speed.

Table 6: Comparison of distribution cost and the relative error percentage (REP) values between the proposed algorithm and other
algorithms.

Speed Vr

Distribution cost (yuan) REP (%)
HBOA BOA TS SA ACO PSO GA BOA TS SA ACO PSO GA

High
22 2020.7 2161.0 2990.8 2355.1 2572.4 2416 2347.6 7 48 17 27 20 16
32 2399.6 2647.3 3567.6 3117 3107.1 3100.4 3009.3 10 49 30 29 29 25
50 6097.2 6614.3 8694.6 7868.5 7713.7 7707 7515.9 8 43 29 27 26 23

Medium
22 2300.9 2423.6 3444.7 2870.8 3240.7 2988.1 2675 5 50 25 41 30 16
32 2614.5 2836.3 4021.5 3720.8 3775.4 3768.6 3686.2 8 54 42 44 44 41
50 7327.4 7987.0 9148.5 8472.3 8382 8375.2 8292.8 9 25 16 14 14 13

Low
22 2808 3065.7 4299.1 3650.4 3791.6 3757.3 3585.2 9 53 30 35 34 28
32 2998.3 3657.5 4875.9 4279.4 4326.3 4289.2 4193.1 22 63 43 44 43 40
50 8836 9333.0 11779 9880.6 10667.5 9972.1 9553 6 33 12 21 13 8

Average 9 46 27 31 28 23

Table 5: Results of the comparison between varied parameters and speed towards computation time (seconds).

Vr Iteration
High speed Medium speed Low speed
Population Population Population

10 50 100 10 50 100 10 50 100

22
10 21.68 110.05 305.19 21.76 110.17 305.51 21.76 110.41 305.96
50 111.79 512.59 707.73 113.37 513.59 707.91 114.71 515.14 709.35
100 205.34 1139.50 1334.64 206.36 1140.88 1336.20 206.45 1141.16 1337.93

32
10 26.98 116.47 312.67 27.05 116.58 312.98 27.06 116.83 313.44
50 143.18 546.20 747.43 144.76 547.20 747.61 146.09 548.74 749.05
100 267.98 1212.40 1413.01 269.00 1213.78 1414.57 269.09 1214.06 1416.30

50
10 32.28 122.88 320.14 32.35 123.00 320.46 32.36 123.25 320.91
50 174.57 579.81 787.13 176.15 580.81 787.31 177.48 582.35 788.75
100 330.62 1285.30 1491.37 331.64 1286.68 1492.93 331.73 1286.96 1494.66
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essential strength of the HBO algorithm. Unfortunately,
there is a contradiction in the resulting computation time.
(e HBOA requires a relatively high computation time
compared to other algorithms. However, in large nodes (50
nodes), the resulting computation time can compete with
the TS algorithm. (e high computation time of HBOA is
caused by the large computation time TS algorithm that used
to replace 10% of search agents BOA. Furthermore, the swap
and flip procedure require repetition in each iteration, re-
quiring a large computation time. In addition, this study
used the sensory modality of 0.01 and power exponent of 0.1
from BOA parameters. In future investigations, it may be
possible to use different sensory modality parameters and
power exponent to test the quality of the solution (total
distribution cost and computation time).

4. Conclusion

(is study discussed the green vehicle routing problem (G-
VRP). (e main objective of this research was to develop
HBOA to minimize the distribution costs on G-VRP. (is
research successfully developed HBOA to solve G-VRP. (e
HBOA is proposed based on the BOA, which is improved
with TS and local search procedures such as swap and flip.
(e experimental results show that the increase in pop-
ulation parameters and the HBOA iteration can minimize
the total distribution costs. To test the algorithm perfor-
mance, this algorithm was compared with several proce-
dures. (e experimental results proved that the HBOA
produced a minimum total distribution cost than other
algorithms. (erefore, the proposed algorithm is more
competitive than the comparison algorithm. In the com-
putation time, the results showed that the number of nodes
significantly affects the computational time in HBOA.
However, the proposed algorithm provides a relatively
higher computation time compared to several other algo-
rithms. (erefore, further research needs to be done to
reduce the computation time so that the algorithm may
become more efficient. Moreover, sensory modality and
power exponent parameters need to be tested at various
values. Future research should also aim at developing al-
gorithms and problems with dynamic vehicle speeds,
multidepot (distribution centers), and perishable products.
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