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Origin-destination- (O-D-) based travel time reliability (TTR) is fundamental to next-generation navigation tools aiming to
provide both travel time and reliability information. While previous works are mostly focused on route-based TTR and use either
ad hoc data or simulation in the analyses, this study uses open-source Uber Movement and Weather Underground data to
systematically analyze the impact of rainfall intensity on O-D-based travel time reliability. The authors classified three years of
travel time data in downtown Boston into one hundred origin-destination pairs and integrated them with the weather data (rain).
A lognormal mixture model was applied to fit travel time distributions and calculate the buffer index. The median, trimmed mean,
interquartile range, and one-way analysis of variance were used for quantification of the characteristics. The study found some
results that tended to agree with the previous findings in the literature, such that, in general, rain reduces the O-D-based travel
time reliability, and some seemed to be unique and worthy of discussion: firstly, although in general the reduction in travel time
reliability gets larger as the intensity of rainfall increases, it appears that the change is more significant when rainfall intensity
changes from light to moderate but becomes fairly marginal when it changes from normal to light or from moderate to extremely
intensive; secondly, regardless of normal or rainy weather, the O-D-based travel time reliability and its consistency in different
O-D pairs with similar average travel time always tend to improve along with the increase of average travel time. In addition to the
technical findings, this study also contributes to the state of the art by promoting the application of real-world and publicly
available data in TTR analyses.

1. Introduction

Travel time reliability (TTR) plays a vital role in various
applications such as evaluation of network performance [1],
measuring the improvement of traffic operations and
management strategies [2], quantification of service quality
[3], enhancing the experience of traveler’s route choice [4],
and determining freeway bottlenecks [5].

Among the route level (microscopic), origin-desti-
nation (O-D) level (mesoscopic), and network level
(macroscopic) studies, the route level TTR analyses have
received much more attention in the past. Besides the
demand from the practical side, route-based data which
are relatively easier to obtain should be another reason.
For instance, using the data from California State Route

91, one research found that traveler’s route choice was
more delicate to TTR than travel time [6]. Chepuri et al.
assessed the performance of various TTR measures with
bus route data collected in Chennai, India. They rec-
ommended using 95th percentile travel and buffer time as
reliability indicators for bus routes [7]. Some recent
route-based studies can be found in [8-12]. Because the
focus of route-based studies is usually on one or a few
specific routes, data were usually project-specific and
most were discarded upon completion of a project, which
makes continuous investigation difficult and sometimes
impossible.

It is not uncommon that under certain circumstances
route-based and O-D-based analyses may get similar or the
same results because a route is associated with at least one
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origin and one destination and thus can be viewed as a
particular case of an O-D-based study. Comparison studies
are limited, though. In [13], the authors concluded that there
were no significant differences between O-D-based and
route-based estimates in most part of the studied time pe-
riods. In [14], the researchers found that adding an alter-
native path tends to decrease the O-D-based TTR. Network
level TTR studies are mostly simulation-based in a lack of
real-world data. Some notable studies include but are not
limited to the work of [15-18]. Studies based on traffic
simulation are sometimes subject to serious errors caused by
the underlying problems of the simulation model. A detailed
discussion of simulation-based approaches is beyond the
scope of the study.

Many factors, such as connected vehicles, traffic inci-
dents, weather, work zones, special events, types of traffic
control, and the dynamics of traffic flow, have impacts on
TTR. Accordingly, the study of the impact of these factors
has become one of the prominent topics in the TTR field
[19]. For instance, in the literature [20], the authors
attempted to quantify the contribution of various features on
TTR and found that demand-capacity imbalance and ac-
cidents are the two factors that most affect TTR. In [21],
researchers uncovered that deployment of connected ve-
hicles improves TTR in the work zone environment, and
higher benefits come along with higher market penetration
levels. Additionally, the impact of rain on speed and travel
time and the route level TTR have been well studied, and
some results are conducive. For example, studies have
discovered that speed reduction could vary from 10% to 25%
in general rainy days [22] and an average increase of travel
time by 11% might be expected in peak hours under the
impact of a certain level of precipitation [23]. Adverse
weather exacerbates TTR, especially during peak periods
[24]. However, some findings are controversial and need
further investigation, especially when it relates to TTR.
Chien and Kolluri found that TTR would diminish when
weather condition changes from dry to rain, as indicated by
an expansion of 16% in the buffer index [10], while in
another study [25], the authors suspected that rain and snow
might have caused lower standard deviation and coefficient
of variation of travel time and thus increased TTR. While it is
understandable that different studies may produce contro-
versial results, ad hoc data might have played a role. In a
review of the literature, we found that studies are limited
with respect to the impact of rain on the O-D level TTR;
moreover, most of the data used in previous studies were
project-specific and only covered a short period of time that
was not even sound for a full-scale statistical analysis.

1.1. Research Objectives. The availability of publicly available
open-source data in recent years has made a detailed in-
vestigation of O-D-based TTR possible. A major thrust of
this study is to use Uber Movement data and Underground
Weather data to systematically analyze the impact of rain on
O-D-based TTR. Uber and Underground Weather data
provide an ideal and probably the only opportunity for
applying real-world data in such studies because Uber data
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are O-D-specific and cover a lot longer time span while
Underground Weather data provide very detailed weather
data. A significant contribution of using publicly available
data is that the results can be easily verified and compared to
those that use ad hoc data or computer-aided simulation,
studies based on real-world data always have a better value in
the literature. Additionally, O-D-based TTR is fundamental
to next-generation-navigation tools that are aimed at pro-
viding both travel time and reliability information. This
paper only focuses on the impact of rain, but there are a lot
more deserving further investigations along this line, such as
the impact of other weather events and the combined effects
of weather and work zones.

In this study, the authors investigated the impact of rain
at various levels of intensity on O-D-based TTR, through the
analyses of three-year travel time and weather data and a
hundred O-D pairs collected from downtown Boston. A
general lognormal mixture model was adopted to fit dis-
tributions and calculate the buffer index values. While a
portion of the results was in proper alignment with previous
studies, some turned out to be unique.

The rest of the paper is organized as follows: Section 2
introduces the data used in this research, which includes the
O-D-based travel time data from Uber Movement and
historical weather data collected from the Weather Un-
derground website; Section 3 depicts the typical TTR
measures and the analytical approach developed based on
the Gaussian mixture model; Section 4 presents the results,
and Section 5 summarizes the findings and conclusions and
concludes the paper by discussions and future research.

2. Data

2.1. Uber Movement and Weather Data. The O-D-based
travel time data used in this research are from Boston, the
United States, retrieved from the Uber Movement website
(https://movement.uber.com). The website provides detailed
information on average travel time (ATT), classified by five-
time intervals during a day, including early morning
(00-07h), AM peak (07-10h), midday (10-16h), PM peak
(16-19h), and evening (19-24h). To make the results sta-
tistically sound, three-year data were used, which span from
1/1/2016 to 12/31/2018, and a hundred O-D pairs were
selected. Uber already classified ATT ranges by 5-minute
intervals. Considering that lots of data seem to be missing in
the dataset with the ATTrange of 25 minutes and beyond, we
selected five categories in the analysis: (a) 0-5mins, (b)
5-10mins, (c) 10-15mins, (d) 15-20mins, and (e)
20-25 mins.

Figure 1 shows all the origin and destination nodes
included in this study. Table 1 depicts the O-D pairs clas-
sified into five groups based on the ATT. Note that travel
time in the table is directional and one-way (e.g., 2-16 in-
dicates node 2 to node 16) because of the limited availability
of two-way travel time in-between the O-D pairs. Twenty
origin-destinations were selected in each ATT category.
Table 2 presents descriptive statistics for ATT data from
Uber, including mean and standard deviation (SD) in dif-
ferent periods. The studied area is in level terrain.
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FIGURE 1: The origin and destination nodes.

TaBLE 1: O-D pair information in each range of TTR.

ATT range (min)

O-D pairs (ID)

0-5

2-16, 6-10, 6-11, 7-18, 8-18, 8-29, 10-11, 11-6, 11-10, 11-26, 13-12, 17-18, 17-24, 18-2, 18-7,

18-26, 22-27, 26-13, 26-18, 27-22
2-13, 2-26, 6-7, 7-6, 8-24, 10-6, 12-16, 13-2, 13-16, 16-2, 16-13, 18-4, 18-8, 18-24, 24-8, 24-20,

26-2, 26-7, 26-11, 29-18

2-12, 6-26, 8-20, 10-26, 12-2, 12-13, 13-26, 15-26, 16-26, 18-20, 20-18, 20-29, 24-8, 24-29, 26-6,
26-10, 26-15, 26-16, 29-20, 29-24
2-9, 2-14, 9-2, 9-18, 9-26, 12-11, 12-17, 12-18, 12-19, 12-26, 14-2, 17-14, 18-12, 22-26, 26-9,
26-12, 26-14, 26-22, 26-27, 27-26

10-15

15-20

20-25

1-18, 1-26, 3-18, 5-26, 17-23, 18-1, 18-3, 18-21, 18-23, 18-25, 21-18, 23-17, 23-18, 23-26,

25-18, 26-2, 26-5, 26-23, 26-28, 28-26

TaBLE 2: Descriptive statistics for ATT data from Uber (min).

Early morning AM peak Midday PM peak Evening
ATT range (min) ~ O-D pair count (00-07 h) (07-10h) (10-16h) (16-19h) (19-24h)

Mean SD Mean SD Mean SD Mean SD Mean SD
0-5 20 411 1.39 4.53 2.01 4.35 1.35 4.95 2.15 3.88 1.15
5-10 20 7.27 1.70 7.82 1.92 7.33 1.66 8.39 2.62 6.31 1.42
10-15 20 11.96 2.38 13.36 3.06 13.01 2.50 14.83 4.01 10.87 1.95
15-20 20 16.62 3.15 17.90 3.64 18.61 2.83 19.82 4.47 15.81 2.07
20-25 20 23.88 4.24 24.54 4.57 23.86 3.28 25.55 5.49 21.07 3.06

The corresponding weather data in the subject area were
collected from the Underground Weather data at https://
www.wunderground.com/history. In this study, weather
conditions with no precipitation, such as clear, cloudy, or
overcast, are classified as normal weather. Meanwhile, fog or
haze conditions were excluded so that the focus could be
placed on the impact of rain. Rain condition was defined as
the rainy weather that caused effective precipitations.

In alignment with the 24-hour travel time data, the sum
of rainfall in each matched period (like 00-07 h) was cal-
culated and converted into a 24-hour value. Table 3 sum-
marizes the definition of the data used in this research.

2.2. Data Screening. The travel time data have already been
preprocessed and filtered by Uber before uploading to the
Internet. In general, the data were well prepared, and the work
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TaBLE 3: Summary of data attributions and interpretation.

Attribute Interpretation

Orlg'm—. See Table 1

destination

Dates From 1/1/2016 to 12/31/2018

Days of week
Time periods
Travel times
Rainfall
Weather
conditions

From Sunday to Saturday
Early morning (00-07 h), AM peak (07-10h), midday (10-16 h), PM peak (16-19h), and evening (19-24h)
Average O-D-based travel times (s)
Sum of rainfall per time period (mm)
Normal, light rain (0.0 and 10 mm/24 h), moderate rain (10.0 mm/24 h and 25.0 mm/24 h), heavy rain (25.0 mm/24 h
and 50.0 mm/24h), extreme rain (>50.0 mm/24h), and others (e.g., snow and fog)

for outlier removal was rather simple. There are a couple of
null cells without any data within the ATT range of
20-25 mins, such as from Lincoln Road (ID: 1) to Harborwark
(ID: 26); these cells were removed. Additionally, Boston has
considerable snowfalls in winter months, which may cause a
negative impact for a longer period of time even after the
snow. According to the analysis in [26], the impact of snow on
travel time was associated with the severity of snow and road
conditions, and it usually takes at least six hours after the snow
for travel time to become stabilized. In this study, the data
recorded one-day after regular snow (<5.0mm/24h) and
two-day after heavy snow (> 5.0 mm/24 h) were excluded. As
aresult, around 540,000 valid records, including nearly 68,000
light rain records, 18,000 moderate rain records, 11,000 heavy
rain records, and 13,000 extreme rain records, were included
in the study.

3. Methods

3.1. Measures of Travel Time Reliability. In addition to the
conventional measures (mean, standard deviation, and co-
efficient of variation, e.g.), there are some other TTR
measures, such as travel time variability (TTV), planning
travel time index (PI), and buffer index (BI). Among these
measures, BI has been widely utilized in existing literature
[7, 8, 13, 27, 28] and as concluded in [29] has a high
consistency with the coefficient of variation and thus is best
suitable for the measure of TTR. The authors adopted the
idea and took BI as the primary TTR measure. Then, we used
interquartile range (IQR), the median, and trimmed mean of
Bl-values, as well as the analysis of variance for BI variation
ratio, to quantify the impact from rainfall intensity.

The buffer index can be generally formulated as follows:

T,-T
_ P ¢
BI—< T ) (1)

where T, is the percentile travel time and T, is the contrastive
travel time (e.g., mean travel time, median travel time, and
free-flow travel time).

Obviously, the higher the BI-value is, the less reliable the
travel time will be. In this study, the 95th percentile travel
time T, and the mean travel time T, were adopted as the BI
parameters. The interquartile range is the distance between
the 75th and 25th percentiles, and the trimmed mean ex-
cludes the 5% highest and the 5% lowest data for reducing
the error caused by the extreme data.

3.2. Lognormal Mixture Model. With respect to the calcu-
lation of the percentile value in BI, in earlier literature [30],
the author directly calculated the percentile value according
to the available data without considering the statistical re-
gression, which was easily subject to statistical errors (e.g.,
regression to the mean). In later studies, various regression
methods were applied, such as multiple linear regression
[20], and continuous probability distribution functions, such
as Weibull distribution [31], lognormal distribution [32],
and generalized Pareto distribution [33]. Multiple regression
was found to be more suitable for the multiparameter impact
study, while for the single factor (e.g., rainfall intensity)
analysis, the latter seems to be more desirable. However, the
complexity of the problem makes it difficult for the real data
to fit well with traditional prior distribution, such as the
lognormal distribution. Recent studies attempted to use
multistate models, such as the Gaussian mixture model,
lognormal mixture model, and gamma mixture model for
better results [8, 13, 14, 16, 17, 34-36]. Among these
methods, the lognormal mixture model (LMM) is out-
performed and was recommended by many researchers
[8, 34, 36]. When LMM is applied, the best fitting usually
occurs at a low K-value (e.g., K=2 or 3), which may also help
improve computational efficiency. Accordingly, LMM was
selected for this research.

LMM is essentially a linear combination of multiple
lognormal distributions with a weight sum value of 1. The
general formula of LMM is as follows:

t K t
P — | = w. L , (2)
LMM(“’k’Hw 0k> g{ ¢ (#k, Uk)

where t is the travel time; wy, 4, o) are the weight, mean, and
standard deviation of the k™ lognormal distribution, re-
spectively; and L is the lognormal probability density. The
equation is subject to Zle w, =1.

3.3. Expectation-Maximization Algorithm. Since mixture
models (like LMM) involve latent variables, maximum
likelihood estimate (MLE) cannot be used directly to esti-
mate the parameters. Presently, the expectation-maximi-
zation (EM) algorithm is the most commonly used approach
for multimodal parameter estimates, where an expectation
(E) step calculates the expected log-likelihood by estimating
the current parameters, and a maximization (M) step
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maximizes the expectation of the log-likelihood in the E step.
Algorithm 1 depicts the complete process of the EM
algorithm.

3.4. Supplement Algorithms. Before the application of LMM
and EM, two issues need to be addressed: the optimal
K-value and the inverse function of the cumulative distri-
bution function (CDF) of LMM. The former can be resolved
by referring to the method in [34], where the K-value was
determined by the minimum Akaike information criterion
(AIC) estimation with the null hypothesis not rejected by the
one-sample Kolmogorov-Smirnov (K-S) test. AIC is defined
as

AIC = 2C - 21n(Li), 3)

where Cis the number of parameters and Li is the likelihood
function.

For the second issue, since there is no corresponding
original form of the CDF of LMM, it is impossible to obtain
the percentile value by solving the inverse function of the
original function. For this reason, the bisection method was
adopted, with a stop threshold of 0.00001. The complete TTR
estimation framework is presented in Figure 2.

4. Results and Discussion

The authors calculated the BI-value of each O-D pair under
six different weather conditions, that is, normal, light rain (0
and 10.0 mm/24 h), moderate rain (10.0 and 24.9 mm/24 h),
heavy rain (25 and 50.0 mm/24 h), extreme rain (>50.0 mm/
24h), and rain (>0 mm/24h). We summarized all calcula-
tions into five groups according to the TTR range, that is,
0-5mins, 5-10mins, 10-15mins, 15-20mins, and
20-25mins, including three location measures (median,
trimmed mean, and interquartile range) and the one-way
analysis of variance. MATLAB was used to run the s, and the
final buffer index is presented in the form of the average
value calculated after 50 fittings.

4.1. Increasing TTR Reduction Impact by Rain. Figure 3
shows an example fitting of LMM from Harrison Ave
(ID: 11) to Huntington Ave (ID: 10) in the ATT range of
0-5 mins, which depicts a higher TTR under light rain and
lower TTR under the rest of the rainfall intensity. Moreover,
the impact of the O-D-based TTR increased with the in-
crease of rainfall intensity (the variation of Bl-value from
0.3332 to 0.4379). Overall, it shows that rain reduced the
O-D-based TTR (see in Figure 3(f)).

More analyses were conducted for further investigation.
Figure 4 and Table 4 (median of Bl-values) interpret the
results in terms of the median value, which shows that rain
reduced the O-D-based TTR in each ATT range. Addi-
tionally, four out of five subfigures in Figure 4 demonstrate
an increasing trend in TTR reduction when the rainfall
intensity increases, with only one exception when being
within the ATT range of 20-25mins (Bl-value decrease
under heavy rain (0.3489) compared to that under moderate
rain (0.3588)). The global mean values of the median under

different rainfall intensity (the 8th row in Table 4) also
revealed the trend.

Likewise, the trimmed mean of Bl-values in Table 4
shows that rain has adverse effects on O-D-based TTR and
the increasing reduction effect in terms of the global mean
(the 14th row). In terms of time ranges, three out of five
presented the increasing adverse effect in the range of
0-5mins, 10-15 mins, and 20-25 mins.

Regarding the O-D-based results (see 8th column in
Table 5), thirty-five out of a hundred O-Ds strictly met the
regularity (an average of seven O-Ds in each range).
Meanwhile, ninety-one out of a hundred O-D pairs (see 7th
column in Table 5) show that the rain reduces the O-D-based
TTR.

By far, not surprisingly, a dominating feature is that rain
reduces O-D-based TTR, which aligns properly with peo-
ple’s perception as well as previous research at route level
[10, 22, 23, 37, 38]. Notably, the low-probability anomalies
(positive effect of rain), though not sufficient to negate the
conclusion, may be a combination of multiple factors in a
real environment, for example, a combination of rain, ac-
cidents, and work zones. This counterintuitive phenomenon
will be discussed in a subsequent subsection specifically.
More importantly, the results reveal that the negative impact
grows with the increase in rainfall intensity. This trend seems
doubtful, partly due to the exceptions in Table 4 and partly
due to the fact that solely 35 percent of O-D pairs strictly
conform to this trend. The reasons are generally twofold: (1)
the interference of the complicated environment; (2) more
seriously, the quite insignificant difference in impact be-
tween moderate, heavy, and extreme rain (this characteristic
will be additionally discussed in subsequent subsection),
resulting in extra challenging to achieve O-D pairs with
satisfying the trend. Nonetheless, the current consequences
can still expose the trend effectively.

4.2. Significant Impact from Light Rain to Moderate Rain.
A unique finding was revealed from the analysis; that is, the
impact is a lot more significant when rainfall intensity
changes from light to moderate, while other changes among
the rainfall intensity categories seemed to cause only
moderate impacts on the O-D-based TTR.

Comparing the variation ratio values in the parentheses
in Table 4, we found that the average increase from light to
moderate is up to 17.2% (median) and 14.6% (trimmed
mean). On the contrary, the average BI variation ratio be-
tween the rest of the conditions is not significant, which is
2.7% (normal to light), 1.1% (moderate to heavy), and 5.8%
(heavy to extreme), respectively, and 3.3%, 3.6%, and 4.0% in
average trimmed mean values, respectively.

The one-way analysis of variance (ANOVA) was used to
demonstrate the statistical significance of the BI variation
ratio between different rainfall intensity categories. Con-
sidering the trimmed mean in the analysis, we trimmed 10%
values for the test as well. The analysis was conducted for a
significance level of 0.05. As presented in Table 6, the null
hypothesis is rejected with the P value of 3.5874e-16, far less
than 0.05 in the 2-column source, which indicates significant
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FiGuRe 3: Fitting examples of LMM from Harrison Ave (ID: 11) to Huntington Ave (ID: 10): Part A: (a) normal and (b) light rain. Part B: (c)
moderate rain and (d) heavy rain. Part C: (e) extreme rain and (f) rain.

variation between the light and the moderate rain condition.
Notwithstanding, the null hypothesis is true when testing
significance is in the 3-column source (P value > 0.05),
which supports the previous analysis that there is no sig-
nificant difference between moderate rain, heavy rain, and
extreme rain.

The finding reveals that drivers are more sensitive to the
change from light rain to moderate rain. While further
investigation on driver behavior may be needed to fully
explain this phenomenon fully, this finding is undoubtedly
helpful in conducting more detailed and in-depth O-D-
based TTR analysis.

4.3. Other Findings regarding O-D-Based TTR. Another
notable finding from this research is that the O-D-based
TTR tends to improve when ATT is longer, regardless of

the normal and the rainy weather. It was explicitly rec-
ognized from Table 4 (column 3 to column 8) that four
out of six columns in the median and five out of six
columns in the trimmed mean both illustrate that the
O-D-based TTR increased along with the increase of
average travel time.

Further investigation was conducted against the O-D
pairs with the same ATT. The authors calculated the
interquartile range of each travel time range, as illustrated
in Table 7 and Figure 4 (the areas of the rectangle). It can
be found that the areas of the rectangle are shrinking from
Figures 4(a)-4(e). Referring to the columns in Table 7,
two out of six columns follow this trend. For the rest of
the columns, there is only one exception in each column
(e.g., the last cell in column 3). The results demonstrate
that the consistency of the O-D-based TTR in different
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FIGURE 4: Bl-value boxplots under six conditions within five travel time ranges. (a) Average O-D-based travel times within 0-5 mins. (b)
Average O-D-based travel times within 5-10 mins. (c) Average O-D-based travel times within 10-15 mins. (d) Average O-D-based travel
times within 15-20 mins. (e) Average O-D-based travel times within 20-25 mins.

O-D pairs with similar ATT range tends to improve as
ATT gets longer.

Authors speculate that this may be attributable in large part
to travel time fluctuations which have a decreasing eftect on the
longer ATT. For instance, the one-minute fluctuation exerts a
greater influence on the O-D pair with a five-minute ATT than
that with a ten-minute ATT. In practice, knowing this trend
may significantly improve the accuracy of TTR prediction.

4.4. A Counterintuitive Phenomenon. Based on the statistics in
Table 5, a so-called counterintuitive phenomenon (e.g., [10, 25])
was also found in this study, which is the O-D-based TTR which
was improved under the rainy weather (the global probability is
16%). Although the negative effect of the rain on TTR is still the
dominating conclusion considering the low probability of the
positive effect, this phenomenon remains an issue to be in-
vestigated. According to [20], rain likely affects the effects of
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Step 1:
Initialize K-value and LMM.
Step 2 (E step):
Calculate the probabilit{ i of each travel time ¢; (sample size N) belonging to each lognormal distribution according to (i).
(1) Vik = (ka(ti/Hk>0k)/ k=1 a)kL(ti/ﬂk,Uk)), i= 1,2,...,N,k: 1,2,...,K.
Step 3 (M step):
Update all parameters in LMM according to (ii)-(iv).
(i) @ = QN yu/N), k=1,2... K.
(i) fe= N yaln) I ya), k=12,... K.
(iv) o= (Zf-il Yae (In () = @) (n () = )"/ Zf\il Yi) k=12,...,K
Step 4:
Repeat until convergence.
ArGoriTHM 1: EM algorithm for estimating LMM.
TaBLE 4: Summary of median and trimmed mean of Bl-values and BI variation ratio under six weather conditions.
Rainfall intensity (BI variation ratio)
Location measure ATT ?ange Normal Light rain Moderate rain Heavy rain Extreme rain Rain
(min) ((L-N)/ ((M-N)/ ((H-N)/ ((E-N)/
N % 100%) N % 100%) N % 100%) N % 100%)
0-5 04219 04342 (2.9%)  0.4985 (18.2%) 05157 (22.2%)  0.5274 (25.0%) 0.4997
5-10 03586  0.3845 (7.2%)  0.4544 (26.7%) 04715 (31.5%)  0.4933 (37.6%) 0.4268
Median of Bl-values 10-15 0.3568 0.3586 (5.0%) 0.4573 (28.2%) 0.4598 (28.9%) 0.4823 (35.2%) 0.4080
15-20 0.3399  0.3265 (-3.9%)  0.3956 (16.4%)  0.3962 (16.6%)  0.4113 (21.0%) 0.3604
20-25 0.3287  0.3513 (6.9%)  0.3588 (9.2%)  0.3489 (6.1%)  0.3750 (14.1%) 0.3515
Mean 0.3612 0.3710 (2.7%) 0.4329 (19.9%) 0.4384 (21.4%) 0.4579 (26.8%) 0.4092
0-5 0.4413  0.4555 (3.2%) 0.5078 (15.1%) 0.5205 (17.9%) 0.5476 (24.1%) 0.4990
5-10 0.4098  0.4351 (6.2%)  0.5047 (23.2%)  0.5399 (31.7%)  0.5376 (31.2%) 0.4809
Trimmed mean of BI- 10-15 0.3754 0.3793 (1.0%) 0.4644 (23.7%) 0.4866 (29.6%) 0.5030 (34.0%) 0.4429
values 15-20 0.3580  0.3675 (2.7%)  0.4151 (15.9%)  0.4121 (15.1%)  0.4304 (20.2%) 0.4007
20-25 0.3190 0.3291 (3.2%) 0.3519 (10.3%) 0.3532 (10.7%) 0.3697 (15.9%) 0.3448
Mean 0.3807  0.3933 (3.3%)  0.4488 (17.9%)  0.4625 (21.5%)  0.4777 (25.5%) 0.4337

N, L, M, H, and E indicate normal, light rain, moderate rain, heavy rain, and extreme rain, respectively.

TaBLE 5: Summary of O-D number of higher reliability than normal and increasing reduction impact with rainfall increase.

O-D number of higher reliability than normal

ATT range Rainfall intensity O-D number of increasing negative impact with
(min) Light Moderate Heavy Extreme  Sum/sample Rain rainfall increase
rain rain rain rain size
0-5 8 1 4 2 15/80 3 7
5-10 3 1 1 1 6/80 2 8
10-15 10 1 1 2 14/80 1 6
15-20 7 0 3 2 12/80 1 7
20-25 8 2 5 2 17/80 2 7
fl‘;:‘/ sample 36100 57100 14/100  9/100 64/400  9/100 35/100
Rate 36% 5% 14% 9% 16% 9% 35%
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TABLE 6: One-way ANOVA test for BI variation ratio between varying rainfall intensities.
Source SS df MS F P value
2 columns (light and moderate) 1.2280 1 1.2280 80.82 3.5874e - 16
Error 2.7047 178
Total 3.93263 179
3 columns (from moderate to extreme) 0.2079 2 0.1040 2.9 0.0568
Error 9.5750 267 0.0359
Total 9.7829 269
4 columns (from light to extreme) 2.9091 3 0.9697 33.37 4.9919¢ - 19
Error 10.3457 356 0.0291
Total 13.2548 359
TABLE 7: Summary of interquartile range of Bl-values under six weather conditions.
Location rJ:;fTe Normal Rainfall intensity (75th-25th) Rain
measure (mi?l) (75th-25th) Light rain Moderate rain Heavy rain Extreme rain (75th-25th)
0-5 0.1771 0.2043 0.2687 0.3138 0.2188 0.2450
(0.5206-0.3635)  (0.5543-0.3500) (0.6330-0.3643) (0.6829-0.3691) (0.6511-0.4323) (0.6119-0.3669)
510 0.1645 0.1975 0.2278 0.3134 0.2881 0.2987
Interquartile (0.4929-0.3284) (0.5253-0.3278) (0.5847-0.3569) (0.7118-0.3984) (0.6939-0.4058) (0.6441-0.3454)
ran S(IQR) of  10-15 0.1606 0.1612 0.2454 0.2342 0.2112 0.2292
BI-\%alues (0.4600-0.2994) (0.4586-0.2974) (0.5907-0.3453) (0.5910-0.3568) (0.6212-0.4100) (0.5487-0.3195)
15-20 0.0944 0.1222 0.1432 0.1509 0.1698 0.1407
(0.4065-0.3121)  (0.4354-0.3132) (0.4952-0.3520) (0.4865-0.3356) (0.5195-0.3497) (0.4842-0.3435)
20-25 0.1006 0.1083 0.1157 0.1173 0.1201 0.1056

(0.3593-0.2587)

(0.3786-0.2703)

(0.4168-0.3011)

(0.4202-0.3029)

(0.4248-0.3047)

(0.3941-0.2885)

some other substantial contributing factors for some specific
O-D pairs (e.g., O-D with bottlenecks). Therefore, future studies
should be focused on data with multiple contributing factors
such as weather and bottlenecks.

5. Conclusions

This research uses open-source data to study the effects of
varying rainfall intensity on O-D-based travel time reliability.
The intensity covers light rain (0 and 10.0 mm/24 h), moderate
rain (10.0 and 24.9mm/24h), heavy rain (25 and 50.0 mm/
24 h), and extreme rain (>50.0 mm/24 h). An orithm based on
the lognormal mixture model was adopted for analyzing the
probability distribution functions of the O-D-based travel time
data. Then the buffer index, the three location measures, and the
one-way analysis of variance were used for detailed analysis.

In general, rain lowers O-D-based travel time reliability, and
the negative impact grows with the increase in rainfall intensity.
With respect to the abnormal phenomenon mentioned in [25],
it is restricted in low probability from massive results in the
study, which cannot be a general conclusion but deserve in-
vestigation profoundly. The study also confirmed the existence
of the so-called counterintuitive phenomenon mentioned in
previous work [25] that, in some cases, TTR may be enhanced
in rainy weather. Particularly, we discovered that O-D-based
TTR was more sensitive when rainfall intensity changes from
light to moderate but less notable when changes are among
other categories such as no rain to light rain and moderate rain
to heavy rain. The study also demonstrates that the O-D-based
TTR in different O-D pairs with a similar ATT range tends to
improve as ATT gets longer.

This study contributed to disclose the characteristics
of the O-D-based TTR under the varying rainfall with the
open-access data. This study is helpful in enhancing
current applications by providing more accurate O-D-
based travel time information under rain conditions; for
example, the trend that consistency of the O-D-based
TTR tends to improve with ATT increase can help to
improve the accuracy of TTR prediction, when missing
enough travel time information. Meanwhile, the research
is conducive to promote the use of publicly available data
in such investigations so that the results are verifiable,
and the studies are sustainable.

This paper only focuses on the impact of rain, but
there are a lot of more deserving further investigations
along the line of O-D-based TTR analysis. For future
work, the impact of other weather events and the com-
bined effects of weather and other factors such as work
zones will be the focus.
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