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To prevent and control public transport safety accidents in advance and guide the safety management and decision-making
optimization of public transport vehicles, based on the forewarning and other multisource data of public transport vehicles in
Zhenjiang, holographic portraits of public transport safety operation characteristics are constructed from the perspectives of time,
space, and driver factors, and a prediction model of fatigue driving and driving risk of bus drivers based on BP neural network is
constructed. Finally, model checking and virtual simulation experiments are carried out. ,e result of the research shows that the
driver’s fatigue risk during the period of 7 : 00-8 : 00 am is much higher than other periods. When the bus speed is about 30 km/h,
the driver fatigue forewarning events occur the most. Drivers aged 30–34 years have the largest proportion of vehicle abnormal
forewarning, drivers aged 40–44 years have the largest proportion of fatigue forewarning events, and drivers with a driving
experience of 15–19 years have the largest overall proportion of various forewarning events. When the vehicle speed range is (18,
20) km/h and (42, 45) km/h, the probability of fatigue driving risk and driving risk forewarning increases sharply; and when the
vehicle speed is lower than 17 km/h or 41 km/h, the probability of fatigue driving risk and driving risk forewarning, respectively, is
almost zero.,e probability of fatigue forewarning during low peak hours on rainy days is about 30% lower than that during peak
hours.,e probability of driving forewarning during flat peak hours is 15% higher than that during low peak hours and about 10%
lower than that during peak hours. ,is paper realized for the first time the use of real forewarning data of buses in the full time,
the whole region, and full cycle to carry out research. Related results have important theoretical value and practical significance for
scientifically guiding the safety operation and emergency management strategies of buses, improving the service level of bus
passenger transportation capacity and safety operation, and promoting the safety, health, and sustainable development of the
public transportation industry.

1. Background Introduction

At present, China mainly evaluates the safety of buses based
on the incidence of traffic accidents. ,e evaluation indi-
cators and analysis methods are relatively single, and there is
still a lack of accurate control, effective prevention, and
emergency management countermeasures. Since 2019, with
the integration and system development of BDS, video,
radar, and other technologies, buses in some Chinese cities
have installed vehicle driving safety forewarning systems,
enabling holographic perception, dynamic monitoring, and
risk reminders of the bus operation process [1]. By acquiring
the historical data of vehicle forewarning of Zhenjiang
Public Transport Company in Jiangsu Province of China,

this paper realized for the first time the use of real fore-
warning data of buses in the full time, the whole region, and
full cycle to carry out research. ,is paper excavates the
general rules and main hidden dangers of vehicle fore-
warning events and carries out objective analysis and sit-
uation prediction of bus operation risks [2]. Relevant
research conclusions have important practical significance
for improving the safe operation of buses, carrying out
corresponding optimized dispatching [3] and emergency
management, eliminating hidden dangers of bus operation,
and improving and promoting the convenience, safety, and
sustainable development of public transportation [4].

Many studies believe that the fatigued driver and driver
driving state is the most important factor affecting urban
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public transport safety, and the driver state is affected by the
driver’s attributes, external environment, and other aspects.
Relevant scholars have researched related factors affecting
the safe operation of buses, mainly as shown in Table 1. By
studying the related factors that affect the severity of bus
collisions [5], it can be seen that the factors such as start
inhibition, automatic door opening, bus materials, and in-
ternal structure are relatively related to bus safety. Re-
searches on perception and driving behavior [6] have shown
that drivers who have experienced accidents are more likely
to have collision accidents in the future. By studying the
factors affecting road traffic accidents, it is known that the
advanced driver assistance assessment system (ADAS) [7]
can provide drivers with safety support and help avoid
distractions. Besides, the vehicle anticollision forewarning
strategy [8, 9] is formulated through the study of the driver’s
reaction time when a collision occurs. ,e Palm probability
distribution method [10] is used to study road accident risk
under different weather conditions. ,e research results
show that the accident risk probability of snow is higher than
that of rain. Among them, the greater the precipitation
intensity, the higher the relative accident risk probability.
Secondly, the logistic regression model [11] is used to study
the correlation between the driver’s age, gender, vehicle,
road environment, and other factors and the severity of
traffic accidents. ,e results show that the road infra-
structure conditions and the driver’s age have a significant
impact on the severity of road traffic accidents. By using a
logarithmic linear model [12] to study the impact of time
factors on the severity of bus driver collision injuries, the
results show that driving in the late night or early morning
will increase the risk of serious injury to bus drivers.

Many scholars have researched vehicle safety charac-
teristics and management requirements, mainly as follows.
Firstly, utilizing the historical traffic data in the USA from
2005 to 2009, the potential risk factors of public trans-
portation safety accidents are summarized [13], and it is
found that the driver is the main factor in the occurrence of
public transportation safety accidents. Studies have shown
that as the driver’s attention changes, there are significant
differences in eye movement and gear operation [14]. At the
same time, the characteristics of steering wheel operation
and the characteristics of vehicle movement are also related
to the characteristics of vehicle movement during lane
changes [15]. Secondly, algorithms and models are used to
analyze the causes and predictions of traffic accidents. By
using the decision tree algorithm [16] to study the causes of
vehicle collision accidents, the results show that human
factors are the most important factor causing traffic acci-
dents. According to the research results of the driver’s
steering characteristics, an evaluation model used to im-
prove the steering stability of the car is established [17]. In
[18], the backpropagation neural network model and gen-
eralized linear mixed model were used to analyze multi-
source traffic data, which showed that flow plays an
important role in vehicle collision prediction. ,irdly, a
variety of models were built to better predict vehicle safety. A
traffic accident model based on collaboration theory [19] was
proposed to analyze accident scene data by combining

driving comfort thresholds. ,e dynamic prediction model
of vehicle operation trajectory based on vehicle trajectory
data [20] can calculate the suspicious collision position of the
vehicle. ,e perceived safety of self-driving cars and their
application value in transportation and road safety [21] were
derived due to the analysis of the driving habits of 1,205
regular vehicle drivers. A hidden Markov model [22] is
proposed by analyzing a large amount of traffic trajectory
data, and it is verified that the model can better predict the
occurrence of traffic conflicts.

Related scholars have also carried out many studies on
the safe operation and management of buses. Firstly, pre-
ventive measures [23] are proposed through the identifi-
cation and risk analysis of bus drivers’ dangerous behaviors.
Risk assessment and analysis of hazard sources of road traffic
safety risks are carried out through the application of the
road traffic safety risk index evaluation method [24], and a
corresponding road traffic safety risk monitoring index
system is constructed. Besides, aiming at the main problems
of safety management, traffic safety management counter-
measures [25] are proposed to reduce driver unsafe be-
havior, improve vehicle safety level, reduce the accident rate,
and ensure the safe operation of buses. Secondly, the safety
of the driver’s visual perception of dangerous areas is
proposed by analyzing the eye movement data of changing
lanes, cornering driving, and straight driving [26]. An
evaluation method based on the driver’s visual perception of
safety indicators is established. In [27], a psychological fa-
tigue evaluation system for bus drivers was constructed, and
the authors proposed targeted suggestions to reduce driving
fatigue. A method [28] that can evaluate the driver’s po-
tential danger prediction ability and the rationality of the
system was designed. In [29], a method to analyze the safety
operation of buses was proposed based on big trajectory
data. In particular, research on the clustering characteristics
of road safety factors [30] such as driver, vehicle, road, and
environment under different accident types was conducted.
According to the actual situation of vehicle safety prediction,
different research methods are proposed to make the pre-
diction results more accurate. ,irdly, in the establishment
of the bus speed model, parameters such as bus flow and bus
ratio [31] were introduced, and a bus speed control system
was designed, which realized the dynamic monitoring of the
vehicle running speed. ,e driver evaluation system based
on the principal component analysis method [32] was
established through the analysis and investigation of the
questionnaire information of bus drivers. ,e research re-
sults show that the driver’s driving habits and individual
characteristics have a significant impact on driving behavior.
Finally, by introducing the practice of traffic congestion
charging in Singapore and London [33], it is concluded that
public transportation congestion charging should be based
on scientific planning and supporting the sustainable de-
velopment of public transportation. Besides, the analysis
method and test method of the index system [34] are used to
classify the sustainable development of urban trans-
portation. ,e evaluation index system and evaluation
model of urban transportation sustainable development
based on the theory of urban transportation sustainable
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development are established. ,is research provides a new
perspective on urban sustainable development research.

In summary, objective, real, comprehensive, and effec-
tive historical operation data are a prerequisite for the ac-
curate study of bus safety operation situation and risk
management. ,e existing research studies mainly use ve-
hicle accident data, vehicle trajectory data, laboratory data,
and questionnaire survey data to carry out related research
on vehicle safety characteristics, dangerous driving behavior,
or risk situation. Because of the contingency of vehicle
accidents and the incompleteness of data collection, it is
difficult to realize the comprehensive analysis of bus oper-
ation state and the accurate prediction of safety risks [35].
,is paper will overcome the shortcomings of the existing
research, make full use of the safety forewarning system
installed on public vehicles, obtain the real mass historical
data of all kinds of public transport forewarning, carry out
model construction and simulation analysis, provide aux-
iliary decision-making for bus operation, dispatching, and
safety management, and promote the healthy, green, and
sustainable development of urban public transportation
[36].

2. Data Acquisition Process

,e bus forewarning system installed by Zhenjiang Public
Transport Company integrates various technologies such as
ADAS yaw forewarning [37], fatigue driving video analysis,
and BDS terminal [38]. It can realize the real-time upload of
vehicle operating data and ensure the accuracy and reli-
ability of the data. ,e forewarning equipment is shown in
Figure 1. ,is research makes full use of the vehicle fore-
warning equipment and vehicle forewarning data platform
of Zhenjiang Public Transport Company to obtain historical
operating data of the bus.

2.1. Forewarning Equipment

2.1.1. ADAS Vehicle Yaw Forewarning System. ADAS stands
for the Advanced Driving Assistance System. ,e system
uses a camera located on the windshield to monitor the lane
markings on the road ahead. When the system detects that
the vehicle has deviated from the lane [39], it will issue a
forewarning to the driver.

2.1.2. Fatigue Driving Analysis Equipment. ,e fatigue
driving analysis equipment uses advanced AI video analysis

technology [40] to accurately recognize the driver’s facial
characteristics. At the same time, it can record and warn the
driver’s fatigue characteristics.

2.1.3. BDS. ,e artificial satellite’s multifrequency posi-
tioning signal can be accepted by the system to achieve
precise positioning. ,e system can calculate the distance of
the vehicle ahead, consider the relative speed of the vehicle,
determine the possible collision time, and issue a fore-
warning to the driver.

2.2. Forewarning System and Data Platform. ,e fore-
warning system can realize real-time monitoring and
summary of vehicle information [41], mainly including 7
forewarning types: eyes closed, yawn, glance about, lane
departure, rapid acceleration, rapid deceleration, and for-
ward collision. ,is paper classifies the types of forewarn-
ings, classifies eyes closed, yawn, and glance as driver fatigue
forewarnings, and classifies rapid acceleration, rapid de-
celeration, forward collision, and lane departure as vehicle
abnormal state forewarnings, as shown in Figure 2.

Data platforms mainly include current online, forward
forewarning, driver forewarning, the total number of ab-
normalities, vehicle distribution, forewarning type distri-
bution, forewarning occurrence trend, and other data. ,is
paper obtained 297,189 forewarning data from November
2019 to March 2020 through the forewarning platform
system of Zhenjiang Public Transport Company. ,e
original forewarning data mainly include information such
as license plate number, forewarning time, forewarning type,
forewarning level, forewarning speed, latitude and longitude
coordinates of forewarning points, location of forewarning
points, driver names, and other information.

2.3. Research Period and Weather Conditions. Since the
system started trial operation at Zhenjiang Public Transport
Company in October 2019, this paper selected a 27-day
official operation period from November 2019 to March
2020 to conduct research, as shown in Table 2.

2.4. Data Cleaning. Since the actual data obtained may have
data missing, disordered format, abnormal data, and other
phenomena, cleaning the data is an indispensable link. ,e
principle of data cleaning [42] should ensure the accuracy,
completeness, consistency, uniqueness, timeliness, and

Table 1: Study of the relevant factors affecting the safe operation of buses.

Author Year Research
Gibson and Lee 1986 Driver’s reaction time when a collision occurs
Mercier et al. 1999 Correlation between the driver’s age, gender, vehicle, road environment, and the severity of traffic accidents
Chen et al. 2000 Influence of time factors on the severity of collision injuries of bus drivers
Yang 2007 Perception and driving behavior
M. Staubach 2009 Factors affecting road traffic accidents
Cafiso 2013 Related factors affecting the severity of bus collisions
Park 2019 Road accident risk under different weather conditions
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effectiveness of data. ,ere are mainly the following 4
methods [43]:

(1) Supplement incomplete data
(2) Detection and resolution of error values or abnormal

values
(3) Detection and elimination of duplicate records
(4) Detection and resolution of data inconsistencies

,e forewarning data set obtained and the driver in-
formation data set are associated and fused with the data
table [44]. Finally, 297189 forewarning samples are associ-
ated with 1435 driver data samples. ,e research data
samples after the fusion are shown in Table 3.

3. Analysis of the Bus Forewarning
Characteristics from Multiple Perspectives

,ere are many factors related to the bus safe operation, and
different factors have different effects on bus forewarning
[45, 46]. To study the bus forewarning characteristics in
different weather conditions, sections, driver characteristics,
and periods, this paper makes a holographic portrait of the
bus operation from multiple perspectives such as weather,
time, space, speed, and driver characteristics distribution
[47], as shown in Figure 3. Make full use of various mul-
tisource forewarning data to study the influence mechanism
of various factors on bus forewarning.

Driver fatigue 
forewarnings

Vehicle abnormal 
state forewarnings

 Eyes closed Yawn Rapid 
acceleration

Glance 
about

Rapid 
deceleration

Forward 
collision

Lane 
departure

Bus forewarning types

Figure 2: Classification of forewarning types.

(a) (b) (c)

Figure 1: Forewarning equipment of buses: (a) ADAS yaw forewarning system; (b) fatigue driving analysis equipment; (c) BDS.

Table 2: Weather and period of the retrieval date.

Date Weather Period
2019.11.01 Sunny 06 : 00–20 : 30
2019.11.02 Foggy 00 : 00–24 : 00
2019.12.01 Rainy 10 : 00–22 : 30
2019.12.02 Sunny 05 : 30–19 : 00
2019.12.04 Sunny 06 : 00–23 : 30
2019.12.05 Sunny 00 : 00–24 : 00
2019.12.06 Sunny 00 : 00–24 : 00
2019.12.07 Sunny 01 : 00–24 : 00
2019.12.15 Sunny 07 : 30–19 : 00
2019.12.16 Sunny 06 : 30–18 : 00
2019.12.17 Rainy 00 : 30–24 : 00
2019.12.18 Rainy 00 : 00–24 : 00
2019.12.20 Sunny 12 : 30–18 : 30
2019.12.21 Rainy 01 : 00–24 : 00
2020.01.01 Snowy 12 : 30–18 : 30
2020.01.02 Sunny 07 : 30–15 : 30
2020.01.03 Rainy 11 : 00–15 : 00
2020.01.04 Rainy 07 : 30–11 : 00
2020.01.06 Rainy 16 : 30–19 : 30
2020.01.07 Rainy 10 : 30–18 : 00
2020.01.08 Rainy 09 : 00–23 : 00
2020.01.09 Snowy 01 : 00–24 : 00
2020.01.10 Cloudy 00 : 00–24 : 00
2020.01.11 Rainy 12 : 30–19 : 00
2020.01.12 Rainy 08 : 30–23 : 30
2020.01.13 Foggy 00 : 00–24 : 00
2020.01.14 Foggy 00 : 00–24 : 00
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3.1. Weather Distribution. Vehicle operation safe is closely
related to bad weather conditions [48]. ,is paper compares
and analyzes the forewarning data of buses according to the
four weather conditions of sunny, rain, fog, and snow. ,e
results are shown in Table 4.

From the analysis of Figure 4, it can be seen that the
proportion of forewarnings on sunny and foggy days is
relatively large. ,e total proportion of forewarnings on
sunny days reaches 31.29%. It is mainly due to the glare of
the sun and dizziness. Drivers are easily sleepy and fatigued.
,e total proportion of forewarnings on foggy days reached
31.27%, mainly due to low air visibility, obstructed line of
sight, and low road adhesion coefficient. Drivers need to
maintain a high degree of attention for a long time and are
prone to fatigue.

,e vehicle’s abnormal state forewarnings are greater
than the number of driver fatigue forewarnings under all
weather conditions. ,e vehicle’s abnormal state fore-
warnings mainly refer to situations such as rapid accelera-
tion, rapid deceleration, forward collision, and lane
departure, which are not only closely related to the driver’s
bad driving behavior but also affected by road facilities,
traffic environment, and other restrictive factors, resulting in
a higher proportion.

3.2. TimeDistribution. According to the forewarning data of
buses, statistics are summarized by time, and the result is
shown in Figure 5. Analysis shows the following:

(1) Whether it is the forewarnings of driver fatigue state
or the forewarnings of vehicle abnormal state, it
shows a three-stage change rule of rising, local
fluctuations, and falling over time.

(2) ,e first stage is a rapid rise period. At this time, the
driver fatigue forewarning period is [4 : 00, 7 : 00],
and the vehicle abnormal state forewarning period is
[4 : 00, 9 : 00], which is 2 hours longer than the fatigue
forewarning, mainly due to complicated traffic en-
vironment and other factors restrict.

(3) ,e second stage is a period of partial fluctuation. ,e
driver fatigue forewarning and the vehicle abnormal
state forewarning period are generally similar, within
the range of [7 : 00, 19 : 00], and the vehicle abnormal
state forewarning period is [9 : 00, 16 : 00].

(4) ,e third stage is the partial descent period, and the
overall is divided into 2 changes. During the period
of [16 : 00, 20 : 00], the reduction range is relatively
large; during the period of [20 : 00, 22 : 00], the range
of change is relatively small.

(5) ,e vehicle abnormal state forewarning is in [10 : 00,
11 : 00] and [16 : 00, 17 : 00] peaks, appearing in the
two periods, and the driver fatigue forewarning is in
the peak hours at [06 : 00, 09 : 00].

3.3. Spatial Distribution. ,e driver fatigue forewarning and
vehicle abnormal state forewarning data are imported into
the electronic map of Zhenjiang, and the locations corre-
sponding to the relevant forewarning samples are all mapped
to the map, as shown in Figure 6.

Using the kernel density analysis method [49], the
density distribution corresponding to the driver fatigue
forewarning is obtained. From Figure 7, the following holds:

(1) ,e two forewarning types are generally consistent in
the spatial distribution of urban road networks, but

Table 3: Data sample after cleaning.

Bus number Time Type Longitude Latitude Route Type number Speed
18200148 5 : 38 : 33 Eyes closed 119.46 32.16 No. 81 bus 8 20
1709270416 8 :18 : 53 Smoking 119.47 32.19 No. 35 bus 12 34
1709270762 8 :19 : 54 Smoking 119.44 32.14 No. 95 bus 12 43
1709270416 8 : 21 : 29 Smoking 119.46 32.19 No. 35 bus 12 41
1709270041 8 : 21 : 58 Smoking 119.42 32.21 No. 23 bus 12 42
1709270762 8 : 22 :11 Smoking 119.44 32.13 No. 95 bus 12 50

Portrait analysis of the safe 
operation of buses

Time 
distribution

Spatial 
distribution

Speed 
distribution

Driver 
characteristics 

distribution

Statistical analysis of early warning data Risk cause analysis

People Vehicle Road Environment

Figure 3: Portrait analysis of the safe operation of buses.
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there are large differences in local areas, as shown in
Figure 7.

(2) ,e driver fatigue forewarning density center is
concentrated on Zhongshan Road (Jiuhuashan
Road-Jiefang Road), as shown in Figure 7(a).
Zhongshan Road is the main road of Zhenjiang, and
most of it is commercial land nearby. ,is area has a
high density of people and traffic, which can easily
cause vehicle congestion. Drivers need to maintain a
high degree of tension for a long time in this complex
traffic environment. It is prone to fatigue
characteristics.

(3) ,e forewarning of vehicle abnormal state is mainly
concentrated at the intersection of Dongwu Road
and Mengxi Road, which is located in the Beigu
Mountain Scenic Area, as shown in Figure 7(b).
Beigu Mountain is an AAAAA-level tourist scenic
spot in Zhenjiang, Jiangsu. ,e traffic volume of
buses, private cars, tourist buses, and walking
tourists is large, and the surrounding road network
traffic congestion is serious. In this traffic environ-
ment, drivers are easy to make emergency operations
and induce forewarning of abnormal vehicle status.

3.4. Speed Distribution. Select the period from December
2019 to January 2020 as the research period, analyze the
corresponding vehicle speed when various forewarning
events occur, obtain a total of 297189 data samples, and
make summary statistics according to the speed, as shown in
Table 5. Study the speed characteristic law under different
forewarning types, as shown in Figure 8.

It can be seen from Figure 8 that as the speed increases,
the number of driver fatigue forewarnings and the number
of vehicle abnormal state forewarnings both fluctuate to a
certain extent. ,e number of driver fatigue forewarnings
reaches the peak at 30 km/h, and the number of driver
forewarnings is less when the speed is less than 15 km/h or
greater than 70 km/h. Since most buses operate in urban
areas, the speed of running on urban roads is not high.When
the speed of the vehicle is greater than 60 km/h, the number
of driver fatigue forewarning and vehicle abnormal state
forewarnings are kept at a low level. Both driver fatigue
forewarning and vehicle abnormal state forewarnings have
some abnormal values. ,e corresponding speed when the

Table 4: Distribution of bus forewarning types under different weather conditions.

Feature name Feature coding
Total number Driver fatigue Vehicle abnormal state

Quantity Percentage Quantity Percentage Quantity Percentage

Weather

Sunny 92994 31.29 40830 31.48 52164 31.14
Rainy 85610 28.81 37852 29.19 47758 28.51
Foggy 92936 31.27 40245 31.03 52691 31.46
Snowy 25649 8.63 10766 8.3 14883 8.89
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driver fatigue state forewarning occurs is generally greater
than the speed when the vehicle abnormal state occurs.

To facilitate the analysis of the vehicle speed distribution
characteristics under different forewarning density areas,
this paper divides the forewarning occurrence areas into
three types: low, medium, and high. ,e correlation analysis
of the speed when the forewarning occurs in the three re-
gions is carried out, and the characteristic law of the speed is
studied, as shown in Figures 9 and 10.

It can be seen from Figure 9 that the low forewarning
density area has the largest proportion when the speed is
30 km/h-39 km/h, and the smallest proportion when the
speed is below 20 km/h. In areas with low forewarning

density such as suburban areas, there are fewer vehicles,
smooth roads, and a small number of forewarnings. ,e
number of forewarnings is the highest when the speed of
buses reaches about 35 km/h. ,e medium forewarning
density area has the largest proportion when the speed is
30 km/h-39 km/h, and the smallest proportion when the
speed is above 60 km/h; the high forewarning density area
has the largest proportion when the speed is 20 km/h-29 km/
h, and the smallest proportion when the speed is above
60 km/h. In high forewarning density areas such as the city
center, due to traffic congestion, the speed of buses is slow,
and a large number of forewarnings are generated. ,e
number of forewarnings reaches a peak when the speed is

(a) (b)

Figure 6: Spatial distribution of forewarnings: (a) location of driver fatigue forewarning; (b) location of vehicle abnormal state forewarning.

Zhongshan RoadBeigu Mountain

(a)

Beigu Mountain
Zhongshan Road

(b)

Figure 7: Comparative analysis of partial forewarning areas: (a) driver fatigue forewarning; (b) vehicle abnormal state forewarning.

Table 5: Distribution of bus forewarning types under different speed conditions.

Feature name Feature coding
Total number Driver fatigue Vehicle abnormal state

Quantity Percentage Quantity Percentage Quantity Percentage

Speed

Below 10 km/h 26225 8.82 7003 5.40 19222 12.96
10–19 km/h 4307 1.45 511 0.39 3796 2.56
20–29 km/h 46660 15.70 41571 32.05 5089 3.43
30–39 km/h 124333 41.84 42301 32.62 82032 55.32
40–49 km/h 65313 21.98 24469 18.87 40844 27.55
50–59 km/h 23701 7.98 10172 7.84 13529 9.12

60 km/h and above 6650 2.24 3666 2.83 2984 2.01
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about 25 km/h. ,rough observation and comparison, it can
be seen that, due to different road congestion conditions, the
speed of vehicles in high forewarning density areas is rel-
atively low, and the speed of vehicles in low forewarning
density areas is relatively high.

To be able to analyze the number of forewarnings that
occur per unit area in each region more reasonably, this
paper proposes the definition of unit forewarning density,
that is,

unit forewarning density �
number of forewarnings

forewarning area
. (1)

It can be seen from the analysis of Figure 10 that the
forewarning frequency of each speed in the low warning

density area is low. In the medium forewarning density area,
the forewarning frequency reaches the peak when the speed is
30 km/h–39 km/h. In the high forewarning density area, when
the speed is 20 km/h–29km/h, the forewarning frequency is
highest.

3.5. Driver Characteristics. ,is paper takes 324 drivers of
Zhenjiang Public Transport Company as the research object,
analyzes the influence of drivers’ age, driving years, gender,
and educational background on the forewarning of buses
[50], and conducts research on the distribution law of
forewarning under the action of various factors.

3.5.1. Driving Years. ,e statistical analysis of the fore-
warning data of bus drivers of different driving years is shown
in Table 6; in terms of the total number of forewarnings, drivers
with driving experience between 15 and 19 years of the four
driving years have themost forewarnings, accounting for about
35.66% of the total forewarnings, and; drivers with a driving
experience of fewer than 5 years have the least number of
forewarnings, accounting for about 0.68% of the total number
of forewarnings.

As shown in Figure 11, drivers with a driving experience
of 15 to 19 years have the largest number of driver fatigue
forewarnings and vehicle abnormal state forewarnings.
Drivers in this age group are more daring after having
certain driving experience, have more aggressive driving
styles, and are prone to aggressive operations, so they are
more prone to forewarning of abnormal vehicle conditions.

3.5.2. Age. ,e statistical analysis of the forewarning data of
bus drivers of different ages is shown in Table 7. In terms of the
total number of forewarnings, drivers in the 40–44 age group of
the eight age groups have the most forewarnings, accounting
for about 23.13% of the total forewarnings. Drivers under the
age of 25 have the least proportion, about 0.58%.
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As shown in Figure 12, from the perspective of different
forewarning types, drivers in the 40–44 age group have the
largest number of fatigue driving forewarnings, and drivers
in the 30–34 age group have the largest number of vehicle
abnormal state forewarnings.,is is because 30–34 years old
drivers have a more aggressive driving style, are more daring
after having certain driving experience, and are easier to
make aggressive operations. Drivers of different ages are
generally more likely to have forewarnings of abnormal
conditions than driver fatigue forewarnings. ,is is related
to the fact that drivers are more aggressive in driving op-
erations on the premise that they are safe.

3.5.3. Gender. Statistical analysis of the forewarning data of
bus drivers of different genders is shown in Table 8; from the
total number of forewarnings, male drivers have a much
higher probability of having forewarnings than females.
Among them, males account for approximately 91.44%, and
the proportion of driver fatigue forewarning is about 91.26%,
which has a certain relationship with the high proportion of
male drivers in public transportation companies. As shown
in Figure 13, comparing the number of warnings for male

and female drivers, it can be seen that the number of ab-
normal state forewarnings for drivers is higher than the
number of fatigue forewarnings, while the numbers of fa-
tigue forewarnings and abnormal state forewarnings for
female drivers are very similar.

3.5.4. Degree. Statistical analysis of the forewarning data of
bus drivers with different educational levels is shown in
Table 9; drivers with junior high school and below have the
most forewarnings, accounting for about 64.28% of the total
number of forewarnings; drivers with high school education
account for the least, about 12.98% of the total number of
forewarnings. As shown in Figure 14, as the driver’s edu-
cational background changes, the number of driver fatigue
forewarnings and the number of vehicle abnormal state
forewarnings show roughly the same changes.

4. Research on Risk Prediction of Public
Transportation Safety Based on BP Neural
Network Model

BP neural network is a concept proposed by Rumelhart and
McClelland et al. It is a multilayer feedforward neural
network with error backpropagation. ,e model has arbi-
trary complex pattern classification ability and excellent
multibit functionmapping ability and is suitable for complex
nonlinear systems such as bus safety risk prediction.

4.1. Basic Principle

4.1.1. Structure of BP Neural Network. ,e topological
structure of the BP neural network is shown in Figure 15,
x1, x2, . . . , xn􏼈 􏼉 is the input vector of BP neural network,
y1, y2, . . . , yn􏼈 􏼉 is the output vector of BP neural network,
and ωij and ωjk is the weight of BP neural network.

BP neural network can be regarded as a nonlinear
function, and the network input value and predicted value
are the independent variables and dependent variables of the
function. When the number of input nodes is n and the
number of output nodes is m, BP neural network expresses
the functional mapping relationship from n independent
variables to m dependent variables [51].

4.1.2. Error Backpropagation Algorithm. As a multilayer
feedforward neural network, BP neural network is

Table 6: Distribution of bus forewarning types for drivers of different driving years.

Feature name Feature coding
Total number Driver fatigue Vehicle abnormal state

Quantity Percentage Quantity Percentage Quantity Percentage

Driving years

Less than 5 years 2009 0.68 855 0.66 1154 0.69
5–9 years 65889 22.17 26811 20.67 39078 23.33
10–14 years 30452 10.25 13351 10.29 17101 10.21
15–19 years 105964 35.66 46778 36.07 59186 35.34
20–24 years 68677 23.11 31030 23.93 37647 22.48
25–29 years 19281 6.49 8716 6.72 10565 6.31

More than 30 years 4917 1.65 2152 1.66 2765 1.65
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Figure 11: Distribution of forewarning types corresponding to
drivers of different driving years.
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characterized by signal forward transmission and error
backpropagation. In forward transmission, the input signal
is processed layer by layer from the input layer through the
hidden layer until the output layer. ,e neuronal states of
each layer only affect the next layer of the neuron state. If the
output layer cannot get the expected output, it will switch to
backpropagation and continuously adjust the network
weights according to the prediction error so that the pre-
dicted value of the model will converge gradually. ,e error
backpropagation algorithm of the BP neural network [52]
can be expressed as follows:

δL
� (t − y)f′ X

L
− W

L
􏼐 􏼑,

δl
� δl+1

W
l+1

􏼐 􏼑
T
f′ X

l
W

l
􏼐 􏼑.

(2)

In formula (2), δl is the learning signal of layer l, δL is the
learning signal of the output layer, t is the label value, y is the
predicted value, Xl is the output signal of layer l, XL is the
output signal of the penultimate layer, Wl is the weight
vector between the layer l and l+ 1, and WL is the weight
vector between the penultimate layer and the last layer.

,e weight adjustment function of the BP neural net-
work [53] is as follows:

ΔWL
� −η

zE

zW
L
,

ΔWl
� −η

zE

zW
l
.

(3)

Table 7: Distribution of forewarning types of buses for drivers of different ages.

Feature name Feature coding
Total number Driver fatigue Vehicle abnormal state

Quantity Percentage Quantity Percentage Quantity Percentage

Age

Less than 25 years 1726 0.58 822 0.63 904 0.54
25–29-year-old 52493 17.66 21007 16.20 31486 18.80
30–34-year-old 68495 23.05 26302 20.28 42193 25.19
35–39-year-old 46036 15.49 22649 17.46 23387 13.96
40–44-year-old 68730 23.13 31137 24.01 37593 22.44
45–49-year-old 45843 15.43 21206 16.35 24637 14.71
50–54-year-old 12107 4.07 5831 4.50 6276 3.75

55-year-old and above 1759 0.59 739 0.57 1020 0.61

U
nd

er
 2

5

25
–2

9 
ye

ar
s

30
–3

4 
ye

ar
s

35
–3

9 
ye

ar
s

40
–4

4 
ye

ar
s

45
–4

9 
ye

ar
s

50
–5

4 
ye

ar
s

55
 y

ea
rs

 an
d 

ab
ov

e
Age

Total
Driver fatigue
Vehicle abnormal state

0

10000

20000

30000

40000

50000

60000

70000

N
um

be
r o

f f
or

ew
ar

ni
ng

Figure 12: Distribution of forewarning types for drivers of different ages.

Table 8: Distribution of forewarning types of buses for drivers of different genders.

Feature name Feature coding
Total number Driver fatigue Vehicle abnormal state

Quantity Percentage Quantity Percentage Quantity Percentage

Gender Male 271454 91.34 118594 91.44 152860 91.26
Female 25735 8.66 11099 8.56 14636 8.74
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In formula (3), ΔWL is the adjustment value of the
weight vector between the penultimate layer and the last
layer of the BP neural network, ΔWl is the adjusted value of
the weight vector between the layer l and l+ 1, η is the
learning rate, and E is the cost function.

4.2. Model Building

4.2.1. Establish a Network Structure. Determining the net-
work structure is an important part of constructing a BP
neural network, which directly determines the training
speed and prediction accuracy of the model. Generally
speaking, the more hidden layers and nodes in the network
topology structure, the stronger the generalization ability of
the model, and the higher the accuracy of the model.
However, the excessively complex network will lead to a slow
training rate of the model and the more prone to overfitting;
too simple network topology will make it difficult to es-
tablish a complex mapping relationship between feature
variables and predictions, and it is difficult to achieve good
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Figure 13: Distribution of forewarning types corresponding to drivers of different genders.

Table 9: Distribution of forewarning types of buses for drivers with different degree.

Feature name Feature coding
Total number Driver fatigue Vehicle abnormal state

Quantity Percentage Quantity Percentage Quantity Percentage

Education
Junior high school and below 191030 64.28 84208 64.93 106822 63.78

High school diploma 67590 12.98 28030 21.61 39560 23.62
University degree 38569 22.74 17455 13.46 21114 12.61
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Figure 14: Distribution of forewarning types for drivers with
different degrees.
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prediction results. Based on experience and repeated at-
tempts, this paper confirms that the prediction results are
good with the double hidden layer structure with node
number of 100 and 50, respectively [54].

4.2.2. Selection of Learning Rate. ,e learning rate is an
important parameter in the process of model optimization,
which determines the speed of model learning and the
convergence effect of the model. Too much learning rate will
cause the model accuracy to oscillate and be difficult to
converge. Too small learning rate will lead to slow model
adjustment. In this paper, 0.01 is selected as the learning rate
of the model. At this time, the model converges faster and
the oscillation amplitude is smaller [55].

4.2.3. Activation Function Selection. ,e activation function
in the BP neural network can increase the nonlinearity of the
neural network so that the model has sufficient complex
function mapping capabilities, and the applicability of dif-
ferent activation functions is also different [56].

(1) tanh Function. In this paper, the tanh function is selected
as the transfer function of the model. ,e tan h function is
the hyperbolic tangent function. It can maintain the non-
linear monotonic rise and fall relationship on the output and
input, which conforms to the gradient solution requirements
of the BP network and has good fault tolerance and bounds.
Besides, compared with the sigmoid activation function,
tanh function alleviates the problem of gradient disap-
pearance to a certain extent, and its formula is as follows:

tan h(x) �
e

x
− e

−x

e
x

+ e
−x. (4)

In formula (4), tan h (x) is the function value of the
hyperbolic tangent function, x is the input variable, and e is
the natural constant.

(2) Softmax Function. In this paper, the softmax function is
selected as the classifier of the model output. ,e softmax
function is the normalized exponential function, which can
normalize the gradient logarithm of the finite item discrete
probability distribution. Its characteristic is to normalize the
vector, highlight the maximum value, suppress other com-
ponents far below the maximum value, and visually show that
the sample is a certain type of confidence; the formula is as
follows [57]:

softmax (X)i �
e

xi

􏽐
n
j�1 e

xj
, j � 1, 2, . . . , n. (5)

In formula (5), X is the input vector; softmax (X)i is the i-th
function value of the vector softmax function for the vector X;
xi and xj are the i and j values of the vectorX, respectively; n the
length of vector X; and the meaning of e is the same as above.

4.2.4. Cost Function Selection. ,e cost function is mainly
divided into two types: quadratic cost function and cross-
entropy cost function [58]. ,e quadratic cost function is

mainly used for regression problems. For the classification
problems mentioned in this paper, the cross-entropy cost
function is generally selected (labels are processed by one-
hot encoding), and the formula is as follows:

E � −t(t lny +(1 − t)ln(1 − y)). (6)

In formula (6), E is the cost function value, t is the true
label value, and y is the predicted value of the model.

Besides, the cross-entropy cost function also avoids the
quadratic cost function: when the error is larger, the gradient
of the activation function is smaller, resulting in slow
convergence.

4.2.5. Data Preprocessing

(1) Normalization. To reduce the influence of the initiali-
zation value and accelerate the convergence speed of the BP
neural network, the normalized preprocessing method can
be generally adopted. In this paper, the maximum-minimum
method is used to normalize the continuous characteristic
variables [59], and the formula is as follows:

xk �
xk − xmin

xmax − xmin
. (7)

In formula (7), xmin is the minimum value of the feature
in all samples, xmax is the maximum value of the feature in
all samples, and xk is the eigenvalue after normalization.

(2) One-Hot Encoding. To digitize classification and discrete
variables into the model, it is necessary to map such features
to Euclidean space. One-hot encoding is one of the most
effective ways to achieve this function. One-hot encoding is
also known as one-bit effective encoding and uses multibit
status registers to encode multiple states: for a feature, if it
has m values, it becomes m binary features after one-hot
encoding.

4.3. Construction and Application of the Prediction Model.
According to the BP neural network model constructed in
Section 4.2, 13 features such as weather conditions, driver
data, driving period, and driving speed are taken as the input
of the model, and the alarm of the driver is taken as the
output of the model. ,e network topology structure of “13-
100-50–2” is adopted, and the tanh function and softmax
function are used as the transfer function and activation
function of the model, respectively. ,e cross-entropy cost
function is selected as the cost function of the model, and
after repeated attempts, the learning rate of the model is 0.01,
which ensures the stable convergence of the model. ,e
specific form of the model is shown in Figure 16 [60].

4.3.1. Fatigue Driving Prediction Model

(1) Investigation of Convergence and Dispersion. Randomly
select 2/3 of the samples as the training set and the remaining
1/3 as the test set. Perform 500 cycles of iterative training on
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the BP neural network. ,e learning curve of the fatigue
driving prediction model is shown in Figure 17 [61].

As shown in Figure 17, the analysis shows the following:
the fatigue driving prediction model has good convergence,
and the learning curve tends to be flat around the 100th
training cycle; during the whole 500-cycle iteration process,
there was no large-scale oscillation and the fluctuation
amplitude gradually decreased with the training cycle; the
model performs well on the test set and can still reach an
accuracy of 79% based on using a large number of static
features; the model has no obvious overfitting in the training
process, and there is only a 0.0034 accuracy difference be-
tween the set and the test set.

(2) Sample Inspection. Since the sample label adopts the form
of one-hot encoding, with position 0 representing fore-
warning and position 1 representing no forewarning.
,erefore, a single sample error can be obtained by ran-
domly selecting the predicted value of the model with 200
samples and subtracting the true value, as shown in
Figure 18.

It can be seen from Figure 18 that among the randomly
selected prediction samples, the number of samples with
correct forewarning accounts for 79%, 18% of the false
positives are forewarnings, and only 3% of the samples are
falsely reported as no forewarnings, which shows that the
whole model is partial to safety and has high prediction
accuracy under the application of state prediction.

4.3.2. Driving Risk Prediction Model

(1) Investigation of Convergence and Dispersion. Similar to
the fatigue driving prediction model, 2/3 of the samples are
randomly selected as the training set, and the remaining 1/3
are used as the test set. ,e BP neural network is trained
iteratively for 300 cycles. ,e learning curve of the driving
risk prediction model is shown in Figure 19.

From Figure 19, the following is obtained: the driving
risk prediction model has good convergence. ,e learning
curve tends to be flat around the 120th training cycle, but it
fluctuates greatly from the 170th to the 210th cycle, which
may be caused by the transformation of the model from the
local optimal solution to the global optimal solution; ,e
model reaches the highest state after 300 cycles of the it-
erative process, and the convergence speed was faster than
that of fatigue driving risk forewarning model. ,e model is
slightly weaker than the previous model in the test set, but it
can still achieve a higher accuracy rate of 78%.,emodel has

no overfitting phenomenon in the training process, and the
performance of the model in the test set is even better than
that in the training set.

(2) Sample Inspection. Randomly select the predicted value
of 200 samples from the model, and subtract the true value
from it to get a single sample error, as shown in Figure 20.

As can be seen from Figure 20, among the randomly
selected prediction samples, the number of samples with
correct forewarning accounts for 78%, 14.5% of the false
positives are forewarnings, and 7.5% of the samples are
falsely reported as no forewarnings. ,e model is generally
safe and has high prediction accuracy.

4.4. Research on Simulation of Risk Probability Prediction
Based on the BP Model

4.4.1. Typical Driver Selection. ,is paper conducts a sta-
tistical analysis of 1565 drivers of the Zhenjiang Public
Transport Company. For continuous features such as
driving age and age, the mean value (16, 39) is used as the
feature value of the virtual driver; for the classification
features such as educational background and gender, the
mode (high school, male) is taken as the characteristic value
of typical drivers. An example of normalized virtual driver
sample data is shown in Table 10.

4.4.2. Risk Probability Analysis during Peak Hours. ,e
fatigue driving prediction model constructed in this paper is
used to calculate the fatigue confidence of the virtual driver’s
sample data under different weather, periods, and speeds.
,e simulation results are shown in Figure 21.

It can be seen from the graph analysis that whether it is
fatigue driving forewarning or driving risk forewarning, the
probability of occurrence is positively increasing with the
driving speed value; when the vehicle speed range is (18, 20)
km/h and (42, 45) km/h, the probability of fatigue driving
risk forewarning and driving risk forewarning, respectively,
raises sharply; when the vehicle speed is lower than 17 km/h
or 41 km/h, the probability of fatigue driving risk fore-
warning and driving risk forewarning, respectively, occur-
ring is almost zero; under the same speed conditions, the
probability of fatigue forewarning in snowy days is greater
than that of foggy days, rainy days, and sunny days and the
probability of driving forewarning in foggy days is greater
than that of snowy days, rainy days, and sunny days.
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Figure 16: Safety state of buses model based on BP neural network.
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4.4.3. Risk Probability Analysis during Low Peak Hours.
According to Figure 22, based on different speed conditions,
the change characteristics of fatigue driving risk forewarning

and driving risk forewarning probability are generally
consistent with those in peak hours, indicating that high
attention should still be paid to safe driving of vehicles in low
peak hours; under the same speed conditions, the probability
of fatigue forewarning in rainy days is about 30% lower than
that in peak hours, and the difference in other weather
conditions is small.

4.4.4. Risk Probability Analysis during Flat Peak Hours.
According to the analysis in Figure 23, the change
characteristics of fatigue driving risk forewarning and
driving risk forewarning probability are generally con-
sistent with peak hours and flat peak hours; under the
same speed conditions, the probability of driving fore-
warning in four weather conditions is 15% higher than
that in low peak hours and 10% lower than that in peak
hours; at the same driving speed, the sequence of driving
risk probability is foggy, snowy, rainy, sunny, and speed,
indicating that driving risk is significantly related to
weather conditions.
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Table 10: Samples of typical drivers (partial).

Fine Rain Fog Snow PeakT FlatT LowT Male Female Age DrivingY Edu Speed
0 1 0 0 0 1 0 0 1 0 0.66 0.47 0.67 0.0051
1 1 0 0 0 1 0 0 1 0 0.66 0.47 0.67 0.0102
2 1 0 0 0 1 0 0 1 0 0.66 0.47 0.67 0.0152
80 1 0 0 0 0 1 0 1 0 0.66 0.47 0.67 0.0051
81 1 0 0 0 0 1 0 1 0 0.66 0.47 0.67 0.0102
160 1 0 0 0 0 0 1 1 0 0.66 0.47 0.67 0.0051
161 1 0 0 0 0 0 1 1 0 0.66 0.47 0.67 0.0102
240 0 1 0 0 1 0 0 1 0 0.66 0.47 0.67 0.0051
241 0 1 0 0 1 0 0 1 0 0.66 0.47 0.67 0.0102
242 0 1 0 0 1 0 0 1 0 0.66 0.47 0.67 0.0152
480 0 0 1 0 1 0 0 1 0 0.66 0.47 0.67 0.0051
481 0 0 1 0 1 0 0 1 0 0.66 0.47 0.67 0.0102
482 0 0 1 0 1 0 0 1 0 0.66 0.47 0.67 0.0152
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Figure 21: (a) Comparison of fatigue driving risk. (b) Comparison of driving risk probability under different weather conditions.
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5. Conclusions

5.1. ResearchResult. ,is paper selects 297189 various types of
forewarning data of Zhenjiang buses to carry out the analysis of
hidden risks and characteristic laws. ,e distribution charac-
teristics of bus forewarnings of different weather conditions,
speeds, periods, spaces, and driver characteristics are studied.
We get the following conclusions: firstly, on sunny days from
7 : 00–8 : 00 am in themorning, the probability of driver fatigue
forewarning is greatest. On foggy days from 11 : 00 am–12 : 00
noon, the probability of vehicle abnormal state forewarning is
the greatest. Secondly, when the vehicle is running at 30 km/h,
the proportion of driver fatigue forewarning is the largest.
Urban core areas are prone to trigger forewarning of driver
fatigue, while tourist attractions are prone to trigger vehicle
abnormal forewarning. Finally, drivers with 15–19 years of
driving experience have the largest proportion of fatigue
forewarnings and vehicle abnormal forewarnings. Drivers aged
40–44 years have the largest proportion of fatigue forewarn-
ings. Drivers aged 30–34 years have the largest proportion of

vehicle abnormal forewarnings; male drivers have the largest
proportion of fatigue forewarnings and vehicle abnormal
forewarnings.

,e fatigue driving and driving risk prediction model
based on BP neural network are constructed, and simulation
analysis is performed. ,e results show that, at the same
driving speed, the sequence of occurrence of driving risk
probability is foggy, snowy, rainy, and sunny days. During
peak hours, the probability of fatigue forewarning in snowy
days is greater than that of foggy, rainy, and sunny days; the
probability of driving forewarning in foggy days is greater
than that of snowy, rainy, and sunny days. When the vehicle
speed range is (18, 20) km/h and (42, 45) km/h, the prob-
ability of fatigue driving risk and driving risk forewarning
increases sharply; when the vehicle speed is lower than
17 km/h or 41 km/h, the probability of fatigue driving risk
and driving risk forewarning, respectively, is almost zero.
,e probability of fatigue forewarning during low peak
hours on rainy days is about 30% lower than that during
peak hours. ,e probability of driving forewarning during
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Figure 22: (a) Comparison of fatigue driving risk. (b) Comparison of driving risk probability under different weather conditions.
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Figure 23: (a) Comparison of fatigue driving risk. (b) Comparison of driving risk probability under different weather conditions.
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flat peak hours is 15% higher than that during low peak
hours and about 10% lower than that during peak hours.

5.2. Practical Implications. ,e relevant research conclusions
of this paper are of great practical significance for improving the
passenger transportation capacity of buses and enhancing the
management level. At the same time, it can improve the
auxiliary decision-making for the safe operation and emergency
management of buses, promoting the sustainable and healthy
development of urban public transport safety.

5.3. Limitation and Future Research Scope. ,is study was
not free from limitations. Firstly, we selected 297189 samples
from November 2019 to March 2020 with a total of 27 days,
and the sample size is relatively small. Secondly, when
studying the forewarning characteristics of different gender
bus drivers, male drivers accounted for a larger proportion
of the selected 324 drivers. ,erefore, the conclusion that
male drivers have a much higher forewarning rate than
female drivers needs further verification. Finally, public
transportation safety risk probability prediction is multi-
factor. Currently, it is only based on the actual data obtained
by the forewarning equipment to predict.

Although the constructed model has certain accuracy,
more influencing factors such as the type of road facilities,
road traffic conditions, and types of bus stations need to be
fully considered in the follow-up research.

Although the sample size is insufficient and there are
some of the above shortcomings in the research, this paper
realizes for the first time the use of real forewarning data of
buses in the full time, the whole region, and full cycle to carry
out research and the use of real data for objective evaluation,
which is representative and innovative.
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