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Cognitive load is generated by pilots in the process of information cognition about aircraft control, and it is closely related to flight
safety. Cognitive load is the physiological and psychological need that a pilot produces when completing a mission.,erefore, it is
meaningful to study the dynamic identification of the cognitive load of the pilot under the complex human-aircraft-environment
interaction. In this paper, the airfield traffic pattern flight simulation experiment was designed and used to obtain the ECG
physiological and NASA-TLX psychological data. ,e wavelet transform preprocessing and mathematical statistics analysis were
applied on them, respectively. Furthermore, the Pearson correlation analysis method is used to select the characteristic indicators
of psycho-physiological data after preprocessing. Based on the psycho-physiological characteristic indicators, the pilot’s cognitive
load identification model is constructed by combining RNN and LSTM.,e results of this study are more accurate compared with
the cognitive load identification models established by other methods such as RNN neural network and support vector machine.
,is research is able to provide a useful reference for preventing and reduction of human error caused by the cognitive load during
flight missions. It will be potential to realize intelligent control of aircraft cockpit, improving the flight control behavior and
maintaining flight safety.

1. Introduction

With the rapid development of intelligent aircraft cockpits,
the complexity and integration of aircraft airborne systems
have gradually increased. At the same time, the human-
aircraft-environment interaction process becomes more and
more complicated and also the difficulty of flight mission
increases accordingly. To complete the take-off, leveling,
landing, and taxiing processes, pilots have to undertake
many tasks in order to accurately control the aircraft. Most
parts of the mare main tasks directly related to maneuvering
the aircraft, such as information perception, judgment,
decision-making, and execution. Secondary tasks mainly
include early warning, information interface detection, and
voice calls. Due to the limited information processing ca-
pacity of pilots, multisource information from different tasks
can easily cause “information overload” in the brain. It can

result in the increased cognitive load of pilots, which ad-
versely affects their operating behavior and further poses a
potential threat to flight safety. ,erefore, accurately iden-
tifying the cognitive load of pilots is of great significance for
realizing intelligent control of the aircraft cockpit, im-
proving the control behavior of flight crew and maintaining
flight safety.

Many researchers have studied the cognitive load of
pilots since the early twentieth century [1], [2]. Scholars were
interested in the requirements of rapidly cultivating pilots
and reducing the impact of overweight cognitive load on
missions. Pilots’ cognitive load was identified from the
perspective of psychological selection and identification
using motion coordination response detection, paper pen, or
intelligence detection [3–5]. Although these studies were
forward-looking, most of them had a certain subjective
tendency to interfere. Due to the tremendous advances in the
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field of artificial intelligence and computer technology, it has
been a higher demand for the study of psychological status of
pilots such as cognitive load. Many scholars have focused on
studies of cognitive load by physiological indicators of pilots
obtained by objective experiments. Noel et al. [6] used ar-
tificial neural networks to classify the cognitive character-
istics combination of pilots at the different flight times.,ese
characteristics include the electrocardiogram (ECG), the
electroencephalography (EEG), and eye movements. Gray
et al.[7] analyzed the correlation between the pilot’s heart
rate value, the visual scan area change value, and the air-
craft’s landing deviation distance. ,is was due to negative
emotions such as anxiety caused by pilots’ psychological
overload. It showed that the anxiety caused by their psy-
chological load has a significant impact on the flight per-
formance. ,e problem of different cognitive loads
generated by various types of pilots of the same task was
studied by Mansikka et al.[8]. Based on the pilot’s heart rate
data obtained from flight simulation experiments, the re-
searcher used the Shapiro–Wilk test and repeated measures
variance to determine the flight performance of the pilot
under the different cognitive loads. It was found by Andrew
[9] for the rule that heart rate parameter values are most
sensitive to changes in cognitive load. Specifically, the
psychological burden of the pilot increases as the difficulty of
the task increases and the low-frequency component of the
heart rate variability decreases. Jonathan et al. [10] used
visual behavior to study changes in the pilot’s attention when
performing landing operations in an anxiety situation.
Tjolleng et al. [11] established an artificial neural network
based on the cognitive load classification model according to
the time-domain index of the pilot’s ECG signal and the
frequency-domain index. ,e time-domain indicators
mainly include average interval, standard interval of the RR
interval, and root-mean-squared error of the RR interval.
,e frequency-domain indicators include low- and high-
frequency power and the ratio of them.,is study effectively
grades the cognitive load of the pilot, which provides a good
theoretical basis for flight training. Wang [12] and others
have discussed the increase in the cognitive load of the pilot
caused by the large amount of information on the human-
machine display interface of the aircraft cockpit. Based on
the eye movement index, some researchers established a
visual information source matrix to realize the quantitative
research of cognitive load. Among them, eye movement
indicators mainly include the number of gaze, gaze time,
blink time, and pupil diameter. ,e physiological charac-
teristics associated with brain activity were studied by
Gianluca [13] and others, during the transition from normal
flight to high cognitive load to fatigue operated by the pilot.
Scannella et al. [14] tried to accurately discriminate among
pilots’ workload levels across real flight phases at the in-
dividual level. ,e averaged values of heart rate (HR), heart
rate variablilty (HRV), fixation duration, saccadic rate, and
visual entropy from the real flights were used to classify the
flight phase of airfield traffic pattern. Antonio [15] intro-
duced physiological signals such as heart rate (HR) and heart
rate variability (HRV) to test the psychological state of pilot
in order to reduce psychological errors caused by the

cognitive load of pilots. As the difficulty of the mission
increases, pilots’ cognitive load dose and also physiological
indicators such as HR and HRV change accordingly.
Wanyan et al. [16] provided electro acupuncture’s blink
frequency to assess the cognitive load of pilots during flight
simulation missions, which showed that the frequency of
blinking decreased as the psychological load increased.
,ese findings provide a new evidence for an influence of
mental workload on the cognitive function during the flight.

Many researchers have presented a variety of methods to
study the cognitive load of pilots from the perspectives of
pilots’ physiology and psychology. ,ey demonstrate that
pilots’ physiological characteristics have a significant impact
on cognitive load from the different levels. ,ese studies are
promising and encouraging a deeper exploration of pilots’
physiological and psychological characteristics to inspect the
relation between them and cognitive workload in the flight.
,e existing pilot’s cognitive load identification model re-
flects the intelligence of the pilot to some extent. However,
due to the intrinsic analysis of the dynamic and linkage of
physiological and psychological features, it could not reflect
the actual performance of the flight control process when
considering effects of the different cognitive loads. In view of
this, this paper firstly provides the physiological and psy-
chological dynamic data of pilots under the airfield traffic
pattern through some flight-simulated experiments. ,e
physiological data are mainly ECG characteristics of the
pilot. Psychological data are measured by NASA-TLX scale
on the task difficulty during the airfield traffic pattern to
quantify the cognitive load. Furthermore, based on the
preprocessing results of physiological and psychological
data, recurrent neural network (RNN) and long short-term
memory (LSTM) are used to establish a cognitive load
identification model for flying cadets in the complex envi-
ronments. ,e present study aims at achieving real-time
dynamic, noninvasive, and low-cost identification of pilot’s
cognitive load based on their physiological-psychological
characteristics in complex flight environments.

2. Methods

2.1.Cognitive Load IdentificationModel BasedonLSTM-RNN

2.1.1. RNN Network Structure. RNN can be used to mine
semantic information and time-series information in data. A
typical cyclic neural network model mainly includes an
input layer, a hidden one, and an output one [17], as dis-
played in Figure 1. It is an input of the network at time t. Ht

is a hidden state of the network at time t and is also the
memory unit of the network. mt is an output at time t. Also,
St is a final output of the model U, W, and V represent a
weight matrix for the input layer, the hidden layer, and the
output layer, respectively. ,e same weight matrix param-
eters (U, W, and V) are shared in a recurrent neural network
at the different moments in each network layer.

2.1.2. LSTM Network Structure. Based on the traditional
RNN, input gates, output gates, and forgotten gates are
added into LSTM, as shown in Figure 2. Among them, σ
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represents the Sigmoid function, and its role is to control
which parts of the connected quantity can continue to pass.
In this paper, the cell state at time t is assigned to ct, W is a
corresponding weight matrix, and bf, bc, and bo represent a
corresponding offset vector, respectively [18].

(1) Forgotten gate. ,e function of the forgetting gate is
to multiply the retained information by ct−1 after
partially discarding the hidden layer state Ht−1 at the
previous moment and the input variable It at the
moment. ,e formula is exhibited as follows:

ft � σ Wf · Ht−1, It􏼂 􏼃 + bf􏼐 􏼑. (1)

(2) Input gate. ,e input gate is used to judge which
parts of the information output by the forgetting gate
are stored in the new ct, and the formulas are shown
as follows:

it � σ Wi · Ht−1, It􏼂 􏼃 + bi( 􏼁, (2)

ct � ft ∗ ct−1 + it ∗ tan h Wc · Ht−1, It􏼂 􏼃 + bc( 􏼁. (3)

(3) Output gate. ,e output gate is used to determine the
final output value mt, which is obtained by multi-
plying ct and ot (the hidden layer state Ht−1 at the
previous moment and the reserved portion of the
input variable It at the moment) by the tanh func-
tion. ,is is a node value output by the LSTM unit at
this time. ,e formula is displayed as follows:

ot � σ Wo Ht−1, It􏼂 􏼃 + bo( 􏼁, (4)

mt � ot ∗ tan h ct( 􏼁. (5)

2.2. Data Acquisition

2.2.1. Experimental Participants. ,e sample size of the
experiment was 100 male flying cadets who were in good
health had a visual acuity of 1.0 or more. ,ey were familiar
with flight procedures and do not have any chronic drug
history. All of them aged 22.0± 2.1. ,ey had 250–300 hours
of flight experience.

,e experimental process is strictly in accordance with
the Helsinki Declaration. All experimental personnel re-
ceived a complete explanation of the experimental proce-
dures and equipment and signed a written informed consent
form to participate in the experiment.

2.2.2. Experimental Apparatus. ,is experiment includes
physiological and psychological tests. ,e apparatus in
physiological experiment mainly includes Cessna 172R
simulation, high-level simulation flight platform, BIOPAC
MP150 signal acquisition equipment, notebook computer,
high-definition camera, and other experimental equipment.
Also, the present platform is mainly composed of a joystick,
throttle and foot rudder control system, high level simulation
instrument system, and virtual scene system based on Prepar
3D v4. ,e flight simulation experiment is shown in Figure 3.
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Psychological experiment is mainly carried out using the
NASA Task Load Index (NASA-TLX). ,e specific de-
scription of each dimension of the NASA-TLX scale is given
in [19] (for example, the psychological demand dimension is
exhibited in Figure 4).

Participants could draw a mark on the scale that
matches their perceived workload. ,e six dimensions of
cognitive load paired together could form fifty cognitive
load dimension combinations. Participants were asked to
tick out the dimensions that contribute more to the cog-
nitive load size in each combination. ,e weight value of
the corresponding dimension to the total cognitive load is
determined according to the number of times where each
cognitive load dimension is marked (the value is 0–5). In
this way, the total load level is calculated. ,e higher the
score, the greater the psychological load of the participants;
conversely, it is small.

2.2.3. Experimental Procedure

(1) Flight scenario. ,e experiment was carried out in a
simulated environment with high visibility and
without wind. ,e setting of the environment is
mainly based on CCAR-61-R4 “Rules for the certi-
fication of pilots and ground instructors of civil
aircraft” [20], including the flight skill requirement
(11) of the 61.127 private pilot license and the flight
experience requirement of the driver of the com-
mercial pilot license aircraft category of the 61.159
(3). ,e flying cadets were organized to wear the
BIOPAC MP150 ECG sensor. ,e sampling fre-
quency was set to 2048HZ. Afterward, they per-
formed an airfield traffic pattern mission in
accordance with the flight instructions. ,e airfield
traffic pattern mainly includes departure leg, cross-
wind leg, downwind leg, base leg, and final leg (as
shown in Figure 5). Participants were required to

complete the five-stage mission at one time during
the experiment.

(2) Experimental design. ,is experiment is roughly
divided into 5 steps, and the specific steps are as
follows:

(1) Some participants were introduced about the
experimental procedure and the equipment.
Afterwards, the equipment was checked and
adjusted before the experiment. Each of them
could perform 2-3 flight training before the
formal experiment to adapt to the model display
interface and cockpit operation. ,ey also need
to carefully read the six-dimensional description
of NASA-TLX and the instructions for filling out
the form.

(2) ECG sensor is applied in the experimental par-
ticipant. After that, they perform the airport
traffic mode according to instructions of the
simulated platform vision system and conduct
psychological tests.

(3) When flight participants complete each side of
the airfield traffic pattern, the NASA-TLX scale-
level pop-up will automatically appear on the
simulated visual displayer. After completing the
questionnaire according to the contents of the
scale, they continued the next flight. ,e mission
requires 15–20 minutes for a complete
experiment.

(4) After each participant completes the airfield
traffic pattern and fills the gauge, replace the
object.,e next one wears ECG sensor according
to the same position and then repeats steps (3)-
(4).

(5) After all the participants performed the experi-
ment, the local NASA-TLX scale data and ECG
data were saved in the computer for subsequent
analysis.
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Figure 3: Simulator flight experiment diagram.
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Due to the long time consumption of this experiment, in
order to avoid the effect of the experimental time difference,
it was divided in two periods with similar physiological cycle
of human body, namely, 9 : 00–12 : 00 and 14 : 00–17 : 00, the
whole process remained quiet. ,e specific process is in-
dicated in Figure 6.

3. Results

3.1. Data Analysis

3.1.1. Psychological Data Analysis. ,e psychological data
analysis flow is revealed in Figure 7.

,e NASA-TLX total score (recorded as Total) counting
method is roughly divided into two steps. Firstly, the score
for each dimension is calculated based on the object’s score
and the weight value for each dimension of the NASA-TLX
scale (the product of the weight value and the score). Sec-
ondly, scores for each dimension are summed, and they are
divided by 15 at the end. According to the graphical cal-
culation method, total scores of NASA-TLX during the
airfield traffic pattern of 100 participants were obtained. Due
to space limitations, the NASA-TLX total score calculation
process for a flying cadet is shown as an example in Figure 8.
NASA-TLX score calculation process is similar to that of
other participants during the flight and will not be described
here.

According to Figure 8, it can be got:
Total� (15× 4+5×1+12× 2+18× 5+10× 2+8×1)/15�13.8.

In order to verify whether NASA-TLX scale can dis-
tinguish different levels of cognitive load, the validity of
cognitive load measurements on each side of the airfield

traffic pattern is analyzed in this paper. In other words, it is
validated whether there is a significant difference between
themeasured values on each side of the airfield traffic pattern
based on the F test. By analyzing the difference between the
measured values of departure leg and the other sides, it is
known that there are significant differences between the
measured values of the off-field edge and the other four
edges, which are (F (1,38)� 228.85, p< 0.05), (F (1,38)�

209.17, p< 0.05), (F (1,38)� 322.14, p< 0.05), and (F (1,38)�

166.54, p< 0.05), respectively. ,e other four sides’ ana-
lyzing processes are similar to the departure leg and will not
be described here. From all the analysis results, the measured
values on each side are valid. Hence, NASA-TLX subjective
measurement has high validity and can be used to measure
cognitive load size.

Statistical analysis was performed on NASA-TLX scale
data on each side of the airfield traffic pattern. ,e analysis
results are displayed in Table 1 and Figure 9.

In this paper, the radar chart is used to represent the
cognitive load of each flight phase in six dimensions (as
displayed in Figure 10). ,e higher brain power require-
ments are base leg, final leg, and departure leg. ,e higher
physical strength is the downwind leg and the departure leg.
,e higher time requirements are the final leg, the base leg,
and the departure leg. ,e poor performance levels are the
final leg and the base leg. When the participants are on the
departure leg and the base leg, they need the more effort.
When they are on the final leg and the base leg, they perform
the higher more frustration.

,e analysis of the psychological index data shows that in
the case of good weather, the cognitive load values of each
flight stage from the high to the low are the final leg, the
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departure leg, the base leg, the crosswind leg, and the
downwind leg. ,e task on the final leg is the most difficult
and the task on the downwind leg is the easiest.

3.1.2. ECG Data Analysis. HRV is an indicator of ECG
signal. When the sympathetic nerve is excited, HRV in-
creases; when the parasympathetic nerve is done, HRV

decreases [21]. In order to obtain the time-frequency in-
dicators of the ECG signals, it is necessary to perform
pretreatment, feature extraction and time-frequency analysis
on the ECG signals, as exhibited in Figure 11.

(1) Pretreatment of ECG signals. For noise such as
baseline drift mixed in the ECG signal, it can be
removed using a high-pass filter with a cutoff
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Table 1: Statistical analysis results of total scores of NASA-TLX scales.

Analysis index airfield traffic pattern Average value Standard deviation Number of samples 95% confidence interval
Departure leg 69.49 5.23 500 (65.39, 73.14)
Crosswind leg 60.78 5.13 500 (57.83, 61.01)
Downwind leg 52.67 4.78 500 (49.64, 56.78)
Base leg 65.15 4.95 500 (64.63, 71.77)
Final leg 72.47 5.41 500 (69.56, 78.64)
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frequency of 0.5Hz. ,e power frequency interfer-
ence is filtered by a 50Hz notch filter [22]. Random
noise caused by respiratory wave noise, human
motion, and electrode polarization is not considered
here because of its low content.
On the basis of filtering out the noise such as dis-
tortion drift and power frequency interference, this
paper uses the wavelet transform principle to elim-
inate the myoelectric interference mixed in the ECG
signal. Here, the db5 wavelet function is applied to
perform 8-scale decomposition on the original ECG
signal. ,en, based on the decomposition coefficient
of each layer, unbiased likelihood estimation is
adopted to select the threshold of each layer. Finally,
ECG signal can be reconstructed to effectively
remove the noise based on the wavelet reconstruc-
tion principle. In this paper, SNR and MSE are
utilized to judge the denoising effect:

SNR � 101g Ps − Pn( 􏼁, (6)

MSE � 􏽘
N

i�1

Yt − Yt
′( 􏼁
2

N
, (7)

where Ps is the effective power of the signal; Pn is the
effective power of the noise; Yt is the actual value at
time t; and Yt

′ is the output value at time t.

According to formulas (6) and (7), SNR� 118.7143
and MSE� 6.1788e–04. ,e calculated results show
that the denoising effect is good. ECG signal pre-
processing is displayed in Figure 12.

(2) R wave feature extraction based on the threshold
method. A complete ECG cycle is a sequence of two
adjacent P waves. However, since the amplitude of
the R wave is large and has the largest energy, the R-R
interval replacement is commonly applied in the
practical applications, namely, the distance between
adjacent R waves.
In this paper, based on the signal noise reduction, a
threshold method is used to extract the R wave. ,e
average value of the high-frequency portion is set to
be a threshold value 1 and one half of the threshold
value 1 is assigned to a threshold value 2. When the
signal value is greater than threshold 1, the signal
position is recorded as L1. When the signal value is
less than threshold 2, the signal position is recorded
as L2. It can be seen that there must exist an R wave
peak between L1 and L2.

(3) Time-frequency analysis of HRV. Time-frequency
analysis of HRV is divided into two parts which are
time-domain and frequency-domain analysis. Time-
domain analysis is based on the calculation results of
the R-R interval sequence and other statistical in-
dicators for quantitative analysis. ,e description
and calculation formulas of each time-domain in-
dicator can be found in Table 2. ,e quantitative
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analysis of HRV time-domain indicators on each
side of the airfield traffic pattern are described in
Table 3.

Frequency-domain analysis of HRV is based on the
frequency characteristics of ECG signal, which decomposes
the ECG signal into different frequency bands and calculates
the energy it has in a unit of time. ,ereby, quantitative
analysis of the power of ECG signal in each frequency band
is implemented. Depending on the frequency, HRV power
spectrum can be mainly divided into three types of spectral
components (as shown in Table 4). And, variations in each
component can reflect changes in the activity of the auto-
nomic nervous system.

In this paper, based on fast-Fourier transform principle,
time-series of ECG signals are converted to the frequency
domain and power spectrum of each side of the airfield
traffic pattern is obtained. ECG power spectrum curve of the
departure leg is displayed in Figure 13. ,e area enclosed by
the power spectrum and the coordinates in each frequency
band is numerical power of the signal in the frequency band.
,erefore, energy characteristics of each frequency band are
extracted according to the power spectrum to quantitatively
analyze the frequency-domain characteristics of HRV.
According to formula (8), the obtained low-frequency power
and high-frequency power are standardized, which is con-
venient for obtaining their ratios:

xi �
ti − μi( 􏼁

Υi

, i � 1, 2, 3, 4, (8)

where ti is a nonnormalized raw data value and μi and Υi are
the mean and standard deviation of the original data,
separately.

Since the frequency-domain analysis process of the
flying cadets’ ECG signal during the completion of other
four-sidedmissions is similar to that of the departure leg, it is
not described here. Results of the HRV frequency-domain
indicators on each phase of the airfield traffic pattern ob-
tained by frequency-domain analysis are depicted in Table 5.
,e indicators include normalized low-frequency power
LFnorm, normalized high-frequency power HFnorm, and the
ratio of low-frequency to high-frequency power (LF/HF).

According to the data in Table 3 and Table 5, the var-
iation curves of the indicators in the time-domain and
frequency-domain of the ECG signal are plotted on the
airfield traffic pattern, as exhibited in Figure 14.

According to the statistical analysis of ECG data, indi-
cators including MEAN, SDNN, LF, and (LF/HF) have the
maximal value at the final leg and the minimal value at the
downwind side. RMSSD andHF indicators have amaximum
at the downwind side and a minimum at the final leg.

Results of the comprehensive psychological indicators
and ECG indicators show that when the cognitive load

Table 2: HRV time-domain indicators.

Name Unit Description Calculation formula
MEAN ms RR interval mean MEAN � 􏽐

N
i�1 (RRi/N)

SDNN ms Standard deviation of all RR intervals SDNN �

������������������

􏽐
N
i�1((RRi − RR)2/N)

􏽱

RMSSD ms Interneighbor RR interval rms RMSSD �

��������������������

􏽐
N
i�1((RRi+1 − RRi)

2/N)

􏽱

pNN50 % ,e ratio of the RR interval is greater than 50ms pNN50 � (NN50/NN) × 100%
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Figure 13: Departure leg ECG power spectrum.

Table 5: Results of HRV frequency-domain indicators on each phase of the airfield traffic pattern.

Frequency-domain indicator airfield traffic pattern LFnorm HFnorm (LF/HF)

Departure leg 0.64 0.33 1.93
Crosswind leg 0.60 0.37 1.62
Downwind leg 0.62 0.35 1.77
Base leg 0.59 0.38 1.55
Final leg 0.68 0.30 2.26

Table 3: HRV time-domain indicator on each side of the air field traffic pattern.

Time-domain indicator airfield traffic pattern MEAN SDNN RMSSD pNN50

Departure leg 810.53 171.84 33.26 19.56
Crosswind leg 720.92 150.93 47.45 9.23
Downwind leg 783.67 162.34 38.69 13.41
Base leg 697.74 126.54 49.42 8.16
Final leg 856.49 180.26 29.73 24.74

Table 4: HRV spectral components.

Name Abbreviation Frequency range
Very low frequency VLF <0.04HZ
Low frequency LF 0.04–0.15HZ
High frequency HF 0.15–0.4HZ
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increases, MEAN, SDNN, LF, and (LF/HF) will do ac-
cordingly. Meanwhile, RMSSD andHF indicators will have a
tendency to decrease.

3.2. Correlation Analysis on Psycho-Physiological Factors.
Since it is difficult to rank cognitive load by a fixed threshold,
it is done according to the total score of the NASA-TLX
subjective scale. ,erefore, the cognitive load is divided into
three levels: high (score higher than 70), medium (score
between 60 and 70), and low (score below 60). It can be
observed from Figure 9 that total scores on each side of the
airfield traffic pattern are 69.49, 60.78, 52.67, 65.15, and
72.47. ,ence, the cognitive load levels on each side of the
airfield traffic pattern are divided into the cognitive load: the
final leg is high, the crosswind leg, the departure leg, and
base leg are medium grade and the downwind leg is low
grade.

Although both ECG and psychological indicators can be
used to identify cognitive load, it is difficult to completely
distinguish the difference in cognitive load with a single
indicator. And, because the degree of consistency and degree
of correlation of the indicators are different, it is not possible
to directly identify the cognitive load levels of different flight
periods with the selected indicators. ,erefore, according to
Pearson correlation analysis method, the correlation coef-
ficient between each index (including 7 ECG features and 1
psychological characteristic index) is calculated.,e Pearson
correlation matrix is shown in Table 6.

It can be seen from Table 6 that the correlation between
psychological index Total and ECG indicator is weak. ,e
degree of correlation amongLF, HF, (LF/HF), and other
indicators is not significant, and the characteristics of the
changes are inconsistent. ,erefore, Total, LF, HF, and
(LF/HF)indicators are selected as the characteristic indi-
cators for evaluating the cognitive load of flying cadets.

3.3. Cognitive Load Identification Model. In this paper, a
cognitive load identification model is established based on
LSTM-RNN. ,e model structure is shown in
Figure 15.Total, LF, HF, and (LF/HF) are input variables in
the model, and each variable needs to be standardized
according to formula (8). ,e pilot’s cognitive load level is a
model output variable.

3.3.1. Parameter Determination. ,e total number of ex-
perimental participants is 100 in this paper. ECG and
psychological data of each flying cadet is obtained on each
side of the airfield traffic pattern.,us, total of sample data is
500. Among them, 80% is randomly selected as a training
sample and the remaining 20% is used as a test sample.
,ence, 400 sample data are trained and 100 sample data are
tested. MAE and RMSE were selected as indicators for test
error analysis. ,ese two indicators are calculated according
to the following formulas:

MAE � 􏽘
N

t�1

Yt − Yt
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N
, (9)

RMSE �

�����������

􏽘

N

t�1

Yt − Yt
′( 􏼁
2

N

􏽶
􏽴

, (10)

where N is the number of samples, Yt is the actual value at
time t, and Yt

′ is the model output value at time t.
A three-layer LSTM-RNN neural network is established

in the paper, including input layer, hidden layer, and output
layer. Since the input variable includes 4 feature indicators,
the number of input layer neurons is 4. Only one of the
output variables is the cognitive load level, so the number of
neurons in the output layer is determined to be 1.

,e method for determining the number of hidden layer
neurons is as follows: firstly, a single hidden layer of LSTM-
RNN is built and the fixed training parameters are set (learn
rate set to be 0.001, batch size set to be 10, time step set to be
20, and number of iterations set to be 50).,e training of the
same number of iterations is performed under different
neuron numbers, and the number of neurons with the
smallest error is selected as the number of neurons in the
first hidden layer. Secondly, the number of hidden layers
increases gradually, and the above process is repeated until
the degree of error reduction does not change. Namely, the
number of hidden layers and neurons is determined. ,e
error calculation method is shown in formulas (9) and (10).
,e test errors for the single hidden layer, the second hidden
layer, and the third hidden layer are exhibited in Figure 16.

As can be clearly seen from the Figure 16(a), it is the
most desirable when the number of neurons in the first
hidden layer is selected to be 6, with the minimal error.
Similarly, it is appropriate to set the number of the second
and third hidden layer neurons to be 6 and 5, respectively,
from the Figures 16(b) and 16(c). In summary, when the
model has only one hidden layer, the optimal neural network
structure is 4-6-6-1. When the model has two hidden layers,
the optimal structure is 4-6-6-5-1. As depicted in Figure 17,
test errors of the two structures are almost the same. Since
the training time of 4-6-6-1 is smaller, the network structure
of this model is 4-6-6-1.

,e method of determining the parameters such as the
learning rate, the time step, the batch size, and the number of
iterations is the same as one of determining the number of
hidden layer nodes. Based on the determined network
structure, test errors are compared by changing the size of
the parameters. ,e test error is calculated according to the
formulas (9) and (10), and the corresponding parameter size
is the best when the selection error is minimal. ,e test error
varies with the value of each parameter as displayed in
Figure 18.

,e number of sample data used in the model for each
training process is the batch size. Under normal
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circumstances, the test error will decrease with the increase
of batch size and the downward trend will be slower.
,erefore, the batch size is determined to be 10 according to
the actual training environment. It can be seen from
Figures 18(a) and 18(b) that the test error is the smallest
when the learning rate is 0.001 and the time step is 40. As can

be seen from Figure 18(c), the training error becomes
smaller as the number of iterations increases. When the
number of iterations is less than 30, the training error de-
creases rapidly. As the number of iterations increases, the
training error decreases gradually. When the number of
iterations reaches 80 or so, the training error tends to

Normalized processing Input layer LSTM layer Output layer
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HFnorm

LF/HF

Total
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Standard deviation: γ 
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…
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…
…

Figure 15: Cognitive load identification model based on LSTM-RNN.

Table 6: Pearson correlation matrix.

Indicator category MEAN SDNN RMSSD pNN50 LF HF (LF/HF) Total

MEAN Pearson correlation 1 0.951∗ −0.993∗∗ 0.975∗∗ 0.972∗∗ −0.985∗∗ 0.984∗∗ 0.432
Significant (bilateral) — 0.013 0.001 0.005 0.006 0.002 0.002 0.467

SDNN Pearson correlation 0.951∗ 1 −0.940∗ 0.899∗ 0.899∗ −0.920∗ 0.979∗∗ 0.311
Significant (bilateral) 0.013 — 0.017 0.038 0.038 0.027 0.004 0.611

RMSSD Pearson correlation −0.993∗∗ −0.940∗ 1 −0.974∗∗ −0.953∗ 0.972∗∗ −0.986∗∗ −0.456
Significant (bilateral) 0.001 0.017 — 0.005 0.012 0.006 0.002 0.440

pNN50
Pearson correlation 0.975∗∗ 0.899∗ −0.974∗∗ 1 0.988∗∗ −0.994∗∗ 0.938∗ 0.622
Significant (bilateral) 0.005 0.038 0.005 — 0.002 0.001 0.018 0.262

LF Pearson correlation 0.972∗∗ 0.899∗ −0.953∗ 0.988∗∗ 1 −0.997∗∗ 0.923∗ 0.579
Significant (bilateral) 0.006 0.038 0.012 0.002 — 0.000 0.025 0.306

HF Pearson correlation −0.972∗∗ 0.889∗ 0.972∗ −0.994∗∗ −0.997∗∗ 1 −0.947∗ −0.562
Significant (bilateral) 0.002 0.027 0.006 0.001 0.000 — 0.015 0.324

(LF/HF)
Pearson correlation 0.984∗∗ 0.979∗∗ −0.986∗∗ 0.938∗ 0.923∗ −0.947∗∗ 1 0.346
Significant (bilateral) 0.002 0.004 0.002 0.018 0.025 0.015 — 0.568

Total Pearson correlation 0.432 0.311 −0.456 0.622 0.579 −0.562 0.346 1
Significant (bilateral) 0.467 0.611 0.440 0.262 0.306 0.324 0.568 —

∗Significantly correlated at the 0.05 level (both sides); ∗∗significantly correlated at the 0.01 level (both sides).
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converge.,erefore, the number of iterations selected in this
experiment is 100. ,e remaining parameters include
learning rate which is set to be 0.001 and time step with 40.

3.3.2. LSTM-RNN Performance. After the model training is
completed, the test set is substituted into the model to obtain
the test result. At the same time, this paper uses a 5-fold
cross-validation method for model evaluation. ,e confu-
sion matrix of the training set and the cognitive load level
identification result on the test set of the model is shown in
Figure 19. ,e accuracy of the training set and the test set
was 79.9% and 77.6%, respectively. ,ere was also no

systematic bias in the sensitivity (true positive rate) and
specificity (true recessive rate) of the training set and test set.

4. Discussion

Cognitive load is an important factor affecting the pilot’s
behavior. It is not only a significant prerequisite to identify
the pilot’s cognitive load under the complex environment for
realizing active vehicle safety controlling but also an im-
portant content for preventing flight accident. ,rough a
large number of simulated flight experiments, it can be
clearly obtained for the physiological and psychological data
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of the pilot during the airfield traffic pattern. In this paper,
the correlation analysis is performed on the basis of the
preprocessing of each characteristic data, and the cognitive
load identification model is established using LSTM-RNN
neural network structure.

Different from the traditional RNN network structure,
LSTM-RNN neural network presented in this paper has
great advantages. As main reflection in the ability to process
longer time-series data, the degree of fitting to the data is

strong. As exhibited in Figure 20, compared the traditional
RNN neural network, support vector machine and other
models or only using physiological indicators to identify the
cognitive load, and the model adopted in this paper is more
accurate.

Due to the strong correlation between the model input
variables, it is easy to cause unnecessary errors in the
identification results. In order to avoid this situation,
physiological and psychological indicators have been
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screened through Pearson correlation analysis. Finally, four
independent indicators were selected as input variables of
the model.

,e output of the cognitive load identification model is
the cognitive load level of flying cadets. Because of the
difficulty in analyzing the cognitive load, this paper com-
bines the actual scores according to the total score of NASA-
TLX scale. Results of model identification and NASA-TLX
scale test were compared, proving that the model is accurate.

Pilot’s physiological and psychological characteristics in
complex environments are explored in this paper, and pilots’
cognitive load based on these characteristics is studied. It
makes up for the lack of pilots’ microbehavior study in the
field of flight traffic safety and provides a basis for further
research on pilots’ cognitive load. Nevertheless, there are still
some deficiencies in this study: (1) there is a general link
between physiological signals and cognitive load.,is article
only deals with and screens various indicators of ECG
signals. Physiological indicators such as EEG signals, skin
electrical signals, and vision are also sensitive to changes in
cognitive load. Because of the energy limitation, this article
will not be considered for the time being. (2) ,is paper
measures the psychological characteristics of flying cadets
based on the NASA-TLX scale. ,e flying cadets fill in
according to their true feelings and thus have certain sub-
jectivity. (3) Due to differences in individual characteristics,
the workload perception level of the samemissionmay result
in different results depending on the individual between the
flight participants. (4) Some external factors will bring a
certain amount of error for the experiment results. For
example, there are differences in the technical level between
the simulated flight and the real flight in the flight simulation
environment, which have an impact on the experimental
results. In order to achieve higher identification accuracy,
the analysis of input variables affecting the pilot’s cognitive
load identification model from multiple perspectives is the
focus of follow-up research. More detailed pilot’s differences
need to be further explored. ,e influence of subjective and
external factors on the experiment results should be studied
in subsequent studies.

5. Conclusion

,is paper explores the cognitive load of pilot based on
their physiological and psychological indicators. A cog-
nitive load identification model for pilot based on LSTM-
RNN was established. By considering the correlation and
saliency between the indicators, the four indicators are
finally determined as the input of the identification model.
,ese include three characteristics of the ECG signal (low-
frequency power LF, high-frequency power HF, and their
ratio (LF/HF)) and one psychological characteristic indi-
cator (Total). It was verified by low-level simulator ex-
periments, and the model achieved 79.9% training set
accuracy and 77.6% test set accuracy.

In this paper, various indicators of ECG signals are
significantly correlated with cognitive load. In addition, the
cognitive load level of pilots on each side of the airfield traffic
pattern is also different. Among them, the load on the final
leg is the largest and on the downwind leg it is the smallest.
Indicators such as RR interval MEAN, RR interval SDNN,
LF, and (LF/HF) have maximum values at the final leg and
minimum values at the downwind leg; RMSSD and HF
indicators have a maximum at the downwind leg and a
minimum at the final leg. In summary, as the cognitive load
increases, MEAN, SDNN, LF, and (LF/HF) will increase; in
the same time,RMSSD and HF indicators will decrease.

In this paper, the cognitive load of pilot was accurately
identified. It also explores their cognitive load changes during
each phase of the airfield traffic pattern mission. ,rough the
analysis of the dynamic characteristics of pilots under dif-
ferent cognitive load in complex flight environment, there was
a comprehensive understanding of the psychological and
physiological characteristics of the flying cadet. ,is study
provides a good foundation for further research on the
identification of the pilot’s cognitive load and provides a basis
for pilots’ microbehavior analysis. ,e present study helps the
pilots’ ability to cope with missions that overcome load and
ensure safe flight. It is of great practical significance to re-
search the future active safety warnings for flight, pilot’s
microbehavior assessment, and flight safety.
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