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Driver’s intention of the front vehicle plays an important role in the automatic emergency braking (AEB) system. If the front
vehicle brakes suddenly, there is potential collision risk for following vehicle. (erefore, we propose a driver’s intention rec-
ognition model for the front vehicle, which is based on the backpropagation (BP) neural network and hidden Markov model
(HMM). (e brake pedal, accelerator pedal, and vehicle speed data are used as the input of the proposed BP-HMM model to
recognize the driver’s intention, which includes uniform driving, normal braking, and emergency braking. According to the
recognized driver’s intention transmitted by Internet of vehicles, an AEB model for the following vehicle is proposed, which can
dynamically change the critical braking distance under different driving conditions to avoid rear-end collision. In order to verify
the performance of the proposed models, we conducted driver’s intention recognition and AEB simulation tests in the cosi-
mulation environment of Simulink and PreScan. (e simulation test results show that the average recognition accuracy of the
proposed BP-HMM model was 98%, which was better than that of the BP and HMM models. In the Car to Car Rear moving
(CCRm) and Car to Car Rear braking (CCRb) tests, the minimum relative distance between the following vehicle and the front
vehicle was within the range of 1.5m–2.7m and 2.63m–5.28m, respectively. (e proposed AEB model has better collision
avoidance performance than the traditional AEB model and can adapt to individual drivers.

1. Introduction

Rear-end collisions are the most common traffic accidents,
with more than 90% due to drivers’ inattention or ner-
vousness [1]. (e National Transportation Safety Board
(NTSB) points out that 80% of rear-end collisions can be
avoided by using advanced collision avoidance systems [2].

(e automatic emergency braking system (AEB) is a
typical advanced collision avoidance system, which uses
onboard sensors to detect collision risk and automatically
brakes when necessary to avoid collision. According to the
research report [3], when the vehicle speed is less than
50 km/h, vehicles using the AEB system can reduce the rear-
end accidents by 38%. (erefore, it is of great significance to
study the AEB system.

It is the keys for the AEB system to judge the dangerous
degree and establish the collision avoidance model. Many

studies use safety braking distance [4–6] or time to collision
(TTC) [7–9] for risk measurement. (ere are also many
improvements based on these models. Katare and El-
Sharkawy [10] proposed a collision warning model using the
neural network based on supervised learning to provide
early warning of possible collisions. Chen et al. [11] pro-
posed a new algorithm that considered both time collision
and safety braking distance. Kaempchen et al. [12] proposed
a method to calculate the AEB emergency braking trigger
time, which considered all possible trajectories and di-
mensions of the target and host vehicle. Pei et al. [13]
proposed the concept of collision avoidance time margin on
the basis of known workshop motion information, and a
hierarchical alarm/collision avoidance algorithm applicable
to different drivers’ collision avoidance characteristics was
designed. In addition, many scholars also consider the
impact of pavement conditions on AEB performance. Han
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et al. [14] proposed an AEB braking strategy that considered
the impact of different road friction on the TTC braking
threshold. Kim et al. [15] proposed an algorithm for esti-
mating the maximum tire-road friction coefficient based on
interacting multiple models and applied it to the AEB
system. Hwang and Choi [16] used early-warning braking to
estimate the maximum friction coefficient of tire pavement
in real time to obtain road adhesion state and predicted rear-
end collision risk adaptively based on friction information.
Kim et al. [17] proposed an AEB control algorithm that can
compensate for the impact of slope and road friction. Most
of the parameters of the above research model cannot be
adjusted online and cannot adapt well to the driver’s be-
havior under different traffic conditions.

Recently, to improve the robustness of the system, the
research on driver behavior is paid more attention. Li et al.
[18] studied the visual scanning behavior of Chinese drivers
at signalized and unsignalized intersections. (eir other
study [19] found that traffic congestion has a negative impact
on driver behavior on the road after congestion, which
provides a reference for the development of subsequent
assistance systems. For the anticollision model, many re-
search studies begin to consider the adaptive model of driver
characteristics. Xiong et al. [20] developed an online risk-
level classification algorithm based on several safety indexes
such as TTC, time headway, and relative distance under
emergency braking. Duan et al. [21] extracted three main
vehicle-bicycle conflict scenarios from naturalistic driving
data, analyzed the impact of conflict types on Chinese
drivers’ braking behavior, and proposed a design method of
adaptive Bicyclist-AEB based on driver braking character-
istics. Wada et al. [22] expressed the deceleration mode of
the professional drivers’ braking at the last second with a
perceived risk index and applied it to the AEB system. Wang
et al. [23] proposed a forward collision warning algorithm
that can adjust the warning threshold in real time according
to the driver’s behavior change. Bella and Russo [24] ana-
lyzed the driver’s behavior, determined an effective driver
assistance system which can be readily accepted by the
driver, and then proposed a new collision warning algorithm
based on the driver’s risk perception. Lee et al. [25] used an
artificial neural network learning algorithm to establish a
driver behavior model. (e collision risk was determined
according to the driving characteristics of the driver. Wang
et al. [26] used a driving simulator to simulate brake-only
noncollision events and then used the driver’s braking be-
havior to simulate the driver’s expected response deceler-
ations.(ere are also many studies that take into account the
driving behavior or intentions of other vehicles. Yuan et al.
[27] proposed amethod to predict the lane change maneuver
intention of vehicles in front by using the hidden Markov
model. Geng et al. [28] used HMM to learn the continuous
characteristics of driving behavior and predicted the be-
havior of the target vehicle by combining the posterior
probability and prior probability. Hu et al. [29] used se-
mantics to define vehicle behavior and a probabilistic
framework based on deep neural networks to estimate the
driver’s intention, final position, and corresponding time
information of surrounding vehicles. Jo et al. [30] proposed a

unified vehicle tracking and behavior reasoning algorithm,
which can simultaneously estimate the dynamics of sur-
rounding vehicles and the intentions of drivers. (ese
studies mainly use sensors to obtain the state that the vehicle
has shown, they set off from data or models to adapt to the
driver’s behavior, and less consider the driving behavior of
the surrounding vehicle drivers and their changing trends,
although this may be as important as the driver’s
characteristics.

With the rapid development of the communication
technology, the application of Internet of vehicles tech-
nology can make it easy to transmit data between vehicles
[31–33]. Wu et al. [34] proposed a vehicle collision risk
prediction method based on the Internet of vehicles, which
can predict the vehicle collision risk by comprehensively
considering the target vehicle’s movement/position, driver
behavior, and road information.(omas et al. [35] proposed
a collision avoidance system using Kalman filter and ded-
icated short-range communications (DSRCs) for intersec-
tion of straight and curved roads. Liu et al. [36] proposed a
DSRC-based end of queue conflict early-warning system,
which took into account not only the permeability of DSRC,
but also the influence factors of traffic and communication.
Tian et al. [37] proposed a method to use DSRC to predict
vehicle movement behavior in collaborative vehicle envi-
ronment. (e above research is mainly applied to the early-
warning system and only considers the behavior of the front
vehicle without considering the time spent by the driver’s
behavior operation before the vehicle behavior changes,
which may lead to the prediction lag. However, instead,
these studies provide new ideas for AEB design.

In this article, we proposed an AEB model based on
driver’s intention recognition of the front vehicle.(emodel
recognizes the driving intention of the front vehicle and
transmits the information to the following vehicle through
vehicle-to-vehicle communication technology. Compared
with previous studies, this paper dynamically adds the
driver’s intention of the front vehicle into the AEB system of
the following vehicle through vehicle-to-vehicle commu-
nication, so as to improve the performance of the collision
avoidance system. (e main contributions of this paper
include the following: (1) a real-time driving intention
recognitionmethod with two-layer structure is proposed; (2)
an AEB model is proposed based on safety distance and
driving intention of the front vehicle; (3) the driving in-
tention of the preceding vehicle is dynamically combined
with the AEB system of the following vehicle.

(e rest of the paper is organized as follows: Section 2
provides the detailed methodology of the proposed method.
Section 3 provides the simulation experiment. Section 4
provides the experimental results. Section 5 is dedicated to
the discussions. Section 6 summarizes the conclusions.

2. Methods

AnAEBmodel was proposed, which was based on the driver’s
intention recognition of front vehicle via Internet of vehicles.
(is model was mainly composed of two parts: the driver’s
intention recognition model of the front vehicle and the AEB
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model of the following vehicle. Figure 1 shows schematic
diagram of system work. First, we established a driver’s in-
tention recognition model based on BP-HMM to recognize
the uniform driving intention, normal braking intention, and
emergency braking intention of the front vehicle’s driver by
the collected data of the brake pedal, accelerator pedal, and
speed of the front vehicle. Second, the recognized driver’s
intention and other driving parameters of the front vehicle
were transmitted to the following vehicle via Internet of
vehicles. Finally, according to the driver’s intention received,
the proposed AEBmodel of the following vehicle changed the
method for calculating the critical braking distance and ad-
justed AEB braking logic in real time.

2.1. Driver’s Intention RecognitionModel of the Front Vehicle.
Driver’s intention can be reflected by multiple driver’s be-
haviors occurring simultaneously or continuously in a pe-
riod. Considering the relationship between driver’s
behaviors and intentions, as well as the temporal charac-
teristics of driver’s behaviors, we first recognized the driver’s
behavior and then inferred the driver’s intention from the
recognized driver’s behavior.

BP and HMMmodels are two kinds of models, which are
commonly used to recognize driver behaviors and inten-
tions. (e BP model has simple structure and strong fault
tolerance, but its training needs a large number of samples.
(e HMM model has a strong temporal modeling ability,
which requires more prior knowledge support during
training and is suitable for small samples. (erefore, we
proposed a driver’s intention recognitionmodel based on BP
and HMM, which makes full use of the classification ability
of the BP neural network for big data and the mapping
ability of HMM for time relation of small data [38].

Rear-end collisions mainly occur, while the speed of the
front vehicle is lower than that of the following vehicle or the
front vehicle is braking. (erefore, the proposed BP-HMM
model mainly focuses on the recognition of the driver’s
intention during uniform speed, normal braking, and
emergency braking.

Figure 2 shows the structure of the proposed BP-HMM
model. (e pedal displacement and pedal speed of the brake
pedal and accelerator pedal were used as the BP model’s
input to recognize the driver’s behavior of the front vehicle.
We categorized common driver braking behaviors into six
categories: slight pressing the brake pedal, normal pressing
the brake pedal, rapid pressing the brake pedal, keeping the
brake pedal in position, releasing the brake pedal, and no
action of the brake pedal. Similarly, the driver’s acceleration
behaviors were also divided into six categories: normal
pressing the accelerator pedal, rapid pressing the accelerator
pedal, keeping the accelerator pedal in position, normal
releasing the accelerator pedal, rapid releasing the acceler-
ator pedal, and no action of the accelerator pedal. (en, the
vehicle speeds were classified according to the range of
vehicle speeds. (e driver’s behavior recognition results and
classified vehicle speed were used as the HMMmodel’s input
to recognize the driver’s intention of the front vehicle. (e
driver’s intention HMMs were divided into uniform driving,

normal braking, and emergency braking. After the HMM
model processing, the current driver’s intention was
recognized.

(e BP neural network model was used as a classifier of
the driver’s behaviors, and its classification learning process
consisted of forward propagation and backpropagation, as
shown in Figure 3. A three-layer BP neural network can
complete the mapping of arbitrary dimensions, and the
complexity of the two types of BP networks to be constructed
is the same, so both types of BP neural networks use the
single hidden layer network. (e structure consisted of
single input layer, single hidden layer, and single output
layer. In Figure 3, l represents the number of hidden layers
and ni, no represent the number of neurons in the input and
output layers, respectively [39].

In the process of forward propagation, the pedal data
X � (x1, x2, . . . , xni

)T were passed to the input layer, pro-
cessed layer by layer through the hidden layer, and then
transmitted to the output layer. (e state of neurons in each
layer only affects the state of neurons in the next layer, while
the output layer finally outputs the classification results of
the driver’s behavior Y � (y1, y2, . . . , yno

)T.
During the backpropagation, the result of the output

layer is compared with the value Z � (z1, z2, . . . , zno
)T of the

expected driver’s behavior classification, and error δ will be
returned according to the path of the original network
connection. (en, the weight w � (w(1),w(2), . . . ,w(l+1))T

and the bias b � (b(1), b(2), . . . , b(l))T between the neurons
will be modified. (erefore, the error can be gradually re-
duced until the error is limited to a predetermined range.

(e activation function of the transfer process of this
network uses the Sigmoid function, which is defined as

f(x) �
1

1 + e
− x

( 
. (1)

Considering the requirements of training time and
training accuracy, the adaptive gradient descent (AGD)
algorithm was used as the backpropagation algorithm of the
network.

(e data collected from the brake pedal and the accel-
erator pedal were taken as input, and the classification re-
sults of the six braking or acceleration behaviors were taken
as output. And the number of hidden layer neurons was
calculated as follows:

n �
������
no + ni

√
+ a, (2)

where ni is 20 and no is 6; a is an any constant between 1 and
10.

(en, different n was substituted for iterative training,
and the number of neurons in the single hidden layer n of the
two types of BP neural networks was finally confirmed to be
12 and 15, respectively.

(e speed was divided into ten levels.(e first nine levels
correspond to the speeds of 0–10 km/h, 10–20 km/h, . . .,
80–90 km/h, and if the speed is greater than 90 km/h, it is the
last level.

(e recognized driver’s behavior and classified vehicle
speed were used as input of the HMM model to recognize
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the driver’s intention of the front vehicle, which can be
defined as [40]

Ot � x(t), y(t), z(t)  , (3)

where x(t), y(t), and z(t) represent the classification results
of the braking and acceleration behaviors and vehicle speeds,
respectively.

(en, the driver’s intention HMM can be expressed as
follows:

σ � A,Bx,By,Bz,π , (4)

where we used Q � q1, q2, q3  to indicate three driver’s in-
tentions; then, A � [aij]3×3 is the transition matrix of the
driver’s intentions from qi to qj.
Bx � [b(1)

j (k)]3×6,By � [b(2)
j (k)]3×6, and Bz � [b(3)

j (k)]3×10,
respectively, represent the confusion matrix of three driver’s
intentions to each braking behavior, acceleration behavior, and

Following vehicle Front vehicle

The proposed
AEB model

Internet of
vehicles

Driver’s intention
recognition

model based on
BP-HMM

Figure 1: Schematic diagram of system work.
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speed classification. π denotes the initial probability vector of
the driver’s intentions.

Since the input data of the HMMmodel is three-dimensional,
the iterative formula of the forward and backward variables in the
Baum–Welch algorithm needs to be modified as follows:

αt+1(j) � 

N

i�1
αt(i)aij

⎡⎣ ⎤⎦ 

L

l�1
bj Ot+1(l)( ,

βt(i) � 
N

j�1
aijβt+1(j)⎡⎢⎢⎣ ⎤⎥⎥⎦ 

L

l�1
bj Ot+1(l)( .

(5)

(e revaluation formula of the Baum–Welch algorithm
with multiple observation probability matrices was changed
to

b
(l)

j (k) �
count k

(l)
|j 

count(j)
, (6)

where the forward variable αt+1(j) denotes the probability
when the partial observation sequence is O1,O2, . . . ,Ot+1
and the driver’s intention is qj at time t + 1. (e backward
variable βt(i) denotes the probability that part of the ob-
servation sequence isOt+1,Ot+2, . . . ,OT at the time t and the
state is qi · count(k(l)|j) represents the expectation of the
observed value k in the l-th (l � 1, 2, 3) dimension of the
observation sequence when the driver’s intention is qj. L is a
constant, defined as 3.

(e modified Baum–Welch algorithm was used to train
the driver’s intention HMMs, and then the HMM param-
eters of uniform speed driving, normal braking, and
emergency braking intention can be obtained, respectively.

2.2. 6e AEB Model of the Following Vehicle. In order to
ensure that the following vehicle can avoid collision under
different intentions of the driver in the front vehicle, an AEB
model based on three critical braking distance calculations
was established. In addition, the driving parameters and
driver’s intention recognition results required in the cal-
culation of the critical braking distance were obtained via
Internet of vehicles.

(e critical braking distance calculation method of
the proposed AEB model is shown in Figure 4. Db is the
critical braking distance of the AEB model; D0 is a
predetermined safe distance between the two vehicles,
defined as 3 m; Dh is the braking distance for the entire
process of the following vehicle; Df is the braking dis-
tance for the entire process of the front vehicle.Dh in is the
distance traveled by the following vehicle during inten-
tion recognition of the front vehicle; Dh tr is the distance
traveled by the following vehicle during the communi-
cation delay; Dh bc is the distance traveled by the fol-
lowing vehicle when the brake pedal of the following
vehicle is pressed until the braking takes effect. Dh br is
the distance traveled during the increase of braking

deceleration of the following vehicle; Dh b is the distance
traveled by the following vehicle during the braking of the
following vehicle at a constant deceleration to the same
speed vs as the front vehicle; Df bc is the distance traveled
by the front vehicle when the brake pedal of the following
vehicle is pressed until the brake takes effect; Df br is the
distance traveled during the increase of braking decel-
eration of the front vehicle; Df b is the distance traveled
by the front vehicle during the braking of the following
vehicle at a constant deceleration to the same speed vs as
the front vehicle [41].

(e critical braking distance of the AEB model was
calculated as follows:

Db � Dh + D0 − Df, (7)

Dh � Dh in + Dh tr + Dh bc + Dh br + Dh b, (8)

Df � Df bc + Df br + Df b, (9)

Dh in � vhtin, (10)

Dh tr � vhttr, (11)

Dh bc � vhtbc, (12)

Dh br �
vhtbr

2
, (13)

Df bc � vftbc, (14)

Df br �
vftbr

2
, (15)

where vf is the speed of the front vehicle; vh is the speed of
the following vehicle; vs is the same speed of two vehicles at
the most dangerous moment; ah is the deceleration of the
following vehicle; af is the deceleration of the front vehicle;
tin is the time required to recognize the driver’s intention of
the front vehicle, defined as 0.4 s; ttr is the transmission
delay of the Internet of vehicles, and since commonly used
Internet of vehicles devices based on DSRC protocol usually
have a delay of a few milliseconds, while 5G network, one of
the future development directions of Internet of vehicles, has
a negligible delay of one millisecond, so the communication
delay of vehicles in the simulation test in this paper is set to 0;
tbc is the time when the brake pedal of the following vehicle
is pressed until the braking takes effect, defined as 0.15 s; and
tbr is the brake deceleration increase time of the vehicle,
defined as 0.45 s.

According to the driver’s intention of the front vehicle
and the driving conditions of the two vehicles, the pa-
rameters of Dh b and Df b in equations (8) and (9) were
changed as follows:
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(i) If the two vehicles were moving at a constant speed
and the following vehicle was faster than the front
vehicle, the collision time occurs when the two ve-
hicles decelerate to the same speed as the front vehicle
but the following vehicle still moves faster than the
front vehicle.
(en, the parameters of Dh b and Df b were calcu-
lated as follows:

Df b �
vf vh − vf 

ahmax
,

Dh b �
v
2
h − v

2
f

2ahmax
,

(16)

where ahmax is the maximum deceleration of the fol-
lowing vehicle, defined as 8m/s2 [42].

(ii) If the driver’s intention of the front vehicle was
normal braking and vfa hmax > vhaf, the collision
time occurs when the two vehicles decelerate to the
same speed but the following vehicle still moves
faster than the front vehicle. Assume that the same
vehicle speed is vsn, which is defined as

vsn �
vfahmax − vhaf

ahmax > af
. (17)

(en, the parameters of Dh b and Df b were calculated
as follows:

Dh b �
v
2
h − v

2
sn

2ahmax
,

Dfb
�

v
2
f − v

2
sn

2af

.

(18)

If vfahmax ≤ vhaf, the collision time occurs when both
vehicles slow down to stop, that is, vsn � 0, and the
distance traveled by the following vehicle is larger than
that of the front vehicle.
(en, the parameters of Dh b and Df b were calculated
as follows:

Dh b �
v
2
h

2ahmax
,

Df b �
v
2
f

2af

.

(19)

(iii) If the driver’s intention of the front vehicle was
emergency braking and vfahmax > vhafmax, the
collision time occurs when the two vehicles decel-
erate to the same speed, but the following vehicle
still moves faster than the front vehicle, and then the
same speed of the two vehicles also is assumed as vse,
which is defined as

vsn �
vfahmax − vhafmax

ahmax > afmax
, (20)

where afmax is the maximum deceleration of the front ve-
hicle, defined as 6m/s2.

(en, the parameters of Dh b and Df b were calculated
as follows:

Dh b �
v
2
h − v

2
se

2ahmax
,

Df b �
v
2
f − v

2
se

2afmax
.

(21)

If vfahmax ≤ vhafmax, the collision time occurs when
both vehicles slow down to stop, vse � 0, and the distance
traveled by the following vehicle is larger than that of the
front vehicle.

(en, the parameters of Dh b and Df b were calculated
as follows:

Dh b �
v
2
h

2ahmax
,

Df b �
v
2
f

2afmax
.

(22)

In summary, if the relative distance d between the two
vehicles is less than or equal to Db, the proposed AEB model
of the following vehicle will provide automatic braking.

Front vehicle

Following vehicle

Dh

Db
Df

Df_bDf_brDf_bc

Dh_in Dh_tr Dh_bc Dh_br Dh_b

D0

Figure 4: Critical braking distance calculation method.
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3. Simulation Experiment

To verify the recognition accuracy of the driver’s intention
for the front vehicle and the effectiveness of the proposed
AEBmodel, the driver’s intention simulation test of the front
vehicle and AEB model performance simulation test were
conducted, respectively.

As shown in Figure 5, two simulation tests were carried
out in Simulink and PreScan cosimulation environment, and
the proposed BP-HMM model and AEB model were
established in Simulink. Figure 6 shows the simulation
scenario. Figure 6(a) shows the training data collection and
test scenario of the proposed BP-HMM model for the front
vehicle. Figure 6(b) shows the traditional AEB model per-
formance test scenario. And Figure 6(c) shows the proposed
AEB performance test scenario.

A one-way three-lane road was constructed with a length
of 1 km and a width of 3.5m for each lane in PreScan. (en,
the vehicle dynamic models used 2D Simple. (e following
vehicle model was BMWX5, and the front vehicle was BMW
Z3.(emain parameters of the models are shown in Table 1.
(e test drivers used the G29 simulator to control the vehicle
(Figures 5 and 6) in real time. Two TIS sensors in the
following vehicle were used to detect the relative distance
between the two vehicles. (e Internet of vehicles module
used the V2X sensor including a receiver and a transmitter,
which was mainly used to send the driver’s intention rec-
ognition results and other driving data of the front vehicle to
the AEB module in following vehicle (Figure 5).

3.1. Data Collection for the Driver Intention Model. In the
driver’s intention simulation test, five male and five female
experienced drivers were recruited as testers. Each driver used
theG29 simulator to control the vehicle to drive in a straight line
(Figure 6(a)). According to individual driving habits, the driver
simulated uniform driving, normal braking, and emergency
braking of the front vehicle within the three speed ranges of
0–30, 30–60, and 60–90km/h and repeated the test for 20 times
in each condition.(en, a total of 1,800 groups of data including
brake pedal displacement, brake pedal speed, accelerator pedal
displacement, accelerator pedal speed, and vehicle speed were
collected. Every driver known his or her intention during the
operation and can match it with the data after the test, so each
group of data can represent a specific driver’s intention.We take
each group of data as a sample, and these 1,800 samples can
constitute the dataset of the proposed BP-HMM model. (en,
we divided the 1,200 samples of the dataset into training set and
the remaining 600 samples into test set. In the training set and
the test set, the data related to the three different driver’s in-
tentions were one-third each. Finally, the training set was used
to train the BP model parameters of each driver’s behavior and
the HMMparameters of each driver’s intention, and the test set
was used to verify the recognition accuracy of the proposed BP-
HMM model.

3.2. 6e Simulation Test for AEB. To verify the effectiveness
of the proposed AEB model, we selected four traditional
AEB models as comparison objects, namely, three of which

were based on safe distance, namely, Mazda [4], Honda [5],
and Berkeley [6] models, and the other was the TTC [8]
model based on collision to time.

(e test conditions mainly refer to the two types of
CCRb (Car to Car Rear braking) and CCRm (Car to Car
Rear moving) for AEB testing in the European New Car
Evaluation Regulations (Euro-NCAP) [43]. Since the vehi-
cles involved in the study were all moving vehicles, CCRs
(Car to Car Rear stationary) was not included in the test
conditions.

According to the Euro-NCAP test standard, we changed
the test conditions appropriately. (e test scenarios are
shown in Figures 6(b) and 6(c). Table 2 lists AEB model
comparison test conditions. We shortened the 10 km/h
speed interval specified in CCRm to 5 km/h and increased
the maximum test speed of the following vehicle to 90 km/h,
which increased the speed density of the test. (en, in the
CCRb test, the brake pedal of the G29 simulator was used to
provide deceleration. In the process of braking, the test
driver made clear the braking intention and carried out
braking operation in combination with personal driving
habits. Finally, the density of test vehicle speed was also
increased appropriately.

In the test, 10 experienced drivers were tested once for
each driving condition, and the results of 10 tests under the
same driving condition were treated as a group. When there
were both collision and successful avoidance of collisions in
the same group of results, the final result was calculated
based on the median value of 10 tests. (e results of other
groups were averaged for collision speed or shortest relative
distance.

4. Results

4.1. 6e Driver’s Intention Recognition Results of the Front
Vehicle. Table 3 lists the comparison of recognition accuracy
of different driver intention recognition models. (e single-
layer BP model has a low recognition accuracy for normal
braking intention (91.0%) and an average recognition rate
for driver’s intention (96.0%). (e single-layer HMMmodel
has the lowest recognition accuracy for uniform driving
intention and normal braking intention (76.5% and 81.0%,
respectively), while the average recognition rate for driver
intention is only 85.17%. (e accuracy rate of the BP-HMM
model is above 97.0% for all three kinds of the driver’s
intentions, 100% for uniform driving intention, and the
average recognition rate is 98%.

4.2. 6e AEB Simulation Test Results. Figure 7 shows the
braking deceleration distribution of 10 drivers under dif-
ferent braking intentions in the AEB model test. Figure 7(a)
shows the results of the distribution of braking deceleration
of five AEB models under the driver’s normal braking in-
tention. Figure 7(b) shows the results of the distribution of
braking deceleration of five AEB models under the driver’s
emergency braking intention. As can be seen from Figure 7,
when the driver’s braking intention was normal, the max-
imum acceleration of the front vehicle was mainly
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concentrated between −1.5 and −3.0m/s2. When the driver’s
braking intention was emergency, the maximum decelera-
tion of the front vehicle was mainly concentrated between
−5.0 and −6.0m/s2.

Figures 8 and 9, respectively, show the comparison di-
agram of the shortest relative distance between two vehicles
in the CCRm and CCRb tests of the five AEB models. As
shown in Figure 8, in the CCRm test of the Mazda model, as
the vehicle speed increased, the shortest relative distance
dend of the two vehicles also increased, with a range between

G29 

Intention recognition 
model AEB model 

TransmitterReceiver
V2X

Short-
distance 

TIS

Long-
distance 

TIS

Created by simulink

Created by PreScan

Following vehicle Front vehicle

: area vailable only for the proposed AEB model
: area vailable for allAEB model

Figure 5: Schematic diagram of AEB model joint simulation.

(a)

(b)

(c)

Proposed 
AEB

Traditional
AEB

G29

Show Control

Intention

Front
vehicle

Front
vehicleFollowing

vehicle

Following
vehicle

Figure 6: (e simulation scenario: (a) the training and test scenario of the proposed BP-HMM model; (b) the traditional AEB model test
scenario; (c) the proposed AEB model test scenario.

Table 1: Main parameters of the vehicle dynamic models.

Parameter BMW X5 BMW Z3
Length (m) 4.790 4.040
Wide (m) 2.170 1.960
High (m) 1.720 1.230
Wheelbase (m) 2.820 2.446
Mass (kg) 2220 1435
Maximum braking pressure (MPa) 15 15
Maximum acceleration (m/s2) 3 3
Maximum deceleration (m/s2) 8 6
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4.48m and 17.61m. (e performance of Honda and Ber-
keley models was similar, and the range of dend was mainly
between 4m and 10m. Although the TTC model managed
to avoid collision in the speed range of 30–65 km/h, it failed
to avoid rear-end collision in the range of 70–90 km/h. For
the proposed AEB model, the dend was stable between 1.5m
and 2.7m.

As shown in Figure 9(a), (e Honda, Berkeley, and
TTC models were unable to avoid a collision at a speed
range of 60–90 km/h when two vehicles were trailing at a
distance of 40m and the driver in front vehicle was making
an emergency stop. However, Mazda and the proposed
AEB models were able to successfully avoid collisions at all

speed ranges of the test. As shown in Figure 9(b), when the
test condition was changed to the front vehicle with normal
braking intention, only the TTC model had a collision in
the speed range of 80–90 km/h. When the distance between
the two vehicles was 12m and the front vehicle was on
emergency braking, as shown in Figure 9(c), the Mazda
model and the proposed AEB model still successfully
avoided collision. In addition, when the driver of the front
vehicle wanted to change from emergency braking to
normal braking, as shown in Figure 9(d), all five AEB
models avoided collisions. It is worth noting that the dend of
the proposed AEB model was stable between 2.63m and
5.28m during the CCRb test.

Table 2: AEB model comparison test conditions.

Scenario Car to Car Rear moving (CCRm) Car to Car Rear braking (CCRb)
Proposed AEB Driving intention

Lower speed

100m

100m

Driving direction

Lower speed

Driving intention
Slowing down

12/40m

12/40m

Driving direction

Slowing down

Traditional AEB

Object Following vehicle Front vehicle Both vehicles Front vehicle

Initial parameter setting

(1) 30 km/h

20 km/h (UDI)

(1) 10 km/h

(1) Testers braking with NBI intention
(2) Testers braking with EBI

(2) 35 km/h
(3) 40 km/h
(4) 45 km/h (2) 20 km/h
(5) 50 km/h (3) 30 km/h
(6) 55 km/h (4) 40 km/h
(7) 60 km/h (5) 50 km/h
(8) 65 km/h (6) 60 km/h
(9) 70 km/h (7) 70 km/h
(10) 75 km/h (8) 80 km/h
(11) 80 km/h

(9) 90 km/h(12) 85 km/h
(13) 90 km/h

UDI: uniform driving intention; NBI: normal braking intention; EBI: emergency braking intention.

Table 3: Comparison of recognition accuracy of different driver’s intention recognition models.

Model Driver’s intention Uniform driving Normal braking Emergency braking Accuracy (%) Average accuracy (%)

BP
Uniform driving 198 2 0 99.0

96.000Normal braking 15 182 3 91.0
Emergency braking 0 4 196 98.0

HMM
Uniform driving 153 40 7 76.5

85.167Normal braking 38 162 0 81.0
Emergency braking 0 4 196 98.0

BP-HMM
Uniform driving 200 0 0 100.0

98.000Normal braking 3 194 3 97.0
Emergency braking 0 6 194 97.0
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Figure 10 shows a comparison of the number of suc-
cessful collisions avoided by each model in the CCRb test
scenario. When the collision occurred during the test, the
initial speeds of both vehicles were relatively high, between
60 and 90 km/h. (e Mazda model and the proposed AEB
model avoided collision in all speed ranges of the test
conditions, and the TTC model had the least number of
successful collision avoidance among the five models.

In the CCRb test, the vehicle speed distribution in case of
collision of the TTC, Berkeley, and Honda models are shown
in Figure 11. All three models collided when the initial vehicle
speed was higher than 60 km/h and the driver had emergency
braking intention (EBI). It is worth noting that the TTC

model failed to avoid collision when the initial speed was
higher than 80 km/h, the distance between the vehicles was
40m, and the driver had normal braking intention (NBI).

5. Discussion

We can see from Table 2 that the single-layer HMM model
had the worst effect on the recognition of uniform driving
intention and normal braking intention. Although the
HMM model had strong mapping ability for data with
temporal relation, it was not suitable for the classification of
large data volume. Due to the large dimension and length of
the input single sample data and the large number of samples
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Figure 7: Braking deceleration distribution of drivers under different braking intentions: (a) normal braking intention; (b) emergency
braking intention.
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trained at the same time, the classification effect was not very
well. (e single-layer BP neural network can be used for the
classification of the large amount of data. Although the
overall recognition effect of intention recognition was good,
it was easy to misidentify the normal braking intention as the
other two intentions. However, the BP-HMMmodel had the
best recognition effect, with an accuracy rate of 100% for the
uniform driving intention and an average recognition rate of
98% for each intention.(e recognition results show that the
combination of the BP neural network and HMM can
improve the classification accuracy of large data volume.

During the five AEB model tests (Figure 6), although the
same driver or different drivers had different operations each

time, when drivers had the same braking intention, the
braking deceleration distribution trend of the front vehicle
was basically the same. (erefore, under the same braking
condition, the influence of drivers at different times on
different model test results can be ignored.

Although the Mazda model was able to avoid collision
in both CCRm and CCRb tests (Figures 7 and 8), the
braking strategy was too conservative, especially at high
speeds, and was easy to cause unnecessary interference to
the driver. (e braking strategies of the Honda and Ber-
keley models were more aggressive than the Mazda model,
and the performance of the two models in CCRm tests was
similar. In the CCRb test, the two models performed better
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when the driver’s intention of the front vehicle was normal
braking intention. However, in the case of high-speed
driving and emergency braking intention of the front ve-
hicle, the collision cannot be avoided successfully, and the
braking strategy is more inclined to the safety of low speed
driving. In these five models, the performance of the TTC
model was relatively poor; also, in CCRm tests, collision
happened. Although collision avoidance can be achieved by
adjusting the braking threshold, it will lead to the model
being more conservative at low speed. However, the pro-
posed AEB model can not only successfully avoid collisions
under all conditions but also keep the shortest relative
distance between the two vehicles at about 3m during
braking. Unlike the Mazda model, it is not conservative and
can avoid high-speed collision accidents, which improves
the collision avoidance performance and acceptability of
the AEB system.

All models performed well at low speeds, and collisions
mainly occurred when the following vehicle was traveling
at high speed and the front vehicle had braking intention.
As shown in Figures 9 and 10, in the CCRb test, collisions
occurred in the Honda, Berkeley, and TTC model tests
when the speed was faster than 60 km/h, especially in the

emergency braking of the front vehicle. Since the AEB
model needs a period of time to detect risks, during this
period, with the increase of initial test speed or the increase
of braking strength of the front vehicle, the distance be-
tween the two vehicles will decrease relatively, resulting in
an increased risk of collision.(e TTCmodel presented the
dangerous situations under normal braking of the front
vehicle, which cannot well reflect the collision risk when
the vehicle suddenly brakes (especially in a small relative
distance). However, when the relative speed between the
two vehicles was high, the collision avoidance performance
of TTC will be affected. Although the above model failed to
avoid collision under some driving conditions, it still re-
duced the collision speed and the loss caused by the
collision.

In summary, the parameters of the traditional model
are fixed values, and the ability to adjust according to the
driving intention or the change of the state of the front
vehicle is insufficient, which is only applicable to some
driving conditions. However, the proposed model can
adjust the braking strategy according to the driving
intention of the front vehicle, with stronger adaptive
ability.
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6. Conclusion

In this paper, we proposed an AEB model based on the
driver’s intention recognition of the front vehicle via In-
ternet of vehicles. A BP-HMM model was proposed to
recognize the driver’s intention of the front vehicle. (e
recognized driver’s intention was transmitted via Internet
of vehicles; then, an AEB model for the following vehicle
was proposed to calculate the critical braking distance
under different driving conditions to avoid rear-end col-
lision. In the driver’s intention recognition simulation test,
the proposed BP-HMM model exhibited better result on
the driver’s intention recognition than the previous single-
layer BP and single-layer HMM models. (e AEB simu-
lation test results demonstrated that compared with the
traditional AEB model, the proposed AEB model provided
more effective braking to avoid rear-end collision under
different test conditions and made the AEB system safer
and more comfortable without triggering braking too early
or too late.
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