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The present study proposes a framework for learning the car-following behavior of drivers based on maximum entropy deep
inverse reinforcement learning. The proposed framework enables learning the reward function, which is represented by a fully
connected neural network, from driving data, including the speed of the driver’s vehicle, the distance to the leading vehicle, and
the relative speed. Data from two field tests with 42 drivers are used. After clustering the participants into aggressive and
conservative groups, the car-following data were used to train the proposed model, a fully connected neural network model, and a
recurrent neural network model. Adopting the fivefold cross-validation method, the proposed model was proved to have the
lowest root mean squared percentage error and modified Hausdorff distance among the different models, exhibiting superior
ability for reproducing drivers’ car-following behaviors. Moreover, the proposed model captured the characteristics of different
driving styles during car-following scenarios. The learned rewards and strategies were consistent with the demonstrations of the
two groups. Inverse reinforcement learning can serve as a new tool to explain and model driving behavior, providing references
for the development of human-like autonomous driving models.

1. Introduction

Recent studies have suggested that the development of
autonomous driving may benefit from imitating human
drivers [1-3]. There are two reasons: First, the comfort of
autonomous vehicles (AVs) may be improved if the driving
styles match the preferences of the passengers. Second, the
transition period during which AVs will share the road with
human-driven cars is expected to last for decades. Road
safety may be enhanced if AVs are designed to understand
how human drivers will react in different situations.
Car-following is one of the most common situations
encountered by drivers. The modeling of car-following
behavior has been a common research focus in the fields of
traffic simulation [4], advanced driver-assistance system
(ADAS) design [5], and connected driving and autonomous
driving [6-9]. Various car-following models have been
proposed since 1953 [10]. In general, there are two major
approaches. The classical methods use several parameters to

characterize the car-following behavior of drivers [11, 12].
With the rapid development of data science, data-driven
methods with a focus on learning the behavior of drivers
based on field data [13, 14] have emerged. For both ap-
proaches, data-driven car-following models were found to
provide the highest accuracy and best generalization ability
for replicating the drivers’ trajectories.

Among data-driven methods, supervised learning and
expressive models, such as neural networks (NNs), have
been commonly used to learn the relationships between
states and drivers’ controls [15-17]. These modeling tech-
niques are often referred to as behavior cloning (BC). Even
though BC approaches have been successfully applied, they
are prone to cascading errors [18], which is a well-known
problem in the sequential decision-making literature. The
reason is that inaccuracies occur in model predictions when
there are insufficient data for training the model. Small
inaccuracies accumulate during the simulation, which
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eventually leads the model to states not included in the
training data and brings about even poorer predictions.

Inverse reinforcement learning (IRL) was introduced to
overcome these drawbacks. IRL, which was proposed by Ng
and Russell [19], is the inverse problem of reinforcement
learning (RL). Although RL has been applied with great
success in recent years, such as in the well-known program
AlphaGo [20], the use of RL in other domains remains
limited because it is challenging to determine the reward,
which is the core component in RL. Manual tweaking of the
reward functions can be tedious, and inappropriate reward
assignments may lead to unexpected behaviors [21]. IRL,
however, provides a framework to learn the rewards auto-
matically. The advantages of IRL are twofold: the learned
rewards can be used to improve the interpretability of the
models, and the goals of the tasks can be understood, which
may prevent cascading errors [22]. Therefore, the present
study proposes a car-following model based on IRL. In
contrast to a recent work, which applied IRL to model car-
following using linear reward representation [23], in this
study, a nonlinear function, that is, NN, is used to ap-
proximate the reward function as the preferences of human
drivers may be highly nonlinear. The proposed model is
trained and tested using data under actual driving condi-
tions, and the performance is compared with that of other
car-following models.

The rest of the paper is organized as follows: Section 2
briefly reviews the literature on car-following modeling, RL,
and IRL. Section 3 presents the input feature vectors of the
reward network in the IRL and the proposed algorithm.
Section 4 describes the experiments and data used in this
study. Section 5 elaborates on the training process of the
proposed model and presents the investigated car-following
models. Section 6 presents the comparison of the perfor-
mance for different methods and the characteristics of the
trained models using data from drivers with different driving
styles. The final section presents the discussion and
conclusion.

2. Background

The car-following process is essentially a sequential decision-
making problem where drivers continually adjust the lon-
gitudinal control a based on the states s they encounter,
which include the speed of the driver’s car, the spacing
between the driver’s car and the leading car, and the relative
speed between the two vehicles. Car-following models are
designed to model the policy 7 (als) of drivers.

2.1. Classical Car-following Models. The early General Mo-
tors models proposed by Chandler [24] modeled the drivers’
longitudinal controls to minimize the relative speed because
this is one of the primary objectives of car-following. These
models exhibited poor performance in predicting the dis-
tance between cars. Later models addressed this problem by
considering another objective of car-following, that is,
maintaining the desired distance; these models included the
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Gipps model [25] and the intelligent driver model (IDM)
[12].

2.2. Behavior Cloning Car-following Models. As the access to
high-fidelity driving data has become increasingly available,
data-driven models such as NN have been used to model
car-following behavior. NN have been demonstrated to
exhibit excellent performance for estimating nonlinear and
complex relationships. In 2003, Jia et al. [16] proposed an
NN-based car-following model with two hidden layers and
the inputs speed, relative speed, spacing, and desired speed.
Chong et al. [15] simplified the architecture proposed by Jia
to one hidden layer and obtained similar results. Instead of
using as input only a single time step of relevant infor-
mation, such as in the conventional NN-based models, Zhou
et al. [17] proposed a recurrent neural network- (RNN-)
based model that used a sequence of past driving infor-
mation as input. The RNN approach was better adapted to
changes in traffic conditions than the NN approaches. The
present study also uses the RNN-based model to compare its
performance with that of the proposed method.

2.3. Reinforcement Learning. In RL, a sequential decision-
making problem is modeled as a Markov-decision process
(MDP), which is defined as a tuple M = {S, A, T, r, p}. S and
A denote the state and action space, respectively, and T
denotes the transition matrix, which is defined in equation
(1). r and y denote the reward function and the discount
factor, respectively.

v(t+1)=v(t) +a(t) = At,
Av(t+1) = v q(t+1) —v(t+1), (1)

Av(t) + Av(t+1) .

h(t+1)=h(t) + 5

At,

where v(t), Av(t),andh(t) denote the speed of the ego
vehicle, the relative speed from the lead vehicle, and the
spacing between the ego and the leader at time step ¢, re-
spectively. At is the simulation time interval, which is 0.1 s in
this study, and v,.,4 denotes the speed of the lead vehicle,
which was obtained from the collected data.

RL assumes that drivers follow a policy that maximizes
long-term rewards. Once the rewards are known, the policy
can be determined using algorithms such as Q-learning [26].
In recent years, RL has been applied by researchers to solve
real-world problems such as the balance control of a robot
and the energy management of hybrid electric vehicles
[27-29].

2.4. Inverse Reinforcement Learning. In IRL, the reward of a
state can be represented by a linear combination of the
relevant features (equation (2)). The goal of IRL is to de-
termine the weights 6 from expert demonstrations.

r(s)=0"f(s). (2)
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Abbeel and Ng [30] proposed a feature matching strategy
to solve the problem (equation (3)). As long as the feature
expectation of the simulated trajectories equals the features
calculated from the expert data, the learned behavior has the
same performance as the demonstrator. However, it was
found that many different policies can be obtained when the
feature matching conditions were satisfied. The ambiguity
problem related to the correct reward and policy remains
unsolved.

Yp@f( =1,

p(0) = p(spap,...sp.ar), (3)
T

=p(s1) H 7 (aglts,)T (spi1lse> ).

t=1

The maximum entropy IRL (Max-Ent IRL) proposed by
Ziebart [31] addressed the ambiguity problem by incorpo-
rating the principle of maximum entropy into the IRL. In the
Max-Ent IRL framework, the probability of a trajectory is
proportional to the sum of the exponential rewards accu-
mulated in the trajectory (equation (4)). This form of dis-
tribution can guarantee no additional preferences other than
the feature matching requirement. When the probability of a
trajectory is known, the weights of the reward can be de-
termined by maximizing the log-likelihood of the expert
data using the following objective function (equation (5)):

p(1) o erOTf(Si), (4)

6" = argmaxylog (p(7p))- (5)

2.5. Maximum Entropy Deep Inverse Reinforcement Learning.
Since the linear representation of the rewards might limit
the accuracy of reward approximation, Wulfmeier [32]
extended the method to nonlinear models using deep
NNs. Deep architectures have been shown to capture the
nonlinear reward structure in several benchmark tasks
with high accuracy. The present study uses the approach of
deep architectures to represent the rewards of drivers in
car-following. The fully connected NN’ used in this study
map the input features in the car-following model to
estimate the rewards, as shown in Figure 1.

It can be derived that the gradient of the Max-Ent deep
IRL (DIRL) is as follows:

d
grad =(up — E,) 259 (£, 0), (6)

where yp and E, refer to the state visitation frequencies
calculated from the expert demonstrations and expected
state visitation frequencies obtained from the learned policy
and g(f,0) refers to the network architectures. Once the
gradient is calculated, the parameters of the NN are updated
using backpropagation [33].

F1GURE 1: The neural network used to approximate the rewards.

3. The Proposed Car-following Model

In this section, the details of the proposed model (DIRL) are
explained, including the design of the input features for the
reward network and the full algorithm. The DIRL model uses
as input the driver data on car-following trajectories, con-
sisting of speed during car-following, spacing to the leading
car, and relative speed. After training, the DIRL model
outputs the policy and the rewards of drivers. A discrete state
and action space were defined in the present study.
According to the rules for determining car-following events
that will be described in Section 4.2 and the distribution of
the empirical data used in this study, the spacing h is limited
to the range from 0 to 120 m with an interval of 0.5 m, the
speed v is limited to the range from 0 to 33 m/s with an
interval of 0.5 m/s, and the relative speed Av is limited to the
range from -5 to 5 m/s with an interval of 0.5 m/s. The action
a is limited to the range from -3 to 2 m/s” with an interval of
0.2m/s>.

3.1. Feature Selection for the Rewards in Car-following. As
introduced in the last section, the input features of the
network are determined first to create an NN and obtain
the rewards in car-following. The rewards in RL encode
the objectives or the purpose of the agent [26]. Therefore,
the selected features should represent the objectives of
drivers in the car-following task.

In the study of Gao [23], speed and spacing were chosen
as features for representing the rewards. In [34], the reward
function represented the speed discrepancies between the
simulated trajectories and the test data. In contrast to these
studies, we base the reward function on the following
features.

3.1.1. Time-Headway. Time-headway (TH) has been widely
used as an indicator for drivers to evaluate risk during car-
following [35]; TH is defined as the time between two ve-
hicles passing the same point on the road. It has been
suggested that a driver’s safety margin in car-following can



be characterized by the TH, which plays a role in the driver’s
decision-making [36]. Drivers may have different desired
safety margins for the TH. For example, aggressive drivers
may prefer a shorter TH than conservative drivers because
they like to track vehicles at a closer distance. It has been
suggested that one of drivers’ objectives in car-following is to
control TH to their expectations [37]. Therefore, TH is
selected as an input of the reward network in this study.

3.1.2. Relative Speed. Research has shown that the drivers’
speed control in car-following is proportional to the relative
speed [38]. As mentioned earlier, an objective in car-fol-
lowing is to keep the relative speed close to zero [37]. In this
study, we relax this objective so that drivers will keep the
relative speed within an appropriate range because people’s
driving behavior is imperfect and is not always optimal.

Following the method presented in [23], these two
features were mapped into high-dimensional space using the
Gaussian radial kernel:

fi(s)= ex{—%), )

where s; = (TH;, AV;) denotes the kernel vectors, which
represent the conjectural values of the preferred TH and
relative speed, and o is a parameter that controls the width of
the kernel function. Specifically, TH; has a range of 0.5s to
35, with an interval of 0.5 s, and AV has a range of -4 m/s to
4m/s, with an interval of 0.5m/s in this study.

3.1.3. Maximum Speed. The maximum desired speed is
commonly used in many classical car-following models
[12, 16]. Drivers may have a preferred maximum speed, and
they may not continue to follow the leader if their speed is
already above this value. It is assumed that the objective of
the driver is to keep the speed below the maximum speed as
follows:

I, VSmex,
fz (s) = { . (8)

0, v>v

max’

where v/ denotes the conjectural acceptable maximum
speed. v/ is in the range of 90 km/h to 120 km/h, with an
interval of 5km/h. The reward function is represented by an
NN that is parameterized by 0 as follows:

r(s)=g(f1 f50). (9)

3.2. The Full Algorithm. The proposed DIRL algorithm
consists of three parts, which are marked in bold in Algo-
rithm 1. In the first part, the reward 7 (s) is determined by
the parameters of the NN to calculate the policy 7' (als).
Value iteration with a softmax function is used to solve the
policy based on the reward. The result of the softmax version
of value iteration is a stochastic policy in which the prob-
abilities of every predefined action are listed in a tabular
form. V' (s) and Q (s, a) in this part denote the expected long-
term return of states and state-action pairs.
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In the second part, the policy 7' (als) is applied to es-
timate the expected state visitation frequencies 4’ (s). The
original version for estimating 4 (s), as reported in [31], is
not suitable in car-following tasks because the speed of the
lead vehicle is always changing. Simply applying policy
propagation [32] for every trajectory in the data can be time-
consuming. Therefore, in this study, we perform sampling by
running the policy in the simulation of drivers’ car-following
trajectories for N, times to approximate 4/’ (s). During the
simulation, the action at every time step was randomly
sampled from the policy based on the probability of every
action.

In the third part, the gradients are calculated by sub-
tracting the estimated p'(s) from the state visitation fre-
quencies y, obtained from the data. Subsequently, the
parameters of the NN are updated by backpropagation.
These steps are repeated several times until convergence. The
training of the algorithm can be stopped when the rewards
accumulated in the trajectories stop increasing.

4. Experiments

4.1. Data Description. Data from two field tests that were
conducted in Huzhou city in Zhejiang province and Xi’an
city in Shaanxi province were used in this study. Forty-two
drivers participated in the test. Their driving experience
ranged from 2 to 30 years with the average being 15.2 years.
During the test, the participants were only informed of the
starting location and destination, and they were asked to
follow their normal driving styles. The test data were col-
lected by a Volkswagen Touran equipped with instruments
and sensors, as illustrated in Figure 2. The test route con-
sisted of diverse driving scenarios such as urban roads and
highways, as shown in Figure 3. The other details of the field
tests are described in [39, 40].

4.2. Extraction of Car-following Events and Data Filtering.
We applied the rules described in [41] to extract the car-
following events from the obtained data. (1) We ensured that
the test vehicle was following the same lead car; (2) the
distance to the lead car was less than 120 m to eliminate free-
flow traffic conditions; (3) we ensured that the follower and
the leader were on the same lane; (4) the duration of car-
following events was longer than 15s.

The extracted events were then manually reviewed by
checking the videos recorded by the front camera on the
equipment vehicle to guarantee good data quality. Even-
tually, nearly one thousand car-following events were
extracted. A moving average filter was applied (1s) to
remove noise from the extracted car-following data.

4.3. Driving Style Clustering. The participants displayed
diverse driving styles, which were evident in the driving data.
The k-means algorithm was used to cluster the drivers into
different driving styles. Previous studies have adopted ki-
nematic features such as spacing, speed, and relative speed or
time-based features such as TH and TTC for driving style
clustering [34, 39]. In this study, multiple combinations of
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Figure 2: The vehicle and equipment used in the experiment.

the mentioned features were tested as inputs for the k-means
algorithm, and the quality of the clustering results was then
evaluated by the silhouette coefficient where a larger sil-
houette coeflicient indicates a better result. Finally, the mean
value of TH and TH when braking was chosen because this
combination achieved the highest value of the silhouette
coeflicient [42]. The number of the clusters was also de-
termined to be two based on the results of the silhouette
coeflicient. Figures 4 and 5 present the boxplot of the mean
TH and mean TH when braking for the conservative group
that consisted of 16 drivers and the aggressive group that
consisted of 26 drivers, respectively. The aggressive group
had significantly higher mean TH (t=6.748, p <0.001) and
mean TH when braking (t=7.655, p<0.001) than the
conservative group.

The descriptive statistics (Table 1) of the two groups
confirmed the clustering results. The aggressive drivers had
shorter mean spacing and higher mean speed and mean
acceleration than the conservative drivers.

5. Model Training and Evaluation

5.1. Evaluation Metrics. 'Two metrics, the root mean square
percentage error (RMSPE) (equation (10)) and the
modified Hausdorft distance (MHD), were used to eval-
uate the accuracy of the car-following models for
reproducing drivers’ car-following trajectories. As sug-
gested by Punzo and Montanino [43], the cumulative sum
of the errors is an appropriate option to evaluate the
performance of car-following models.

5 [ ) - v (1))
[ o]

RMSPE (speed) = \

(10)

2

Y[ ) - B ()]
ALOIR

RMSPE (spacing) = \

where RMSPE (speed) denotes the RMSPE of speed,
RMSPE (spacing) denotes the RMSPE of spacing, vflbs(t),
hobs (t) are the speed and spacing at time ¢ in the observed
nth trajectory, and vilimu (1), h;imu (t) are the simulated speed
and spacing at time t for the nth trajectory.

The MHD is an extension of the Hausdorff distance
which represents the distance between two sets of points
C= {cl,cz,. . ,cNC} and B = {bl,bz,. . .,bNb}, as defined in
equation (11). The median of the MHD (MHDg;) had been
used to evaluate the similarity of simulated and actual
trajectories in modeling defensive driving strategies [44]
and urban route planning [45].

d(c, B) = minyglc - b,

d(CB) = Yd(eB), (11)

¢ ceC
MHD = max(d (C, B),d (B, C)).

Since the proposed DIRL model outputs a stochastic
policy, the two metrics were calculated by averaging the
results of 10 simulations for every trajectory in the data.

5.2. Model Training. The k-fold cross-validation method was
applied to evaluate the performance of the car-following
models. Specifically, the car-following datasets of the two
groups of drivers were randomly divided into 5 groups with
an equal number of trajectories. One group was taken as the
test set and the remaining four groups were taken as the
training set. The training and test experiments were repeated
five times because every divided group had been used as the
test set. Finally, the performance of the car-following models
was evaluated by the average value of the two metrics.

The Adam optimizer [46] with learning rate decay was
applied to train the DIRL model. The hyperparameters used
for training are listed in Table 2. L2 regularization was used
to prevent overfitting of the reward network.

Figures 6 and 7 present the change of RMSPE of spacing
and the change of the cumulative normalized rewards per
trajectory in one of the cross-validation experiments, re-
spectively. After about 5 iterations, the RMSPE of spacing for
the training set and test set start to converge. The rewards
collected in the trajectory remain stable after about the same
number of iterations.

5.3. The Investigated Models. The accuracy and generaliza-
tion ability of the proposed model was compared with those
of two other data-driven car-following models, that is, the
NN-based model and the RNN-based model.

5.3.1. NN-Based Car-following Model. A fully connected
neural network with one hidden layer was built following the
study conducted by Chong et al. [15]. The hidden layer
consisted of 60 neurons in this study. The NN-based model
takes inputs of speed, spacing, and relative speed and out-
puts the acceleration for the current time step. The objective
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FIGURE 3: Driving scenarios in (a) Huzhou city and (b) Xi’an city.
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of minimizing the empirical acceleration and the model’s
predictions was adopted to train the model (equation (12)).
; 2

L(w,b) =(a3™ (t) - a)™ (1)), (12)

where w, b denotes the weights and bias in the NN-based
model, a;™ (t) denotes the predicted acceleration at time

step ¢ for the nth trajectory, and a%™ (¢) denotes the empirical
acceleration at time step t for the nth trajectory.

The conservative

Driver group

The boxplot of mean TH for the two groups of drivers.

5.3.2. RNN-Based Car-following Model. The architecture of
the RNN-based model built in this study is in line with the
study conducted by Zhou et al. [17]. The number of hidden
neurons in the RNN model was set to be 60. The RNN model
takes inputs of a sequence of historical information that lasts
for 1 s and outputs the acceleration for the current time step.
The speed and spacing for the next time step were then
estimated based on the state transition matrix described in
equation (1). The training of the RNN model adopted the
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Input: £, f5, T, 0,pp, y
Randomly initialize the parameters of the neural network as 6"
Fori=1to N, do
Determine the reward for every state by applying forward propagation in the neural network
()= g(f)- f0)
Use the softmax version of value iteration to obtain the policy
Initialize V (s) = —co
Repeat until max (V (s) -V, (s)) <e
V.(s) = V(s)
Q(s,a) =1'(s) +y * Ep(aspV (s1)
‘ V(s) = 0 log J exp (Q(s,a)/o)da
7 (als) = exp(Q(s,0) - V (5)) 4 4
Estimate the expected state visitation frequencies ' (s) using the policy 7'
For j=1to N, do .
Start from the initial state in every trajectory and run the policy '
For every time step, sample one action from the distribution of 7' according to the probability of every action
a = random_sample (p = 7' (als))
sl = T (s,a, s!)
wisnN+=1
end for
w(s) =y (s)/N,
Calculate the gradients of DIRL and the network and use backpropagation to update the parameters of the network
grad, = pp — o
grady = back_propagation (grad,, ¢')
Update ¢ with the gradients grady,
end for
ALGorITHM 1: DIRL: Maximum entropy deep inverse reinforcement learning for car-following modeling.
TaBLE 1: Descriptive statistics for different driving styles.
- Spacing (m) Speed (m/s) Relative speed (m/s) Acceleration (m/s?)
e
P Mean Min Max Mean Min Max Mean Min Max Mean Min Max
Aggressive 3415 227 12000 1857 250 3370  —042  -1245 580  -0.01  -3.14  1.64
Conservative ~ 4279 391 11990 1747 149 3484  -052  -885 502 -004 -180 140
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TaBLE 2: The hyperparameters used for training.

Hyperparameters Value

Learning rate 0.0005

Learning rate decay 0.95

Reward discount (y) 0.95

Temperature (o) 0.7

RMSPE of spacing

Normalized reward per trajectory

1.0 ~

0.9 +

0.8 1
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0.5 1
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0.2

0.1
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FIGURE 6: The change of RMSPE of spacing during training.
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FiGure 7: The change of the normalized reward accumulated in every trajectory during training.
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TaBLE 3: The average performance of the models on the training sets.
RMSPE of spacing (%) RMSPE of speed (%) MHD;,
Aggressive Conservative Aggressive Conservative Aggressive Conservative
NN 29.07 27.71 5.88 5.97 2.75 2.92
RNN 28.18 23.82 6.82 6.14 2.72 2.94
DIRL 22.83 23.48 6.57 7.08 2.68 2.85
TasLE 4: The average performance of the models on the test sets.
RMSPE of spacing (%) RMSPE of speed (%) MHD;,
Aggressive Conservative Aggressive Conservative Aggressive Conservative
NN 28.32 27.01 6.09 6.01 2.83 2.98
RNN 23.99 25.53 5.58 6.54 2.67 2.84
DIRL 21.58 22.15 6.14 7.46 2.64 2.77
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FiGure 8: The simulation results of speed (left) and spacing (right) for two car-following periods (a) and (b) by different models.
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loss function shown in equation (13) which minimizes the
RMSPE of speed and spacing.

(h:limu (t) _ hzbs (t))z . (V;imu (t) _ Vflbs (t))2

L(w,b) =
w (hzbs (t))2 (Vﬁbs (t))z

(13)

where w, b denotes the weights and bias in the RNN model,
hobs (£), heb (¢) are the speed and spacing at time t in the
observed nth trajectory, and vi™ (¢), s$™ () are the sim-
ulated speed and spacing at time ¢ for the nth trajectory.

6. Results

6.1. Performance Comparison. The average performances of
the three models in the fivefold cross-validation tests
using the data from the aggressive and conservative
groups were compared in this section. Tables 3 and 4
present the results on the training sets and the test sets,
respectively. The DIRL had the lowest RMSPE of spacing
and MHDs, in both the training sets and the test sets.
Although the NN and the RNN model had lower RMSPE
of speed in the test sets, the overall error of the DIRL in
reproducing drivers’ trajectories was lower than that in
the other two models. For the two kinds of BC models,
RNN outperformed the NN model as it achieved lower
RMSPE and MHDs, than the NN model.

Figure 8 presents the simulation results of speed and
spacing for two car-following periods randomly selected
from the datasets. As can be seen, the DIRL model tracks the
empirical speed and spacing more closely than the other two
models. The simulation results of speed for the NN and RNN
model are smoother than those of the DIRL model because
the former models output a continuous action, while the
latter model outputs a discrete action.

6.2. The Learned Characteristics of the Model. Since the
proposed model was trained with data from two groups of
drivers with different driving styles, we expected that the

learned models would exhibit features of both groups.
Therefore, the learned value of the two driving styles,
which represents the expected long-term return, is
compared in this section. As depicted in Figure 9, the
states with a higher value represent the preferable states,
which drivers try to achieve during car-following. For the
same distance to the lead vehicle, the aggressive drivers
preferred a higher speed than the conservative drivers.
The high-value area (V' >0.8, in red) for the aggressive
drivers has a steeper slope as indicated by the angle 0
between the black-dashed line and the x-axis. Since the
cotangent of the angle 0is proportional to the value of TH,
a larger angle means a shorter TH. Hence, the comparison
of the angle 0 in the two figures shows that the aggressive
drivers favor a shorter TH. Besides, the width of the high-
value area for the aggressive is wider compared with the
conservative; it indicates that the aggressive drivers’
preferred TH has a larger variance than that of the
conservative drivers. This result is in good agreement with
the details shown in the boxplot of TH for the two groups
of drivers in Figure 4.

It is also found that the high-value region of the speed
becomes wider with an increase in the spacing to the lead
vehicle in the two figures. The interpretation is that when the
spacing is small, drivers must control the speed more pre-
cisely to prevent colliding. As the distance increases, drivers
have more flexibility for speed control.

The learned policies of the two groups were compared
by assuming that both groups were following the same
leader. The initial states of this car-following event and the
speed of the leader were input from the collected data. The
learned stochastic policy was run 20 times for both
groups. As shown in Figure 10, the aggressive group (in
blue) maintained a smaller distance compared to the
conservative group (in red) during the simulation. Both
the aggressive and conservative drivers accelerated to
follow the leader. However, the aggressive drivers in-
creased the speed more quickly in the first 4 s, resulting in
less distance to the leader compared with the conservative
drivers.
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7. Discussion and Conclusion

In this study, we propose a car-following model based on
Max-Ent DIRL. The proposed model learns the rewards of
drivers during car-following which were approximated by an
NN. The policy of drivers was solved by an RL algorithm of
softmax version of value iteration. Tested on actual driving
data, the results showed that the proposed model out-
performed the BC models NN and RNN by providing the
lowest RMSPE and MHDs, in replicating drivers’ car-fol-
lowing trajectories. The better performance of the proposed
model can be explained by the more general objective
compared with the BC models. The DIRL model reproduces
drivers’ policy by firstly learning drivers’ decision-making
mechanisms (i.e., the rewards), whereas the BC approaches
only learn the state-action relationships. Since the policy was
solved by the RL algorithm that is based on the assumption
of maximizing long-term rewards, the obtained policy then
has the ability of long-term planning. In contrast, the BC
methods do not include long-term planning in its model
training objectives. The simulation results for the two car-
following trajectories confirmed the superior ability of long-
term planning for the DIRL model. The derivation between
the simulated spacing and the empirical data for the BC
models becomes lager as the simulation continues. On the
contrary, the simulation error does not accumulate during
the simulation for the DIRL model. Moreover, the better
performance of the RNN model found in this study is in line
with previous studies [17, 34]. Compared with the NN model
that only relies on information in the current time step for
predication, the advantage of using historical information
makes the RNN model more suitable for time series
prediction.

The present study also demonstrates that the proposed
model could capture the characteristics of different driving
styles of human drivers. The learned value and policy
matched those of the drivers with distinct driving styles. The
tully connected NN applied in this study was trained to
capture the relevant features that represented the drivers’
preferences or objectives in car-following scenarios.

The IRL method used in this study provides a new
perspective to explain driver behavior and to model different
driving strategies. However, solving the IRL problem is
computationally expensive, which makes it challenging to
apply to high-dimensional systems. Recent studies that have
applied adversarial learning to IRL have shown an ability to
scale the method to solve complex problems [22, 47]. Future
studies should consider these new approaches.

The present study had some important limitations. First,
the participants in the present study are all male, so a
broader sample is needed in future research. Second, the
proposed model does not consider drivers’ reaction delay
and memory effect for speed control during car-following.
Future studies should take these factors into account.
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