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In this paper, a single-vehicle static partial repositioning problem (SPRP) is investigated, which distinguishes the user dissat-
isfaction generated by different stations. The overall objective of the SPRP is to minimize the weighted sum of the total operational
time and the total absolute deviation from the target number of bikes at all stations. An iterated local search is developed to solve
this problem. A novel loading and unloading quantity adjustment operator is proposed to further improve the quality of the
solution. Experiments are conducted on a set of instances from 30 to 300 stations to demonstrate the effectiveness of the proposed
customized solution algorithm as well as the adjustment operator. Using a small example, this paper also reveals that the unit
penalty cost has an effect on the repositioning strategies.

1. Introduction

As urban traffic congestion and environmental pollution
problems become more and more serious, bike-sharing
systems (BSSs), as a means of sustainable transportation, can
effectively solve the “last mile” problem of urban public
transportation and provide benefits for users in terms of
finances, health, and a low-carbon lifestyle [1]. However,
when the BSS is in operation, the demand and supply of
bikes in each station often become unbalanced: at some
stations, users might not be able to find available bikes, and
in some others, there are not enough lockers for users to
return their bikes. As a result, user satisfaction decreases in
such situations. As pointed out by Laporte et al. [2], several
related problems arising at the strategic, tactical, and op-
erational levels can be studied to improve the BSS. Among
those, one of the well-known, yet challenging program is the
bike rebalancing problem or bike repositioning problem
(BRP). Solutions to BRP aim to determine the optimal
vehicle routes and the loading and unloading quantities at

stations in order to minimize the sum of travel cost and user
dissatisfaction subject to operational constraints. As a
common practice, the BSS operators redistribute bikes
among unbalanced stations accordingly using a dedicated
fleet of trucks.

Existing research on BRP are mainly divided into two
categories: dynamic and static. Dynamic BRP considers
daytime operations where the user demand is changing over
time, while static BRP focuses on nighttime operations in
which the temporal user demand change can be ignored.
Despite that many of the recent works have focused on
dynamic settings, there are certainly practical advantages
and importance of investigating the static repositioning
problem. For instance, the static repositioning allows the
repositioning truck to travel quickly in the city without
aggravating the traffic congestion and parking problems.
Hence, most existing works that take into account the next
day bike inventory arrangement in BSS have focused on
static settings [3]. In terms of the number of trucks used,
static BRP studies are mainly divided into two categories:
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single and multiple vehicle problems. However, compared
with multiple-vehicle BRP [3-21], it is more realistic to
consider a single-vehicle BRP for a particular street in the
city [22-32]. In this paper, we focuses on the single-vehicle
static BRP.

Often in the operation process of static BRP, considering
various constraints of resource including operation time,
capacity of the relocation trucks, and the inherent imbalance
between supply and demand of the BSS (i.e., the number of
surplus bikes is not equal to the number of deficit bikes at all
stations), there is no way to achieve a complete or perfect
balance among all stations [3]. Therefore, in practice, only a
partial balance among some stations can be achieved. This
problem is defined as the static partial repositioning problem
(SPRP) [13]. In the SPRP, it is necessary to determine which
station needed to be rebalanced, and the loading and
unloading quantities at those stations, as well as the route of
trucks to minimize the sum of travel cost and user
dissatisfaction.

Existing models to SPRP define user dissatisfaction ei-
ther as the sum of the unmet demand (only consider stations
with too few bikes) [4-9] or as the sum of the absolute
differences between the current inventory and the target
inventory at all stations (including stations with too many
bikes and stations with too few bikes) [10, 11, 32]. They
commonly ignore the different level of dissatisfaction caused
by different stations. However, existing study demonstrates
that user dissatisfaction caused by not satistying one unit of
demand may vary from station to station [12]. For instance,
at locations with high density of bike stations or convenient
transportation, the level of user dissatisfaction may be low,
because users can easily walk to other nearby stations or use
other modes of transportation. However, it can be signifi-
cantly higher in stations where bike sharing is the only
option available to users. Therefore, it is important to dis-
tinguish the level of user dissatisfaction generated by not
satisfying one unit of demand at different stations. It is not
very scientific to quantify the total dissatisfaction of all
stations by simply using the sum of the number of bikes that
are not satisfied at all stations.

In this paper, we build an SPRP on the model proposed
by Di Gaspero et al. [9] and Szeto et al. [32] and develop
customized solution to the SPRP. Different from existing
work, our proposed model will distinguish the impact of
different stations on user dissatisfaction by defining different
unit penalty costs associated with unsatisfied one bike at
different stations. To the best of our knowledge, we are
among the first to develop customized solutions to SPRP that
could take into account the differentiation of user dissat-
isfaction at different stations.

The main contribution of this paper on the SPRP lit-
erature can be summarized as follows:

(1) A comprehensive review of the static BRP literature
is provided, including the complete and partial
repositioning aspects

(2) A new SPRP is introduced, where the level of user
dissatisfaction could be different at different stations
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(3) A heuristic algorithm based on iterated local search
is proposed to solve the problem

(4) A novel loading and unloading quantity adjustment
operator is designed to further improve the quality of
the solution

The remainder of this paper is organized as follows:
Section 2 reviews the BRP literature. Section 3 describes the
mathematical formulation of the problem as well as the
nonlinear programming model. Then, in Section 4, we
present the improved iterated local search algorithm to solve
the model. We present experimental results in Section 5 and
conclude this paper with discussion on potential future
research in Section 6.

2. Literature Review

The bike-sharing system has become an increasingly studied
problem in the last two decades. Si et al. [33] provided a
complete and insightful picture of all 208 relevant articles
about bike-sharing research published from 2010 to 2018. As
mentioned before, this paper focuses on the static bike
repositioning problem (BRP), and hence, this section will
mainly analyze the current literature on the static BRP.

The research on the static BRP can be traced back to the
seminal paper of Benchimol et al. [22], in which the authors
introduced the static single-vehicle BRP and proved it to be
NP-hard. For the first time, Pal and Zhang [13] categorized
the static BRP into complete and partial repositioning
problem based on the rigorous of a repositioning that needs
to be performed. Table 1 presents a summary of the literature
on the static BRP in terms of the type of repositioning
(complete or partial), the number of trucks used (|V]), and
the objective function.

2.1. Complete Repositioning Problem. In the complete
repositioning problem, achieving a perfect balance among
stations is considered as a hard constraint. In this case, the
ideal inventory of each station must be met after the
repositioning operation. The objective of this problem is
mostly to study how to arrange the order of stations’ visits so
that the travel cost is minimized, see, e.g., [15-17, 22-27].
The exceptions are Pal and Zhang [13] and Wang and Szeto
[14] where the objective is to minimize the makespan of the
rebalancing fleet and the total CO, emissions, respectively.

Various solutions have been proposed to solve the static
single-vehicle complete repositioning problem, for in-
stances, Benchimol et al. [22] developed approximation
algorithms, Chemla et al. [24] presented a branch-and-cut
method embedded Tabu search, and Erdogan et al. [26]
proposed the first exact algorithm that consists of a branch-
and-cut algorithm based on Benders combinatorial cuts.
Later on, Cruz et al. [25] addressed the same problem by
proposing an iterated local search algorithm. Compared
with the algorithms proposed by Chemla et al. [24] and
Erdogan et al. [26], the iterated local search developed by
Cruz et al. [25] has more advantages in term of solution time
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TaBLE 1: Summary of the static BRP in the literature.

References TYP? Of. % Objective function
repositioning
Benchimol et al. [22]
Bruck et al. [23]
Chemla et al. [24]
Cruz et al. [25]
Erdogan et al. [26]
Laho?rpoor etal. [27] Complete 1
Bulhbes et al. [15] repositionin Minimize total travel cost
Dell’Amico et al. p & 1
16, 17] =
Pal and Zhang [13] >1 Minimize the makespan of the rebalancing fleet
Wang and Szeto [14]
Raviv et al. [3] >1 Minimize the total CO, emissions
Forma et al. [19]
Ho and Szeto [12] >1 Minimize the weighted sum of the penalty cost and total travel time
Ho and Szeto [28] 1 Minimize total penalty cost
Tang et al. [29] R N
. The upper-level model minimizes the total penalty cost; the lower-level model minimizes
Di Gaspero etal. [5, 8] 1 the travel time
Raidl et al. [6]
Rainer-Harbach et al. Minimize the weighted sum of the total absolute deviation from the target number of
>1 . . . i .
[4, 7] bikes, the total number of loading/unloading quantities, and the total travel time
Di Gaspero et al. [9] 51 Minimize the weighted sum of the total absolute deviation from the target number of
P ’ = bikes, and the total travel time
Alvarez-Valdes et al. . >1 Minimizing the overall cost of unsatisfied demands
(18] Partial
Erdogan et al. [30] repositioning 1 Minimize total travel cost and handling cost
Li et al. [31] 1 Minimize the sum of travel, imbalance, substitution, and occupancy costs
. Minimize the weighted sum of the total unmet demand, the inconvenience of getting a
Liu et al. [10] >1 . . .
bike and total operational time
Szeto et al. [32] 1 Minimize the weighted sum of the total unmet demand and the total operational time
Schuijbroek et al. [20] >1 Minimize maximum the sum of total travel, loading and unloading costs
. Minimize the positive deviation from the tolerance of total demand dissatisfaction first
Szeto and Shui [20] >1 SRR L . ..
and then service time in form of the total service time or maximum service time
You [21] >1 Minimize the sum of the total unmet demand and travel costs
Thi Minimize the weighted sum of the total deviation from the target number of bikes and
is paper 1

the total operational time

and quality. Bruck et al. [23] introduced static single-vehicle
BRP with forbidden temporary operations and proposed
three exact algorithms based on different mathematical
formulations.

There are also studies on the static multivehicle complete
repositioning problems, for instance, Bulhdes et al. [15]
presented a branch-and-cut algorithm and an iterated local
search. Dell’Amico et al. [16] presented branch-and-cut
algorithm. Dell’Amico et al. [17] developed a destroy and
repair metaheuristic algorithm, which makes use of effective
constructive heuristic and of several local search procedures.

It is worth mentioning that there are three BRP articles
occurring in the BSS a bit different from most of those
complete repositioning problems studied in this survey. Pal
and Zhang [13] modeled a static BRP in a free-floating bike-
sharing system and presented a hybrid nested large neigh-
borhood search with a variable neighborhood descent algo-
rithm. Wang and Szeto [14] introduced a static green BRP with
broken bikes, and applied CPLEX to determine the routing and
loading decisions. Lahoorpoor et al. [27] proposed a bottom-up
spatial cluster-based method to solve the static BRP with
consideration of the users’ behavior in the BSS.

2.2. Partial Repositioning Problem. In the partial reposi-
tioning problem, achieving a perfect balance among stations
is considered as a soft constraint; that is to say, it is not
necessary to achieve the ideal inventory at each station after
repositioning operation. As can be seen from the Table 1,
with the exceptions of Ho and Szeto [28], and Alvarez-
Valdes et al. [18], the partial repositioning problems in the
literature are modeled as multiobjective optimization
problems. The goal of these problems is not only to pursue
the minimum transportation cost by determining routing
decisions, but also to minimize user dissatisfaction by de-
termining loading and unloading decisions at each station.
User dissatisfaction is commonly measured by the penalty
costs [3, 12, 19, 28, 29], the absolute deviation from the target
number of bikes [4-9], and the unmet demand [10, 11, 32].

Raviv et al. [3] creatively defined the user dissatisfaction
as penalty function which represents the expected number of
shortages at any inventory level at each station. The authors
addressed a multivehicle SPRP, and proposed a two-phase
heuristic to first solve the routing subproblem then to solve
the loading and unloading subproblem. Then, Forma et al.
[19] presented a 3-step math heuristic, and later on, Ho and



Szeto [12] developed a hybrid large neighborhood search
algorithm (proven to be more effective than that proposed in
[19]) to solve the same problem as in [3]. Ho and Szeto [28]
presented an iterated Tabu search to solve a single-vehicle
SPRP. Tang et al. [29] proposed a bilevel programming
model by taking the outsourcing transportation mode into
account and presented an iterated local search algorithm and
Tabu search algorithm to solve the optimization problem.

In [4], Rainer-Harbach et al. measured the user dis-
satisfaction based on the deviation from the target number
of bikes, and addressed the multivehicle SPRP. They pro-
posed a heuristic approach for the static BRP where the
routing decisions are calculated by a variable neighborhood
search metaheuristic and the loading decisions are com-
puted by a helper algorithm. There are a list of other so-
lutions proposed for this problem setting, for instance, in
[5], Di Gaspero et al. introduced a combination of constraint
programming and ant colony optimization approach; in [6],
Raidl et al. provided an efficient method for determining
optimal loading operations based on two maximum flow
computations; in [7], Rainer-Harbach et al. proposed PI-
LOT, a greedy randomized adaptive search procedure, along
with a variable neighborhood search algorithm to solve this
problem; and in [8], Di Gaspero et al. employed constraint
programming to tackle this problem. Last but not least, in
[9], Di Gaspero et al. described a multivehicle SPRP with the
objective of minimizing both the weighted sum of the total
absolute deviation from the target number of bikes, as well as
the total travel time. They proposed a constraint pro-
gramming approach that utilizes a smart branching strategy
and large neighborhood search algorithm to solve the
problem.

For the first time, Szeto et al. [32] measured the user
dissatisfaction based on the unmet demand, and addressed a
single-vehicle SPRP by proposing an enhanced chemical
reaction optimization algorithm. Liu et al. [10] studied a
multivehicle SPRP for the free-floating bike-sharing system.
They took into account the different convenience level of
getting bikes, and proposed an enhanced chemical reaction
optimization algorithm to solve the problem. You [11]
studied a multivehicle SPRP under a minimum service re-
quirement over a planning horizon, and proposed a two-
phase heuristic algorithm to solve the problem based on
linear programming.

In this section, there are five articles differentiate
themselves from the above other studies. Alvarez-Valdes
et al. [18] addressed a static BRP to optimize the level of
service quality by a two-stage algorithm. Erdogan et al. [30]
addressed a static BRP where the target inventory at each
station must lie in a predetermined interval. They developed
and implemented a Benders decomposition scheme and a
branch-but-cut algorithm to solve the problem. Li et al. [31]
investigated a static BRP with multiple bike types, and
proposed a combined hybrid genetic algorithm. Schuijbroek
et al. [20] unified dual-bounded service level constraints
(with added inventory flexibility) and vehicle routing for
static BRP and proposed a cluster-first route-second heu-
ristic. Szeto and Shui [21] developed an enhanced artificial
bee colony algorithm that incorporated a new set of optimal
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loading and unloading strategies to solve the static BRP to
minimize first the positive deviation from the tolerance of
the total demand dissatisfaction and then the total service
time of all trucks.

As demonstrated above, in complete repositioning
problem, the loading and unloading quantities to a station
are given in advance, as opposed to our partial repositioning
problem where they are decision variable. The increase of
decision variables also increased the computational com-
plexity of solving partial positioning problems which is more
in line with the operation of the actual BSS. When it comes to
partial positioning problems, most researchers have focused
their objective on minimizing the user dissatisfaction
measured by the sum of unmet demand or deviations from
the target fill levels at all stations [4-11, 32]. However, as
mentioned previously, the different level of user dissatis-
faction caused by unmet demands or deviations at different
stations is another important aspect to take into account
although it has been ignored in most of the literature. In this
paper, we do not only pursue the overall minimization of
operational costs and user dissatisfaction costs but also
consider the differences in user dissatisfaction at different
stations. As summary above, two works have solved the
complete repositioning problem by iterated local search
[23, 25], only one work has used iterated local search to solve
the bilevel partial repositioning problem [29]. It is obvious
that the iterated local search algorithm in the above three
papers cannot effectively solve the partial repositioning
problem studied in this paper. Considering the character-
istics and solution quality of the problem, we improve the
traditional iterated local search algorithm and propose a
customized algorithm for solving the problem in this paper.
Computational results show that the improved algorithm is
effective.

3. Mathematical Formulation

The bike-sharing system studied in this paper comprises a
depot, a set of stations, and a truck. Each station has a
repositioning demand. If the repositioning demand at a
station is greater than 0, the station is defined as a pickup
station and can provide bikes to the delivery stations. The set
of pickup stations is denoted by P. On the other hand, if the
repositioning demand at a station is smaller than 0, then the
station is defined as a delivery station and should be supplied
with bikes from pickup stations. The set of delivery stations
is denoted by D. If the demand at a station is equal to 0, then
the station is called a balanced station. Balanced stations can
be ignored in the partial repositioning problem as there is no
visiting or loading/unloading operations needed.

We consider the scenario that only a single truck with a
given capacity is available. The truck collects bikes from
pickup stations and transports them to delivery stations. It
starts from and returns to the depot empty and operates
within a given repositioning time constraint. Moreover, each
station is allowed to be visited at most once, and not all
stations need to be visited. The objective is to determine the
route of the truck and the loading and unloading quantities
at each visited station to minimize the weighted sum of the
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total operational time as well as the total absolute deviation
from the target number of bikes at all stations.

3.1. Notations

3.1.1. Sets

N: set of stations

Ny: set of nodes, including the stations (indexed by i,
i € N) and the depot (indexed by 0)

P: set of pickup stations, where P ¢ N

D: set of delivery stations, where D ¢ N

R: set of stations visited by the truck, where R ¢ N
U: set of stations not visited by the truck, where U ¢ N

3.1.2. Parameters

d;: demand of station i at the beginning of the repo-
sitioning operation, if d; >0, then i € P; if d; <0, then
ieD

t;;: operational time that includes the travel time from
station 7 to station j and the expected time required to
load or unload bikes at station j

Q: truck capacity

T: repositioning time

D %= ) xp=1

jeN JjEN
D Y0j= D o =0
jeN jEN
Y x;<1, VieN,
JjeNo.j#i
Z Xij = Z X VieN,
JeNo,j#i JjeNoj#i
i,jeNg,itj

q;zq; + 1 —M(l—xij),

Z Yij~ Z yji:)’f—y?) VieN,

jeNGji#i jeNjiti
y;i<Qxij, Vi, j € No,itj,
P D
Z Vi — Z yi =0,
ieN ieN

yiD < min<max(—di, 0)-

M: a very large number

w;: the unit penalty cost associated with unsatisfied one
bike at station i, w; € (0,1],Vi € N

a: the weight associated with the truck’s total opera-
tional time

3.1.3. Decision Variables

x;;: binary variable that equal 1 if truck travels directly
from station i to station j, and 0 otherwise

y;;: the number of bikes onto the truck when it travels
directly from station i to station j

y%: the number of bikes loaded on the truck at station
i,y? >0,Vi € P, if i ¢ P, then y/ =0

yP: the number of bikes unloaded from truck at station
i,yP>0,Vi€ D, if i ¢ D, then yP =0

3.2. Mathematical Formulation. The formulation for the
SPRP addressed in this study is given as follows:

min « Z Z tijxij + Z wi(di - yf-)) + Z wi(_di - ylp)’
ieP

i€N, jeNit] ieD
(1)

which is subject to

(2)
(3)
(4)
(5)

(6)

Vi:j e N()s i#j: (7)

(8)

(9)

(10)

IETED) yﬁ>’ VieN, (11)

jeNgj#i

jeNgj#i



yi < min<max(d,», 0)- Z Xij» <Q -
jeNgj#i

g0, VieN,,
yi 20, VieN,
y’20, VieN,

y;;20, ¥i, j € Ny, i#j,
x;; €{0,1}, Vi, j € Ny, i#j.

Objective function (1) is defined as the weighted sum of
the total operational time and the total weighted sum of
deviation from the target number of bikes. Constraint (2)
states that the truck departs from the depot only once and
returns to the depot. Constraint (3) ensures that the truck
starts from and returns to the depot empty. Constraints (4)
ensure that the truck can visit a station at most once.
Constraints (5) ensure that if the truck visits a station, it
must leave that station. Constraint (6) ensures that total
operational time of the truck does not exceed the reposi-
tioning time available. Constraints (7) are the subtour
elimination constraint [34]. Constraints (8) require that the
number of bikes loaded onto or unloaded from the truck at a
given station equals the difference between the truck load
before and after the station visit. Constraints (9) ensure that
the load on the vehicle cannot be greater than the truck
capacity. Constraint (10) ensures that bikes picked up from
pickup stations by the truck are eventually delivered to
delivery stations. Constraints (11) require that the unloading
quantities at a station should not be greater than the number
of bikes needed by that station and greater than the number
of bikes on the truck when the vehicle reaches station.
Constraints (12) require that the loading quantities at a
station should not be greater than the number of bikes
supplied by that station and greater than the available spaces
on the truck when it arrives at the station. Constraints (13)
ensure the auxiliary variable is nonnegative. Constraints
(14)-(16) ensure that loading and unloading quantities at
each station and the number of bikes on the truck are
nonnegative integers. Constraints (17) define x;j to be a
binary variable.

4. Solution Method

Similar to other existing works (e.g., [15, 25, 29]), we use
iterated local search (ILS) to solve the BRP problem. The
ILS algorithm is a metaheuristic algorithm. It obtains the
optimal solution through two mechanisms of local search
(see Section 4.3) and perturbation search (see Section
4.4). In this paper, local search is executed through the
randomized variable neighborhood decent (RVND)
procedure. Algorithm 1 illustrates the ILSSPRP algorithm
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D yj,->>, Vie N, (12)

jeNgj#i
(13)
(14)
(15)
(16)

(17)

for the SPRP. According to Algorithm 1, after con-
structing the initial solution s, by applying the initiali-
zation procedure (see Section 4.2), the procedure RVND
(see Section 4.3) and perturbation search (see Section 4.4)
are called repeatedly until the predefined termination
criterion (the maximum consecutive iterations without
improvement limit in our case) is satisfied. The local
search including 6 neighborhood structures, such as Swap
(N1), Insertion (N2), Delete (N3), Exchange (N4), 2-Opt
(N5), and Reinsertion (N6) neighborhood structures, is
executed using an RVND procedure, whereas the per-
turbation procedure performs Swap (P1), Insertion (P2),
Exchange (P3), and Reinsertion (P4) neighborhood
structures.

According to the characteristics of the SPRP, we improve
the traditional ILS algorithm by adding a novel adjustment
operator after RVND and perturbation search. Details of the
adjustment operator can be found in Section 4.5, and we also
verify the impact of the proposed adjustment operator on
the ILSSPRP in Section 5.2. Let s represent the current
solution for the SPRP and s* represent the best solution that
can be searched currently. For a solution s, TC (s) gives the
objective value of solution s. We also denote ConslIter as the
current consecutive iterations without improvement, and
MaxConslter as the maximum consecutive iterations with-
out improvement, respectively.

4.1. Solution Representation. A solution w is represented by
w=(x, y, q) as shown in Figure 1, where x is a vector that
stores the routing sequence of the truck (xo, X1, ..., X X541),
where  xp=x,,,=0 represents the depot, x
(x, € N,h e {1,...,n}) represents the station visited by the
truck, the subscript h indicates the order of stations being
visited by the truck. y is a vector that stores the demand
that has been met at the station visited by the truck,
where positive and negative values indicate the quantities of
bikes collected and delivered, respectively. g is a vector
used to store the cumulative load after the truck visits
the station. According to equations (3) and (9), if a solution
is feasible, then ¢, =0,Vhe{0,n+1} and 0<gqg,<Q,
Vh e {0,1,...,n,n+ 1} where Q is the truck capacity.
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so: = Initialization;
s*:=5g; s:=s0; Conslter:=0;
while Conslter < MaxConslter do
s':=RVND (s, NY; {1<k < 6}
s:= Adjustment (s');
if TC (s) <TC (s*), then

sti=s;
Conslter: =0;
else
Conslter: = Conslter + 1;
end

s'': = Perturbation search (s*, P™); {1 <m < 4}
s:= Adjustment (s"');

End

Return s*

ALGORITHM 1: ILSgprp for SPRP.

Xp| 0 8 9 6 2 1 3 5 4 0

Y 5 4 -6 -2 5 -4 6 -8 0

0 5 9 3 1 6 2 8 0 0

F1GURE 1: Solution representation.

4.2. Initialization. In this paper, the initial feasible solution
is efficiently generated by a construction heuristic algorithm
(see [12, 28, 29]). The basic construction heuristic algorithm
was first proposed by Ho and Szeto [28] to solve the single-
vehicle BRP, and Ho and Szeto [12] developed it to solve the
multiple-vehicle BRP, and then Tang et al. [29] improved it
to solve the bilevel BRP.

The construction heuristic algorithm can be divided into
two main steps:

Step one, Sort: we first divide stations into two cate-
gories: pickup stations and delivery stations. Then,
stations are sorted in descending order by the ranking
criteria. Similar to Tang et al. [29], in this paper, the
ranking criteria are | wid? l, where
d? = {min(Q,d,),i € P; max(-Q,d,),i € D}.

Step two, Insert: we first insert the pickup stations in
turn into the route, if no pickup station can be inserted
into the current route without exceeding the capacity
limits; then, delivery stations are inserted in turn in the
route. We repeat this process until no station can be
inserted without violating the predetermined reposi-
tioning time constraint.

4.3. Local Search. After generating the initial solution, we
improve this initial solution with local search technique. We
consider two kinds of neighborhood structures: intersets and
intraroute. The former performs moves between set R (the
set of stations visited by the truck) and set U (the set of
stations not visited by the truck), whereas the latter only
considers moves within the route.

4.3.1. Interset Neighborhood Structures

(i) Swap-N': randomly select a station i from the route
(set R), then select another station j (|d;| < Idjl) of
the same type from set U, and exchange them.

(i) Insertion-N?: randomly select a station from the set
U to insert into the route (set R).

(iii) Delete-N°: randomly select a station from the route
(set R) and delete it.

4.3.2. Intraroute Neighborhood Structures

(i) Exchange-N* randomly select two stations from the
route and exchange them.

(ii) 2—Opt—N5: randomly select two stations from the
route and exchange the access order of the stations
between the two stations.

(iii) Reinsertion-N®: randomly select a station and
reinsert it into the route.

(iv) The new neighborhood solutions obtained by ap-
plying above moves may no longer remain feasible.
In order to ensure that a sufficient number of
feasible solutions can be obtained, we selectively
repair some infeasible solutions. Here, we repair
infeasible solutions obtained by applying N* and N’
(details to be discussed in Sections 4.6.1 and 4.6.2).
In terms of the other moves, only feasible solutions
can be accepted as the new neighborhood solutions.

4.4. Perturbation Search. In order to avoid falling into local
optimum and to realize global search, perturbation is used to
constantly change the current local optimum solution. The
following four kinds of moves are used to implement
perturbations:

(i) Swap-P": randomly select a station i from the route,
then select another station j of the same type from
set U, and exchange them.

(ii) Insertion-P*: randomly select a station from the set U
and insert it into the route. For the infeasible
neighborhood solution, when using the repair oper-
ator to repair, Insertion-P* randomly selects a feasible
solution after repair as the new neighborhood solu-
tion, while Insertion-N* chooses the best feasible so-
lution after repair as the new neighborhood solution.

(iii) Exchange-P’: randomly select two adjacent stations
from the route and swap them with two other
adjacent stations from the route.

(iv) Reinsertion-P*: randomly select two adjacent sta-
tions from the route, delete them, and reinsert them
elsewhere on the route.

(v) Here, we repair infeasible solutions obtained by
applying P* (details to be discussed in Section 4.6.3).
For other moves P', P?, and P* only feasible so-
lutions are accepted as the new neighborhood
solutions.



4.5. Adjustment Operator. The basic idea of the adjustment
operator is that a solution can be improved by properly
adjusting the loading and unloading quantities between
stations in a heuristically way [10, 12, 28, 32].

Similar to the pickup-delivery cycle proposed by Lei
and Ouyang [35], we first define a pickup-delivery pair as a
sequence of consecutive visits that starts from a pickup
station (preceded by the depot or delivery station) and ends
at the corresponding delivery station (followed by the
depot or pickup station). Figure 2 illustrates an example in
which the truck visits two pickup-delivery pairs (with
Q=10). The first pickup-delivery pair contains one pickup
station (station 1) and one delivery station (station 2), and
the second pickup-delivery pair also contains one pickup
station (station 4) and one delivery station (station 5). The
truck starts from the depot with empty, picks up 5 bikes at
station 1, and delivers directly to station 2, where 3 bikes
are unloaded. Then, 6 bikes are further collected at station
4, delivers 8 bikes at station 5, and finally ends at the depot
empty.

In this paper, we divide the adjustment operator into two
categories: adjustment of the quantities of different types of
stations in one pickup-delivery pair and adjustment of the
quantities of the same type of stations in different pickup-
delivery pairs. We first adjust the quantities of stations
within each pickup-delivery pair, and then adjust the
quantities of the same type of stations across different
pickup-delivery pairs.

4.5.1. Adjustment of the Quantities of Different Types of
Stations in One Pickup-Delivery Pair. In this case, on the
current route, we adjust the quantities of different type of
stations within each pickup-delivery pair, until all pickup-
delivery pairs are adjusted. For one pickup-delivery pair, we
consider one pickup station x; and one delivery station x; at a
time (i and j indicate the order of stations being visited by the
truck, respectively), with their loading and unloading
quantities increased r at the same time, which is formulated

byr = min{dxi - yi, Idle - y?}, Q- q,}, subject to capacity

and loading constraints. Then, the loading and unloading
quantities on station x; and station x; are updated at the same
time by y£ = y2 +7;y2 = yP 4 ¢]

As shown in Figure 3(a), in the first pickup-delivery pair,
pickup station 1 and delivery station 2 are selected (with
Q=10) to adjust the loading and unloading quantities. In this
case, the increased loading/unloading quantities r = min{d,—
yf, |d,| - ylzj, Q-q,} =min{7 - 5,6 — 3,10 — 5} = 2. Then,
yW=yP+2=5+2=7yP=9yP+2=3+2=5 In the
second pickup-delivery pair, pickup station 4 and delivery
station 5 are selected as shown in Figure 3(b), r=1; then,
yY=yP+1=6+1=7yP=yP+1=8+1=09.

4.5.2. Adjustment of the Quantities of the Same Type of
Stations in Different Pickup-Delivery Pairs. For two stations
of the same type, adjusting the loading (for pickup sta-
tions) and unloading (for delivery stations) quantities
between them can improve the current solution, under the
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FiGure 2: Illustration of pickup-delivery pair.

condition of ensuring the feasibility of the solution after
the transformation. Each time, two stations of the same
type in different pickup-delivery pairs are selected, and
the loading and unloading quantities of one station are
increased by 1 unit, while that of the other station is
reduced by 1 unit, resulting in a decrease in the value of
the objective function (i.e., the weighted sum of the op-
erational time and deviation from target). The procedure
is repeated until there is no loading and unloading
quantity adjustment between stations to improve the
current solution.

Consider a current feasible solution shown in Figure 2.
Figures 4(a) and 4(b) show an example where pickup
station 1 (in the first pickup-delivery pair) and pickup
station 4 (in the second pickup-delivery pair) are selected;
then, we shift two unit quantity between them. For in-
stance, in Figure 4(a), we increase the loading quantities at
station 1 by two, and reduce the loading quantities at
station 4 by two. We do the opposite, and it is shown in
Figure 4(b). Under the two transformations, the new
solution that could reduce the objective value will be
accepted.

Similarly, as shown in Figures 4(c) and 4(d), delivery
station 2 in the first pickup-delivery pair and delivery station
5 in the second pickup-delivery pair are selected; then, we
shift two unit quantities between them. Figure 4(c) shows the
operation where we increase the unloading quantities at
station 2 by two, and decrease the unloading quantities at
station 5 by two. And Figure 4(d) shows the opposite op-
eration. Similarly, between the two newly generated solu-
tions, we accept the one that could reduce the objective value
as the current solution.

4.6. Repair Operator. There is a couple of constraints for a
solution to be feasible. First of all, the sum of the total
satisfied demand of stations visited by the truck on the
route is 0 (according to equation (10)). For instance, a
feasible solution is shown in Figure 5, suppose Q =10, and
the total satisfied demand of stations visited by the truck is
0, thatis, 4—3 + 2 + 2—5 =0. Therefore, if we want to ensure
that the neighbor solution obtained by applying the In-
sertion and Delete is feasible, we must make sure that the
sum of the total satisfied demand of stations visited by the
truck is 0. Besides, we also need to make sure that the
solution meets the capacity and loading constraints
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FiGure 3: Neighbor solutions after applying the adjustment operator in one pickup-delivery pair. (a) Adjustment of the loading and
unloading quantities between stations in the first pickup-delivery pair. (b) Adjustment of the loading and unloading quantities between

stations in the second pickup-delivery pair.
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FIGURE 4: Neighbor solutions after applying the adjustment operator between two pickup-delivery pairs. (a) Adjustment of the loading
quantities between station 1 and station 4. (b) Adjustment of the loading quantities between station 1 and station 4. (c) Adjustment of the
unloading quantities between station 2 and station 5. (d) Adjustment of the unloading quantities between station 2 and station 5.
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FiGURE 5: A feasible solution.

(according to equations (3) and (9)). In the following
sections, we describe the repair procedure for infeasible
solutions obtained by local search and perturbation
search, respectively.

4.6.1. Repairing Infeasible Solutions after Applying N2.
Given a feasible solution, if we insert a station into the
solution, the obtain new neighbor solution is certainly not
feasible. However, the feasibility of the new neighbor so-
lution can be ensured by adjusting the loading/unloading
quantity of a certain station. Assuming that the current
satisfied demand of the inserted station is A, then it is
necessary to reduce A’ on the basis of the current satisfied
demand of a certain station on the route, in order to balance
out the sum of the total satisfied demand on the route to be 0.
In this case, the new neighbor solution after applying the
repair procedure is feasible if the capacity and loading
constraints are satisfied. There might be more than one
feasible adjustment scheme, under which the solution with
the lowest objective value is selected as the new neighbor
solution.

As shown in Figure 6, if we insert station 6 (AT = y? = 2)
into the current feasible solution (as shown in Figure 5), the
total of all satisfied demands is 2 but not 0. Then, we need to
choose one station from the route and reduce its satisfied
demand by A As shown in Figure 7, there are three feasible
neighbor solutions can be obtained by applying the repair
procedure, and we choose the neighbor solution with the
lowest objective value as the new feasible solution.

@@@ (=D~

-3 +2 +2 -5

FIGURE 6: An infeasible solution with station 6 inserted.

4.6.2. Repairing Infeasible Solutions after Applying N°.
Assuming that the current satisfied demand for the deleted
station is AP, then it is necessary to increase A on the basis
of the current satisfied demand of a certain station on the
route, to ensure that the sum of the total satisfied demand on
the route is 0. Similarly, if there are more than one feasible
neighbor solutions, the solution with the lowest objective
value is selected as the new neighbor solution.

As shown in Figure 8, if we delete station 4 (A” = y¥ = 2)
from the current feasible solution (Figure 5), the total of all
satisfied demand is —2. Therefore, we need to choose one
station from the route and increase its satisfied demand by
AP. As shown in Figure 9, there are three feasible neighbor
solutions can be obtained from the repair procedure, and we
choose the neighbor solution with the lowest objective value
as the new neighbor solution.

4.6.3. Repairing Infeasible Solutions after Applying P2. In
this case, the repair operation would be the same as in
Section 4.6.1, the only difference is that when there is more
than one feasible neighborhood solution generated, we
randomly select one as the new neighbor solution.

5. Computational Results

In this section, we present experiments conducted to verify
the effectiveness of the proposed ILSgprp algorithm as well as
the proposed adjustment operator. We compare the per-
formance of our proposed solution with the optimal solution
of Lingo 18. We also analyze through experiments the
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FIGURE 7: Feasible solutions after applying repair operator. (a)
Adjustment of the loading quantities of station 1. (b) Adjustment of
the unloading quantities of station 2. (c) Adjustment the unloading
quantities of station 5.
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FIGURE 8: An infeasible solution with station 4 deleted.
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FIGURE 9: Feasible solutions after applying repair operator. (a)
Adjustment of the loading quantities of station 1. (b) Adjustment of
the unloading quantities of station 2. (c) Adjustment of the
unloading quantities of station 5.

influence of the change of weight coefficient a on the
proposed ILSgprp and the change of unit penalty cost w; on
the repositioning strategies.

We follow the instances proposed by Rain-Harbach et al.
[7] to conduct the experiments, where the size of the in-
stances is ranging from 30 to 300 stations. For each instance,
we select the first seed of the 30 independent seeds. The
initial objective value, the total pickup, and total drop-oft
quantities of each instances are listed in Table 2. We consider
instances with 30 and 60 stations as the small-size instances;
instances contain 120 and 180 stations as the medium-size
instances; and instances with 240 and 300 stations as the
large-size instances. In this study, unless otherwise specified,
we follow the setting in Szeto et al. [32], «=0.00001. Three
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repositioning time constraints (in seconds) were used,
T=14400s, T=21600s, and T=28800s. Two truck capac-
ities (in terms of the number of bikes) were considered:
Q=10 and Q=20, respectively. The unit penalty cost w;
associated with one unsatisfied bike at station i was ran-
domly generated in the interval (0, 1], Vi € N.

The experiments are conducted in Matlab, on a com-
puter with Intel Core i5-4590 CPU @ 3.30 GHz and 4 GB
RAM. We run each instance for 20 times, the best and
average of the solutions and the average computing time of
those 20 runs are used to evaluate the performance of the
ILSsprp-

The main parameter of ILSgprp to be calibrated is the
maximum consecutive iterations without improvement
(MaxConslIter). Here, we set its value as a function of the
instance, MaxConslter =max{100, |N|}, similar to Bulhdes
et al. [15].

5.1. Comparison between Lingo and ILSsprp. In terms of the
quality of the solution and the calculation efficiency, Tables 3-5
show the comparison results obtained by Lingo and ILSgprp
under different repositioning times (7'=14400s, T'=21600s,
and T=28800s), truck capacity (Q=10 and Q=20), and
number of stations (|N]). Gappes: and Gapayg (%) indicate the
performance of the ILSgprp relative to that of Lingo based on the
best and average objective values, respectively. The CPU (in
seconds) indicates the average computing time of the ILSsprp or
the computing time for Lingo, respectively.

From Tables 3-5, we can see that Lingo is not able to
obtain any feasible solutions for the large-size problems
(where |N| =240 and |N|=300). It also generally fails to
obtain any global optimal solutions within 3600 seconds
even for small-size problems. In contrast, for the various size
of problems from small to large, the average computing time
of the ILSgpgp varies from 7.12s to 33.71s.

As shown in the Tables 3-5, almost all of the values of
Gapgest and Gap s are negative (with only one exception for
the results obtained under |[N| =60, Q= 10, T=14400s). The
absolute values of the average Gapgey and Gap,yg values
obtained by the ILSsprp for the scenarios with long repo-
sitioning time are larger than those with short repositioning
time. Gapges; and Gapa,, are, respectively, —3.53 and -3.31
for T=14400s, and —5.46 and —4.45 for T=21600s, but
—-23.59 and -20.81 for T=28800s. This implies that the
ILSsprp performs better than Lingo when solving the SPRP
with a longer repositioning time.

Therefore, we can draw the conclusion that the proposed
ILSspgrp can obtain better feasible solutions much faster than
Lingo.

5.2. The Effectiveness of Introducing Adjustment Operator into
ILSsprp. In this study, the adjustment operator (presented in
Section 4.5), which considers the characteristics of the SPRP, is
introduced to improve the solution quality obtained by the
proposed ILSgprp. In this section, we study through experiments
the effectiveness of the proposed adjustment operator by
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TABLE 2: Characterization of the instances.

IN] Initial objective value Total pickup quantities Total drop-off quantities
30 99.2 107 107
60 170.3 179 179
120 330.7 354 354
180 606.4 557 557
240 760.4 785 785
300 852.2 883 883

TaBLE 3: Result comparison of Lingo and ILSSPRP (T'=14400s).

Instance Lingo ILSsprp

0, 0,
IN] Q Optimal value CPU Best value Average value CPU Gapoes: (%) Gapavg (%)
30 10 48.6440 233 48.6440 48.6440 4.27 0.00 0.00
20 43.5440 3600 41.4386 41.4386 4.58 -5.08 -5.08
60 10 117.1420 3600 117.6428 117.7424 5.33 0.43 0.51
20 113.4440 3600 111.6422 112.9824 4.86 -1.61 -0.41
120 10 273.7440 3600 271.2440 271.9101 6.65 -0.92 -0.67
20 296.8180 3600 256.9386 257.0192 6.74 -15.52 -15.48
180 10 554.1440 3600 538.4374 538.7209 8.02 -2.92 -2.86
20 542.0440 3600 528.2434 528.8430 8.11 —-2.61 -2.50
240 10 690.0386 690.0386 8.47
20 671.9338 671.9338 8.91
300 10 796.3374 796.9097 8.92
20 789.1392 792.1236 10.63
Avg 3179.13 7.12 -3.53 -3.31
TABLE 4: Result comparison of Lingo and ILSSPRP (T'=21600s).
Instance . Lingo ILSsprp Gappen (%) Gapave (%)
IN] Q Optimal value CPU Best value Average value CPU
30 10 28.8148 3600 28.5178 28.7040 8.32 ~1.04 -0.39
20 23.5148 3600 21.2130 21.7398 9.42 ~10.85 -8.16
o 10 94.2160 3600 93.2130 93.7275 8.12 -1.08 -0.52
20 84.4150 3600 81.7226 83.9474 12.92 -3.29 -0.56
120 10 249.3160 3600 243.5154 2441531 15.46 -2.38 —2.11
20 229.4154 3600 2224112 224.3142 14.45 -3.15 -2.27
180 10 513.2160 3600 506.4052 506.4052 11.77 ~1.34 ~1.34
20 594.4610 3600 493.0178 494.4761 22.22 -20.58 ~20.22
240 10 656.0130 656.4622 17.69
20 629.4130 630.3757 32.69
300 10 764.4004 764.4005 17.22
20 743.1136 744.1450 46.51
Avg 3600 18.07 -5.46 —4.45
TaBLE 5: Result comparison of Lingo and ILSSPRP (T'=28800s).
Instance . Lingo ILSsprp Gappen (%) Gapavg (%)
IN] Q Optimal value CPU Best value Average value CPU
20 10 20.0888 3600 14.2862 15.3446 14.00 ~40.62 -30.92
20 13.5862 3600 8.6850 9.1928 18.10 ~56.43 -47.79
o 10 79.5874 3600 74.7808 75.3967 16.96 -6.43 -5.56
20 65.7868 3600 63.5886 64.1407 19.10 -3.46 ~2.57
120 10 223.8880 3600 220.4964 221.8205 2422 ~1.54 -0.93
20 2433166 3600 193.2868 195.1978 33.08 ~25.88 ~24.65
180 10 593.4432 3600 475.4784 4761721 32.82 -24.81 -24.63
20 588.8660 3600 454.5760 454.9920 36.97 ~29.54 ~29.42
240 10 623.5814 625.9040 41.91
20 582.9796 583.6207 56.05
300 10 719.6832 720.3621 53.98
20 711.2862 712.2615 57.28

Avg 3600 33.71 -23.59 —-20.81
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TABLE 6: Result comparison of ILSSPRP with and without the adjustment operator (T'=14400s).
Instance ILS without adjustment ILS
SPRP J SPRP GapBest (%) GapAVg (%)
IN] Q Best value Average value CPU Best value Average value CPU
30 10 51.6440 51.9440 2.06 48.6440 48.6440 4.27 -6.17 -6.78
20 48.3386 48.9039 2.23 41.4386 41.4386 4.58 -16.65 -18.02
60 10 118.1410 118.1410 1.49 117.6428 117.7424 5.33 —-0.42 -0.34
20 125.8314 125.8315 2.11 111.6422 112.9824 4.86 -12.71 -11.37
120 10 277.6434 278.0650 2.20 271.2440 271.9101 6.65 —-2.36 -2.26
20 262.0434 263.8493 2.42 256.9386 257.0192 6.74 -1.99 —2.66
180 10 551.5374 552.8316 3.86 538.4374 538.7209 8.02 -2.43 -2.62
20 536.1428 537.9650 4.44 528.2434 528.8430 8.11 -1.50 -1.72
240 10 691.0392 691.0392 3.92 690.0386 690.0386 8.47 -0.15 -0.15
20 675.6338 675.6338 4.77 671.9338 671.9338 8.91 -0.55 -0.55
300 10 797.3254 797.3254 4.09 796.3374 796.9097 8.92 -0.12 -0.05
4.48 10.63 -0.62 -0.24
Avg 20 794.0284 794.0284 317 789.1392 792.1236 712 _3.81 ~3.90
TABLE 7: Result comparison of ILSSPRP with and without the adjustment operator (T'=21600s).
Instance ILSsprp without adjustment ILSsprp
GapBest (%) GapAvg (%)
[N Q Best value Average value CPU Best value Average value CPU
30 10 329112 33.4601 3.31 28.5178 28.7040 8.32 -15.41 -16.57
20 27.3046 28.1255 4.38 21.2130 21.7398 9.42 -28.72 -29.37
60 10 103.0052 103.8758 3.51 93.2130 93.7275 8.12 -10.51 -10.83
20 95.4034 95.4044 4.59 81.7226 83.9474 12.92 -16.74 -13.65
120 10 252.6992 252.9956 4.13 243.5154 2441531 15.46 -3.77 -3.62
20 234.0136 235.9209 5.58 2224112 224.3142 14.45 -5.22 -5.17
180 10 509.4076 509.4078 6.83 506.4052 506.4052 11.77 -0.59 -0.59
20 495.8064 496.6537 10.66 493.0178 494.4761 22.22 -0.57 -0.44
240 10 659.7034 659.7034 7.88 656.0130 656.4622 17.69 -0.56 -0.49
20 643.8136 644.3996 12.00 629.4130 630.3757 32.69 -2.29 -2.22
300 10 764.5106 765.7674 7.95 764.4004 764.4005 17.22 -0.01 -0.18
15.69 46.51 —-1.88 -2.06
Avg 20 757.1046 759.4416 791 743.1136 744.1450 18.07 719 710
TaBLE 8: Result comparison of ILSSPRP with and without the adjustment operator (T'=28800s).
Instance ILS without adjustment ILS
SPRP J SPRP GapBest (%) GapAVg (%)
IN] Q Best value Average value CPU Best value Average value CPU
20 10 17.8850 19.3378 5.24 14.2862 15.3446 14.00 -25.19 ~26.02
20 12.2778 13.6011 5.49 8.6850 9.1928 18.10 —41.37 ~47.95
60 10 78.4790 79.5503 4.82 74.7808 75.3967 16.96 -4.95 -5.51
20 67.8736 69.4746 5.74 63.5886 64.1407 19.10 -6.74 -8.32
o 10 227.0844 229.5996 7.66 220.4964 221.8205 2422 -2.99 -3.51
20 2022880 204.2200 9.13 193.2868 195.1978 33.08 ~4.66 -4.62
o 10 4776772 477.8671 1048 4754784 4761721 32.82 -0.46 -0.36
20 463.6724 465.0630 1246 454.5760 454.9920 36.97 ~2.00 —221
o 10 6245778 626.3524 1392 623.5814 625.9040 41.91 -0.16 -0.07
20 604.0832 606.0604 1453 582.9796 583.6207 56.05 -3.62 ~3.84
300 10 7324820 734.7626 1530  719.6832 720.3621 53.98 -1.78 -2.00
17.74 57.28 -1.73 ~1.84
avg 20 7235718 725.3612 Lo 711.2862 712.2615 B e g

comparing the performance of the ILSsprp with and without
adjustment operator using the various instances described in
Section 5.1.

Tables 6-8 present the results obtained by the proposed
ILSgprp algorithm with and without the adjustment operator,
under different repositioning times, respectively. CPU denotes
the average computing time in seconds. Gapge and Gap sy, here

are the deviations of the best/average of the objective values from
20 runs obtained by the ILSsprp with the adjustment operator
from the corresponding optimal solution obtained by ILSgprp
without the adjustment operator, respectively. From Tables 6-8,
we can see [LSgprp without the adjustment operator resulting in
a shorter computation time than the ILSgprp with the adjust-
ment operator.
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TAaBLE 9: Sensitivity analysis on a.

Instance Lingo ILSsprp
. GapBest (%) GapAVg (%)
o T Q Optimal value CPU Best value Average value CPU
14400 10 48.5000 261 48.5000 48.5000 2.95 0.00 0.00
20 43.2000 3600 40.6000 41.1300 2.98 -6.40 -5.03
0 21600 10 29.8000 3600 29.5000 30.0200 3.29 -1.02 0.73
20 22.3000 3600 20.5000 21.2000 5.05 -8.78 -5.19
28800 10 14.4000 3600 13.0000 13.9750 5.79 -10.77 -3.04
20 12.7000 3600 9.1000 10.0444 7.20 -39.56 —26.44
14400 10 48.6440 233 48.6440 48.6440 4.27 0.00 0.00
20 43.5440 3600 41.4386 41.4386 4.58 -5.08 -5.08
10 28.8148 3600 28.5178 28.7040 8.32 -1.04 -0.39
0.00001 21600 20 23.5148 3600 21.2130 21.7398 9.42 -10.85 -8.16
28800 10 20.0888 3600 14.2862 15.3446 14.00 —-40.62 -30.92
20 13.5862 3600 8.6850 9.1928 18.10 -56.43 -47.79
14400 10 49.9400 181 49.9400 49.9400 2.61 0.00 0.00
20 45.1400 3600 41.9860 42.8651 2.85 -7.51 -5.31
10 32.3360 3600 28.3420 30.3527 9.39 -14.09 -6.53
0.0001 21600 20 23.8300 3600 22.9360 23.3009 11.71 -3.90 -2.27
28800 10 18.4800 3600 16.6260 16.9609 9.78 -11.15 -8.96
20 16.3140 3600 10.8320 11.7420 16.54 -50.61 -38.94
14400 10 62.9000 96 62.9000 62.9000 3.35 0.00 0.00
20 57.5400 3600 54.4600 55.3964 4.31 —-5.66 -3.87
0.001 21600 10 50.6800 3600 47.2000 48.8240 7.33 -7.37 -3.80
’ 20 44.0000 3600 41.2200 42.4707 10.74 -6.74 -3.60
10 42.4000 3600 39.5800 40.5733 11.91 =712 —-4.50
28800 3600 22.24 -0.17 -0.12
Avg 20 36.3000 303213 36.2400 36.2550 3.28 ~12.29 _8.72
TaBLE 10: Parameter setting.
Station parameter 1 2 3 4 5 6
d; 9 6 -6 -6 8 -5
w; 0.8 0.6 0.8 0.6 0.2 0.7
TaBLE 11: The value of objective function and the route of the truck in different scenarios.
Scenario The value of objective function Route and loading/unloading quantities at stations
1 18.0648 0— 2(+5) — 6(=5) — 1(+6) — 4(-6) — 0
2 7.6708 0—1(+9) — 3(-6) — 2(+2) — 6(-5) — 0

However, the Gappes and Gap g values for all discussed
instances are negative, which implies that the adjustment
operator is necessary to improve the quality of the solution.
As expected, when T'increases, the absolute average value of
Gapgest and Gapa,, increases. This also indicates that the
ILSsprp with the adjustment operator is more effective than
the ILSsprp without the adjustment operator to solve the
SPRP with long repositioning time. Therefore, it can be
concluded that it is beneficial to incorporate adjustment
operator into the ILSgsprp to solve the SPRP.

5.3. Sensitivity Analysis on a. In this set of experiments, we
analyze the sensitivity of the performance of the proposed
approach to the values of a. Note that increasing the value of
o means that we are increasing the impact of operational
time on the whole weighted objective function. When we set
a=0, it means that the objective function only considers
user dissatisfaction.

We test the sensitivity of a with a small-size instance
consisting of 30 stations (|N|=30) and consider the three
repositioning time constraints (7'=14400s, T=21600s and
T=28800s) and two truck capacity constraints (Q =10 and
Q=20).

Different values of « from 0 to 0.001 were considered,
and for each value, we perform 20 runs of the experiment.
The results obtained with Lingo 18 and the ILSgprp were
compared in Table 9. CPU (in seconds) is the computing
time for Lingo or the average computing time of 20 runs for
the ILSgprp. Gappese and Gapayg are the deviations of the
best/average of the objective values from 20 runs obtained by
the ILSsprp from the corresponding optimal solution ob-
tained by Lingo, respectively.

As shown in Table 9, almost all of the values of Gapges;
and Gapa,g are negative (with only one exception for the
results obtained under a =0, T=21600s, Q=10). The av-
erage values of Gapges and Gapay, are —12.29 and -8.72,
respectively. This then indicates that the proposed ILSgprp
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can always obtain better solutions than Lingo under different
values of «, repositioning time and truck capacity. The
average computing time of the ILSgprp is 8.28's, which is
significantly less than that of Lingo (3032.13 s). Therefore, we
can conclude that the ILSgprp works well under different
values of a.

5.4. Sensitivity Analysis on w;. In this section, a small ex-
ample is constructed to investigate the sensitivity of the
proposed model to the parameter w;. We consider 2 sce-
narios and investigate the repositioning strategies,
respectively:

(i) Scenario 1: we solve the model without taking into
account the different values of w,

(ii) Scenario 2: we consider different values of w; and
solve the model accordingly

We select the first six stations in the instance of [N| =
30 mentioned in Section 5.1, and set T=7200s and
Q=10. The tested values of the parameters including d;
and w; are shown in Table 10. Note that when d;>0,
station i is a pickup station; otherwise, if d; < 0, station i is
a delivery station. The results are displayed in Table 11,
including the value of the objective function, the route of
the truck, and the loading/unloading quantities at each
station.

As shown in Table 11, the experimental results of
scenario 1 and scenario 2 are significantly different. For
pickup station 1 and 2, in scenario 2, the value of w, is
relatively large. This means that the level of user dissat-
isfaction (for one bike) of station 1 is higher than that of
station 2. Therefore, in order to reduce the total cost, it is
necessary to increase the loading quantity at station 1 to
meet the demand of station 1 as much as possible. The
loading quantity of station 1 increases from 6 bikes in
scenario 1 (where we disregard the different values of w;)
to 9 bikes in scenario 2 (d; =9, the maximum loading
quantity of station 1 is 9 bikes); similarly, the loading
quantity of station 2 decreases from 5 bikes in scenario 1
to 2 bikes in scenario 2.

Regarding the delivery stations 3, 4, and 6, in scenario 2,
because w;>wg>w,, the priorities of meeting the demand
are first given to station 3, followed by station 6, and last to
station 4. From the results, we can see that the unloading
quantity of station 3 increases from 0 bike in scenario 1 to 6
bikes in scenario 2 (d;=-6, the maximum unloading
quantity of station 3 is 6 bikes), while the unloading
quantity of station 4 decreases from 6 bikes in scenario 1 to
0 bike in scenario 2.

From the above results, it can be seen that different
values of w; can directly impact the loading/unloading
quantities of repositioning truck at each station, as well as
the route of the truck, i.e., the repositioning strategy of the
BSS operators. Therefore, it can be concluded that it is
necessary to take distinguishing the user dissatisfaction
generated by different stations into account when mod-
eling the bike repositioning problem, which is the key
factor to the optimization of the bike repositioning.

Journal of Advanced Transportation

6. Conclusions

In this paper, we study the static partial repositioning
problem where the level of user dissatisfaction differs in
different stations. We propose an iterated local search al-
gorithm ILSgprp to find solutions to the problem as well as an
adjustment operator to further improve the obtained so-
lutions. We conduct a comprehensive set of experiments to
study the performance of the proposed approach in terms of
solution quality and computational time, compared with
Lingo. The experimental results show that the proposed
ILSsprp almost always outperforms Lingo from small- to
large-size problems, as well as under different relative im-
portance set to the two objectives (i.e., operational time and
deviation from the target number of bikes). We also use a
small example to illustrate that the unit penalty cost w; has
an effect on the repositioning route and the loading/
unloading quantities at each station.

There are potential directions for future research. For
instance, unbalance demands in the bike-sharing system will
not only increase user dissatisfaction, but also aggravate
urban traffic congestion. Therefore, in addition to consid-
ering economic benefits, we will also need to consider en-
vironmental benefits in the bike repositioning problem. How
to introduce environmental benefits into the objective
function would be an interesting topic for future research.
Besides, we are also interested in developing efficient and
effective algorithms to verify feasibility of a given solution.
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