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Traffic safety has always been an important issue in sustainable transportation development, and the prediction of traffic accident
severity remains a crucial challenging issue in the domain of traffic safety. A huge variety of forecasting models have been
proposed to meet this challenge. )ese models gradually evolved from linear to nonlinear forms and from traditional statistical
regression models to current popular machine learning models. Recently, a machine learning algorithm called Deep Forests based
on the decision tree ensemble has aroused widespread concern, which was proposed for the first time by a research team of
Nanjing University. )is algorithm was proved to be more accurate and robust in comparison with other machine learning
algorithms. Motivated by this benefit, this study employs the UK road safety dataset to propose a novel method for predicting the
severity of traffic accidents based on the Deep Forests algorithm. To verify the superiority of our proposed method, several other
machine learning algorithm-based perdition models were implemented to predict traffic accident severity with the same dataset,
and the prediction results show that the Deep Forests algorithm present good stability, fewer hyper-parameters, and the highest
accuracy under different level of training data volume. It is expected that the findings from this study would be helpful for the
establishment or improvement of effective traffic safety system within a sustainable transportation system, which is of great
significance for helping government managers to establish timely proactive strategies in traffic accident prevention and effectively
improve road traffic safety.

1. Introduction

Traffic safety has always been an important issue in sus-
tainable transportation development. Traffic accidents will
have some negative impacts on society, including casualties,
traffic jams, and environmental pollution, which are not
conducive to the sustainable and healthy development of the
transportation system.With the gradual improvement of the
level of automated information systems, in recent years,
some government agencies and transportation industry
companies have been committed to the development of
intelligent transportation systems to help the sustainable
development of transportation. Traffic accident prediction is
a crucial and challenging issue in the domain of intelligent
traffic safety management system; it is of great significance
for analyzing the future development trend of traffic

accidents and implementing proactive prevention measures
under existing road traffic conditions. To improve traffic
safety management and control, it is necessary to seek timely
and accurate methods for predicting traffic accident severity.
In recent years, with the rapid development of science and
technology, the advanced technology used in transportation
has been strengthened at an unprecedented level. Unfor-
tunately, these advanced technologies have no obvious
advantages for the reduction of traffic accidents. Save
LIVES-A road safety technical package 2017, issued by
World Health Organization (WHO), indicated that road
traffic accidents lead to the loss of over 1.2 million lives and
cause nonfatal injuries to as many as 50 million people
around the world each year, which are estimated to be the
ninth leading cause of death across all age groups globally
[1]. Road traffic crashes may be an everyday occurrence, but
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they are predictable and preventable. )erefore, every traffic
researcher has the responsibility to think over the causes of
traffic accidents and help the administration in solving the
problem of reducing the probability of traffic accidents. Over
the years, researchers have tried various traffic accident
severity analysis models from different perspectives. )ese
modeling analyses are to explore the relationship between
accident severity and its influencing factors, among which
the most widely used is the discrete selection model based on
the Logit or Probit model (e.g., [2–6]). )ese studies have
shown that accurate traffic accident severity prediction plays
an important role in improving traffic safety management,
because, based on accurate prediction, the prominent
influencing factors in high-risk road sections could be found
out to provide beneficial suggestions for improving road
safety.

Latterly, with the advancement of computer science, the
era of big data has come. Many scholars began to try to apply
some intelligent classification models based on knowledge
discovery for accident degree analysis modeling, such as the
Bayesian model, neural network model, decision tree model,
and random forest model [7–11]. All of these models have
one common characteristic that they do not require any
assumptions on the relationship between the independent
variables and dependent ones. Mujalli et al. [7] used
Bayesian networks to improve classifying the traffic accident,
which results in a reduction in the misclassification of deaths
and serious injuries. Garćıa de Soto et al. [8] found that
Artificial Neural Networks (ANNs) can be used as a feasible
method to predict the frequency of road traffic accidents.
Zhang and Fan [9] presented a data mining model using ID3
and C4.5 decision tree algorithms to analyze the traffic
collision data. Pu et al. [10] conducted Full Bayesian before-
after analysis of safety effects (crash severity levels, crash
types, and crash causes) of variable speed limit system based
on crashes data. Dadashova et al. [5] estimated the impact of
the influencing factors on road traffic accident severity
through random forests. It is worth noting that, in the above
methods, random forest is an integrated learning method for
classification, regression, and other tasks, which is more
accurate and robust than other existing algorithms and
effective for large databases. )erefore, in recent years, this
method has been widely applied to various traffic problems
[12–16]. Liu and Wu [12] established a traffic congestion
prediction model using the machine learning classification
algorithm, random forest. Mudali [13] analyzed the traffic
big data using two comparative parallel algorithms M5P
rules and random forest regression from the regression
model for determining the nature of traffic big data.
Nadarajan et al. [14] predicted a probabilistic space-time
representation of complex traffic scenarios by using random
forest algorithms. Kwon and Park [16] analyzed the impact
of weather factors on traffic safety levels using k-means
clustering and random forest techniques, and the result
showed that the proposed model outperforms the conven-
tional traffic safety prediction models.

)ere are certainly some shortcomings in the random
forest model. Some researchers try to continuously improve
the RFs (random forests) even though it already has many

advantages. Gao and Ke [17] employed a random survival
forests model to analyze the incident duration analysis
model and make a comparison with the traditional random
forests model. )e result shows that the random survival
forests models are more accurate. Several researchers have
proposed to incorporate RFs into the deep neural system
[18–22]. )e most representative of which is Deep Forests
proposed by Zhou and Feng [18] in 2017. )is algorithm
with much fewer hyper-parameters was proved to achieve
excellent performance in various domains by using the same
parameter setting. Since this algorithm was recently pro-
posed, there are almost no applications in the transportation
field.

Road traffic accidents are the process of simultaneous
damage to people or things caused by the miscoupling of
dynamic and static factors (e.g., people, vehicles, roads, and
the environment) [23–27]. )e historical data of road traffic
accidents can directly reflect the relationship between these
factors during the accident. Benefitting from the excellent
performance of Deep Forests, in this paper, we propose a
traffic accident severity prediction method based on the
Deep Forests algorithm, including data preprocessing, data
feature selection, and accident severity perdition. After the
data preprocessing is completed, we use the method of
Random Forests to select the data features, which will be
finally trained in Deep Forests algorithm. To the best of the
authors’ knowledge, this is the first time that the Deep
Forests algorithm is used to predict the severity of traffic
accidents. )e correlations between each feature are in-
herently considered in the modeling. In addition, the final
prediction results demonstrate that the proposed method for
accident severity prediction has superior performance
comparing with other machine learning algorithms.

)e rest of this paper is organized as follows. Section 2
describes the dataset and the verification of its reliability.
Section 3 presents the traffic accident severity prediction
method based on the Deep Forests algorithm in this work,
including the data preprocessing, which is of great impor-
tance for eliminating redundancies in the data and reor-
ganizing the data efficiently. And the basic theory of feature
selection and Deep Forests algorithm are introduced in this
section as well. )e experimental results are presented and
discussed in Section 4, the application of this method is
presented in Section 5, and conclusion and some future
scopes are given in Section 6.

2. Data Description and Its
Reliability Verification

)is section firstly presents the data source adopted in this
study. As this dataset has never been applied to severity
prediction of a traffic accident, the reliability verification of
this dataset is also conducted in this section.

2.1.DataDescription. )e analyses in this study are based on
the road safety dataset of the United Kingdom in 2016. )e
data was obtained from the Kaggle website, a data prediction
competition platform that allows data analysts to compete
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with each other to solve real and complex data science
problems. )e local characteristics of traffic accident data
include 18 items in total, for example, longitude and latitude
of the accident point, time characters of accident, type of the
vehicle, gender of the driver, age of the driver, age of the
vehicle, speed limit, light conditions, weather conditions,
road surface conditions, and the other data characteristics.
We use simple statistical analysis to perform a simple de-
scriptive statistical analysis of the entire dataset. )e age of
driver ranges from 1 to 97 with an average of 36; the vehicle
age is on average 5 ranging from 1 to 84 years. 70% of the
drivers are male and others are female.)emost vehicle type
is car, accounting for 71%, followed by pedal cycle, occu-
pying about 7%. As for the accident severity, about 85% are
slight accident; fatal accidents account for only about 1%.
Figure 1 shows the structure of this dataset.

2.2. Data Reliability Verification. As this dataset has never
been applied to severity prediction of a traffic accident, the
reliability verification of this dataset should be conducted
before preprocessing of the data. Reasonable data distri-
bution is an important manifestation of reliable data.
)erefore, three dimensions (latitude and longitude distri-
bution, date, and time) of data distribution are considered in
this paper to verify the data reliability.

According to the latitude and longitude information of
the original dataset, we use the visual plotting tools for
intuitive analysis. Figure 2 shows the latitude and longitude
distribution of the data, in which Figure 2(a) is a scatter plot
based only on the longitude and latitude information of the
dataset, while Figure 2(b) is obtained bymatching the scatter
plot with the real-world map. )rough the visualization of
data, we can obtain a general macroscopic understanding of
the distribution of the entire accident data. Furthermore, we
can easily find that the latitude and longitude information of
the traffic accident is consistent with the map information,
and there is no deviation beyond the range of themap, which
indicates that the dataset is reliable in accident position
distribution dimension.

Besides the location dimension, the “date” dimension
and the “time” dimension are also two important dimen-
sions for analyzing the dataset reliability. As for the measure
index, we choose the month for the “date” dimension and
week for the “time” dimension in this study. As is shown in
Figure 3(a), the data is equally distributed through all
months. From Figure 3(b), it is not difficult to find that the
accidents occurred mostly on Friday, and the accidents on
Saturday and Sunday were relatively mild, which is fully
compatible with the actual situation. Additionally, in order
to explore the law of traffic accident occurrence at a different
time of the day, we separate the day’s hours from the “time”
dimension and combine with the week index. )e heat map
of the accident occurring in different hours of one day is
shown in Figure 4, from which we can find that most of the
accidents occurred in the morning and evening peak hours
of the working day. )is is completely consistent with
people’s travel characteristics during the weekday, which
indicates that the data is therefore reliable.

3. Methodology

)is section discusses the method used for our prediction
study. To ensure and improve the prediction accuracy, data
preprocessing including data cleansing and data normali-
zation is carried out before the feature selection and severity
prediction. Random Forests algorithm is applied to extract
the significant features of traffic accidents based on the
preprocessed data. Finally, the Deep Forests algorithm is
applied to predict the severity of a traffic accident. )e flow
diagram of traffic accident severity prediction in this paper is
depicted in Figure 5.

3.1. Data Correlation Verification. Before we use machine
learning to predict the severity of an accident, we must
confirm the necessity to choose the machine learning
method to deal with such a problem. If the data is highly
correlated, we can directly use the simpler linear model to
directly predict, and then there is no need to use machine
learning to solve the problem. )us, we conduct the data
correlation relationship verification in this section.

As well as giving details of date, time, and location, the
dataset gives a summary of all reported vehicles and pe-
destrians involved in road accidents and other related ac-
cident features. 18 variables are taken into account in this
paper, including accident severity, month of year, hour of
day, vehicle reference, vehicle type, vehicle manoeuvre,
journey purpose of driver, sex of driver, age band of driver,
engine capacity, propulsion code, age of vehicle, driver home
area type, day of week, speed limit, light conditions, weather
conditions, and road surface conditions. )e correlation
relationship between all the features in the data is analyzed.
As a consequence, a Pearson correlation matrix was plotted
to identify the amount of linear relationship between var-
iables and to determine whether linear-based algorithms are
suitable through gaining insight into data. )e matrix is
color-coded, the numerical value one expressed in dark blue
represents a completely positive linear correlation between
two features, while turquoise represents a zero, suggesting
no linear correlation. As is shown in Figure 6, the accident
severity is independent of any of the other 17 features, which
means that we cannot directly predict the accident severity
with a simple linear model. )erefore, this paper considers a
smarter machine learning approach to deal with this
problem.

Additionally, it is worth noting that, in Figure 6, most of
the characteristic variables are linearly independent, except
for weather conditions, road surface, and light condition, the
light condition and hour of day, vehicle type, and engine
capacity. It can be easily and reasonably explained for these
results. When it rained, the road conditions will become wet
and the light condition will change to some extent. Similarly,
with the advent of the night, light and environment will
change according to the characteristics of time. Besides,
different types of vehicles have different engine capacities.
)erefore, the interactive relationship between these vari-
ables also proves the reliability of this dataset on the other
hand.
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Age_of_
driver

Sex_of_
driver Journey_purpose_of_driver

45 1 (male) 2 (commuting to/from work)
21 2 (female) 1 (journey as part of work)
36 1 (male) 3 (taking pupil to/from school)
15 2 (female) 4 (pupil riding to/from school)
…… …… ……

Vehicle_type Age_of_
vehicle

Engine_
capacity Vehicle_manoeuvre

8 (taxi) 1 1896 9 (turning right)
4 (motorcycle) 15 689 2 (parked)
11 (bus or coach) 6 5883 11 (changing lane)
9 (car) 10 1995 18 (going ahead other)
…… …… …… ……

Accident_index Date Time Day of week Accident_severity

201506E098757 2015-03-09 12:56 2 3 (slight)

201506F006668 2015-07-04 21:33 7 1 (fatal)

201506F003976 2015-07-22 8:40 4 2 (serious)
…… …… …… …… ……

Speed_
limit Light_conditions Road_surface_

conditions Weather conditions

30 1 (daylight) 2 (wet/damp) 1 (fine without high winds)
40 4 (darkness-lights lit) 1 (dry) 2 (raining without high winds)
20 6 (darkness-no lighting) 3 (snow) 3 (snowingwithout high winds)
50 5 (darkness-lights unlit) 4 (frost/ice) 7 (fog or mist)
…… …… …… ……

Information of driver

Information of vehicle

Information of road and environment

Accident information

Figure 1: Structure of the road safety dataset of the United Kingdom.
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Figure 2: (a) )e longitude and latitude map of the accident point and (b) the map-matching graph.
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Figure 3: Date dimension and time dimension of the accident bar chart.
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Figure 5: )e flow diagram of traffic accident severity prediction method in this paper.
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3.2. Preprocessing. It is of great importance to understand
the nature of the available data and try to perform in-depth
data analysis. Data preprocessing is very useful for mean-
ingful data analysis; what we need to do is data cleaning, data
normalization, and data selection in different class before
our prediction analysis.

3.2.1. Data Cleaning. Data cleaning is the process of
identifying incomplete, incorrect, inaccurate, or irrelevant
parts of the data and then replacing, modifying, or deleting
the dirty or coarse data from a record set, table, or database.
)e categorization criteria of all features in the dataset are
listed, and the categorization criteria are defined by actual
statistical results. So first, we need to observe the catego-
rization criteria of each feature. However, due to the limited
space, only a part of the categorization criteria of features is
listed below. )e categorization criteria of light conditions,
weather conditions, and road surface conditions are shown
in Table 1.

)rough the statistical analysis of each feature of the
original dataset, we found some obvious outliers and also
some missing data that is labeled as “unknown” or “−1”
needs to be cleaned up.

For some dimensions, the proportion of missing data
exceeds 10%, and the average value replacement method was
adopted. For example, in the dimension of Age_of_Vehicle,
there are approximately 20% missing data labeled as “−1”;
we adopted an average vehicle age of 5 to replace these
missing values. For those dimensions with few missing data,
we take a direct deletion method to clean them up, such as
Road_Surface_Condition, where the missing data accounts
for only 0.5%.

As for the obvious outliers, the same principle is adopted
for the missing data processing method. For example, the
Age_of_Driver is ranging from 1 to 97 with an average of 36;
this age distribution is obviously unreasonable, because
driving in the UK is only allowed for those over 17 years old.
Because only 1% of the tags are under 17 years old, we thus
directly delete them for the following processing.

3.2.2. Data Normalization. In the multi-index evaluation
system, each evaluation index usually has different dimen-
sions and orders of magnitude due to its different nature.
When the levels between the indicators differ greatly if the
analysis is performed directly with the original index values,
the role of the higher-value indicators in the comprehensive
analysis will be highlighted, and the effect of the low-level
indicators will be relatively weakened. )erefore, in order to
ensure the reliability of the results and to improve the
convergence speed and accuracy of the model, the original
indicator data needs to be normalized. Logarithm function
conversion is adopted in this paper to conduct the nor-
malization of all the given features to make sure features are
on a similar scale. For example, for the feature Age of
Vehicle, the age of the vehicle is between 1 and 84; the
logarithmic method is used to standardize the distribution of
the variable values so as to make the distribution of the
variable values more “normal.” Figure 7(a) depicts the

distribution of Age_of_Vehicle before normalization, from
which it can be easily found that the data shows obvious long
tail characteristics. Normalization involves taking the log-
arithm of the given features.)is is done because high values
for certain variables computationally skew results more in
favor of that variable than their actual contribution. In this
case, age of the vehicle, for example, has values ranging from
1 to 84, when the majority of other categorical variables are
binary or limited within 1–8 categories. After taking the log,
one can notice that the values range from approximately 1 to
4, shown in Figure 7(b). )is increases the performance of
machine learning algorithms, as the numerical values do not
have disproportionate amounts of computing value com-
pared to all the other categorical variables.

3.2.3. Class Balance Verification. In the dataset, accident
severity is listed as a classified label for prediction. Table 2
shows the criteria for categorizing accident severity and its
distribution.

As can be seen from the distribution of data, the number
of slight accidents is far greater than the number of fatal
accidents, showing a long-tailed data distribution. In terms
of model evaluation, accuracy was employed in this paper to
compare the prediction performance. However, the accident
severity level is unbalanced among three levels; therefore, the
traditional classification algorithm with the overall classi-
fication accuracy as the learning goal will pay too much
attention to the majority class, which will cause the accuracy
paradox and deteriorate the classification performance of the
minority class samples. )is is why the data balance work
should be conducted. )e random sampling method was
adopted in this paper. Both oversampling and under-
sampling have their own disadvantages, but this is the
common problem of the imbalance of the dataset, which
cannot be completely avoided.

After weighing the amount of data and enhancing the
robustness of the model itself, we finally decided to take a
combination of oversampling and undersampling to deal
with this problem. Oversampling was adopted for training
set to ensure as much training data as possible, trying re-
peated sampling to generate new rare samples to alleviate
data imbalance. In addition, undersampling was adopted for
test set to ensure that there are no duplicate samples in the
test set, thereby improving the validity of the results.

After all this work was completed, 120,000 pieces of data
for each category were obtained as the whole dataset. With
the consideration of limited computational resources, 40000
pieces of data for each category were randomly selected as
the training set and 2000 pieces of data for each category
were screened out from the dataset as the test data for
evaluating the performance of the model.

3.3. Feature Selection. An object usually has multiple
properties, including related features, irrelevant features,
and redundant features. Only these related features will
improve the effectiveness of our learning algorithm. Since we
are not aware which feature is effective for our prediction,
dimensional disasters often occur in algorithmic
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applications. So, it is of great significance to select relevant
features from all features to improve the efficiency of the
learning algorithm, especially for the analysis of complex
data. A vast number of feature selection strategies have been
proposed for applications in different fields [28–31]. In this
paper, Random Forests (RFs) method is adopted to carry out
feature selection according to the importance index of each
feature, not only because of its ability to calculate the im-
portance of a single feature variable, but also due to its good
performance on most datasets.

RFs model is developed from decision-making regres-
sion trees, which will often generate hundreds of trees. )e
data of each tree is extracted from the bag of set B by

bootstrap sampling method, while the remaining out-of-bag
(OOB) samples are defined as setB, which will not appear in
the training samples. Let C define a set of B and C as a set of
B. Assuming Xn × p matrix is an n-dimensional test dataset
with p characteristics, y is an n-dimensional label vector,
and each value represents the corresponding category to
which the test belongs. )e random forest algorithm cal-
culates the importance of the features by rearranging the
errors before and after classification. Each feature Xj in the
algorithm corresponds to a set of feature replacement tests
with rearranged values. )e importance of features is
measured by comparing the classification error rates of the
original features and the replaced randomly rearranged

Table 1: Categorization criteria of several features.

Light
conditions Description Weather

conditions Description Road surface
conditions Description

1 Daylight: street lights present 1 Fine without high winds 1 Dry

2 Daylight: no street lighting 2 Raining without high
winds 2 Wet/damp

3 Daylight: street lighting unknown 3 Snowing without high
winds 3 Snow

4 Darkness: street lights present and
lit 4 Fine with high winds 4 Frost/ice

5 Darkness: street lights present but
unlit 5 Raining with high winds 5 Unknown

6 Darkness: no street lighting 6 Snowing with high winds
7 Darkness: street lighting unknown 7 Fog or mist

8 Other
9 Unknown

Table 2: Categorization criteria for traffic accident severity.

Accident severity code Label Distribution of the data
1 Fatal 2899 (1.12%)
2 Serious 34205 (13.27%)
3 Slight 220741 (85.61%)

20 40 60 800
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Figure 7: Data distribution (a) before normalization and (b) after normalization.
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features in the OOB test set, which is the extent to which the
change of original feature affects the result. When the im-
portant features are replaced by the randomly rearranged
features, their discrimination will decrease; that is, the OOB
classification error rate will increase. When N trees are
established, there are N OOB sets as test sets. )erefore, the
characteristic importance index Ja is defined as follows:

Ja xj􏼐 􏼑 �
1
N

􏽘

Bk∈C

1
Bk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
i∈Bk

I h
xj

k (i)≠yi􏼒 􏼓 − I hk( ( i)≠yi
⎛⎝ ⎞⎠,

(1)

where yi is a classification label in the i − th OOB, I denotes a
characteristic function, hk(i) represents a classification label
of sample i predicted by datasetBk, and hk

xj (i) is a classi-
fication label after replacing characteristicxj.

3.4. Severity Prediction. )e representation learning in deep
neural networks mainly depends on the processing of the
original features by layer. Inspired by this, Zhou and Feng
[18] obtained the cascade structure of Deep Forests as il-
lustrated by the left schematic diagram in Figure 8. In a
traditional deep neural network, each node denotes a
neuron. In their research, the RFs were treated as a “forest
neuron” and were stacked into multiple layers in deep
learning. )e cascade structure of deep neural networks is
also presented by the right schematic diagram in Figure 8.
Comparing with deep neural networks, the design concept
of using Deep Forests resembles deep neural networks, and
the “concatenate” and “vote” in Deep Forests resemble the
nonlinear transformation procedures in deep learning. More
significantly, the Deep Forests algorithm has much fewer
hyper-parameters, each grade can be regarded as an en-
semble of ensembles, and excellent performance is achieved
in various domains by using the same parameter setting.

Each level of cascade receives feature information pro-
cessed by its preceding level and outputs its processing result
to the next level. Each level is an ensemble of decision trees
forests, which means it can be regarded as an ensemble of
ensembles. When a sample is given, each forest is calculated
by calculating the percentage of different classes of training
samples at the leaf nodes falling into the related instances,
and then the average value of all the trees in the forest to
generate the estimation of the distribution of the class. As
shown in Figure 9, the red part highlights the path of each
sample traversing leaf nodes. Different markings in leaf
nodes represent different classes.

In order to reduce the risk of overfitting, the class vectors
generated by each forest are generated by k-fold cross-
validation. In particular, each instance will be used as theK-1
training data, producing a K-1 class vector, and then taking
the average value to produce the final class vector as the
enhancement feature at the lower level in the cascade. It is
important to note that after a new level is extended, the
performance of the entire cascade will be estimated on the
validation set, and the training process will be terminated
without significant performance gain.)erefore, the number
of cascading cascades is automatically determined. Contrary

to most deep neural networks with fixed complexity of the
model, Deep Forests can determine the complexity of its
model (early stop) properly through termination training,
which enables Deep Forests to be applied to training data of
different scales, not limited to large-scale training data.

4. Experimental Work and Results

)is section introduces our experimental work and results
with the methodology proposed in Section 3. To verify the
superiority of our proposed method, several other machine
learning algorithm-based perdition models were imple-
mented to predict traffic accident severity with the same
dataset, and the prediction results show that the Deep
Forests algorithm with fewer hyper-parameters presents
good stability and the highest accuracy under different level
of training data volume.

4.1. Feature Selection. As described in 3.1, our dataset in-
cludes 18 features, and these features are almost independent
of each other, which means that the complexity of this
dataset is relatively high, and not all features are useful for
improving forecasting accuracy since there may be some
irrelevant or redundant features in those features. )erefore,
before using the Deep Forests algorithm to predict the
dataset, the feature selection work first is of great
importance.

A combination of the Randomized Search and Grid
Search method was adopted in this paper for parameter
optimization. )e Randomized Search method is applied
firstly to quickly help us determine the approximate range of a
parameter, and then we use the Grid Search method to cross-
validate the selected candidate parameters of the model
iteration and determine the optimal value of a parameter.)e
output of the best parameters is 5 for Max_depth, 2 for
Min_samples_leaf, 10 for Min_samples_split, and 1000 for
n_estimators. )erefore, a total of 1000 trees were used to
grow the forest, and this number was deemed sufficient to
yield reliable results.)e feature importance ranking from the
RFs is shown in Figure 10. Using the node purity measure, the
explored variables were ranked in rising order from the least
to the most important. Our principle for choosing the im-
portance threshold is the ∅80 value of the cumulative value
curve of importance. According to the importance value of
each features, the ∅80 value is around 0.04; we thus adopted
0.04 as the critical value for the important features. Finally,
eight features were chosen to conduct the accident severity
prediction, including engine capacity, hour of day, age of
vehicle, month of year, day of week, age band of driver, vehicle
manoeuvre, and speed limit.

4.2. Severity Prediction Results. In this section, the eight
features selected by the feature selection are used as the main
data features. And then the Deep Forests algorithm is
adopted to predict the severity of traffic accidents and
produce the predicted accuracy. In our experiment, the
cascade structure used in Deep Forests is as follows: each
level consists of 4 completely random tree forests and 4
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random forests, each with 500 trees, and three-fold CV is
used for class vector generation. )ese settings of cascade
structure are consistent with that proposed by Zhou and

Feng [18], because it has been proven that this cascade
structure is able to achieve excellent performance by using
the same default setting in their paper. Hence, it is supposed
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that this cascade structure is good enough with some
consideration of performance and time consumption.

In order to verify that Deep Forests can achieve sig-
nificant performance gains for traffic accident severity
prediction, we compare Deep Forests with DNN and several
other popular machine learning algorithms which are widely
used in traffic accident prediction algorithms, such as
Random Forests, LightGBM, XGboost, k-Nearest Neighbor
(KNN), and decision trees. )e computation progress for
each algorithm is calculated and recorded by the same
computer, which is equipped with a 2.8GHz Intel Core i7
CPU and a 16GB RAM. All of the forecasting models are
implemented in Python language.

Table 3 illustrates the performance of Deep Forests,
DNN, RFs, LightGBM, XGboost, KNN, and decision trees
algorithms for traffic accident severity prediction. From the
evaluation index results, Deep Forests algorithm performs
better than other models. Recall is higher than other models;
false alarm rate is lower than other models, so the overall F1
score is also higher. It shows that the model controls well the
influence of data imbalance and learns the characteristics of
different types of data. )e ROC reached 90%, indicating
that the model has learned the difference between different
categories of data, and the prediction results are more re-
liable and stable.

In addition, the experimental results show that the direct
use of DNN cannot achieve the desired effect on the
problems studied in this paper. )is is expected, because
there are significant differences in the number of samples in
different categories; it is difficult for the DNNmodel to learn
the differences between categories. Without adding new
data, we believe that constructing a more suitable deep
learning model structure with careful tuned hyper-
parameters can achieve better results to a certain extent, but
this is beyond the scope of this paper. )is is also the reason
why this paper chooses the Deep Forests algorithm based on
the characteristics of the dataset and the problem itself.

Due to the classification tasks of many data imbalance
problems, we tend to pay more attention to the performance
of the model on the minority class, the predictive perfor-
mance of different accident categories is presented, as shown
in Table 4. It can be easily found that the model performs

worse in categories with fewer samples, compared with the
predictive performance for the majority category. But the
decline is less compared to other models, so the model
adopted in this paper is more robust overall. In addition, in
the performance of this imbalanced dataset, the tree-based
models perform better than the neural networkmodel; this is
also the reason why we adopt Deep Forests model instead of
the neural network model.

In order to better observe the performance of Deep
Forests under different training data volumes, we divide the
data into multiple orders of magnitude, and the accuracy of
different magnitudes with different models are plotted in
Figure 11, from which we can see that, with the increase of
the sample size of the training set, the performance of each
model has improved to a certain extent. However, the Deep
Forests model is significantly better than other models at a
small sample size, which also proves that the advantage of
the model when dealing with small-scale sample size. In
addition, the advantage of Deep Forests model is gradually
weakened with the increase of sample size. When the sample
size reaches 100,000, we can find that although the per-
formance of Deep Forests is a little better than the random
forest, it is not much different.

Additionally, compared with many traditional ma-
chine learning methods, the Deep Forests algorithm used
in this paper has its own advantages. Deep Forests model
has much fewer hyper-parameters than deep neural
networks, although their iterative structure is similar. We
usually do not know the optimal value of the model
hyper-parameter for a given problem. Researchers
generally rely on experience or use replicated values on
other issues or search for the best values through trial and
error. )e increase in hyper-parameters will bring
additional randomness to the model performance, which
is too dependent on the regulation of hyper-parameters.
For instance, there are many hyper-parameters in ran-
dom forests that need to be constantly adjusted to op-
timize model prediction accuracy and speed up model
calculations, including number of decision trees in the
forest, the maximum number of features a random forest
can have in a single tree, number of leaves, OOB sam-
pling, and random state. However, the hyper-parameters
in Deep Forests algorithm is less than random forests, and
a set of hyper-parameters can be applied to different
datasets as mentioned in literature [18], which is another
big point of the deep forest algorithm used in this paper.

Engine_capacity
Hour_of_day

Age_of_vehicle
Month of year
Day_of_week

Age_band_of_driver
Vehicle_manoeuvre

Speed_limit
Vehicle_reference

Journey_purpose_of_driver
Weather_conditions

Driver_home_area_type
Road_surface_conditions

Propulsion_code
Light_conditions

Vehicle_type
Sex_of_driver

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Feature importance : random forest

Figure 10: Feature importance results by Random Forests
algorithm.

Table 3: Average predictive performance of different models.

Accuracy
(%) Recall False alarm

rates
F1

score Roc

Deep forests 90.69 0.92 0.09 0.91 0.93
RFs 88.98 0.90 0.10 0.90 0.92
XGboost 83.49 0.83 0.16 0.83 0.87
LightGBM 83.01 0.83 0.17 0.83 0.87
Decision
tree 81.04 0.81 0.19 0.81 0.85

KNN 77.26 0.77 0.23 0.77 0.82
DNN 53.52 0.54 0.47 0.47 0.52
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5. Discussion

)e higher prediction accuracy of our proposed method
reveals that it can be used as a very useful tool for accident
severity prediction. Fewer hyper-parameters in the deep
forest will be more conducive to the transplantation of
models; that is, a set of hyper-parameters can be applied
to different datasets. )us, it can be easily adapted to
solve lots of different traffic problems as well, for in-
stance, short-term forecast of travel time on expressway
sections and traffic flow situation estimation. )is is of
great significance for the perfect improvement of the
current traffic safety system within a sustainable trans-
portation system, such as an intelligent transportation
decision system and intelligent traffic safety management
system.

From the perspective of traffic safety management
implications, the more accurate severity prediction of
traffic accidents has long been the research direction we
are pursuing for sustainable transportation development.
In most cases, many traffic safety control measures are
still dominated by the limited experience of traffic
managers, which may lead to a deviation from the actual

situation. On the contrary, the use of many excellent deep
learning algorithms can learn from the historical accident
data record effectively and efficiently. )e application of
Deep Forests algorithms proposed in this paper has been
proved to have good performance in predicting the se-
verity of an accident. )e prediction results can be used as
an important and effective reference for the subjective
judgment of safety managers. For instance, if a traffic
safety management want to identify the important
influencing factors of traffic accident and the severity level
of traffic accidents caused by these factors, the general
method we proposed in this paper can be easily carried
out for different dataset by these managers to achieve
their goals. In addition, the prediction outcomes of se-
verity level can also provide an effective reference for the
implementation of traffic accident management and
control measures, such as the improvement of trans-
portation infrastructure, the improvement of lighting
conditions, the implementation of road variable speed
limit, and driving safety warning.

6. Conclusions

With the recognition of the importance of machine
learning in solving some problems in the transportation
field, in this paper we innovatively apply the Deep Forests
algorithm to the prediction of traffic accident severity. )e
excellent forecasting performance of our proposed method
reveals that it can be used as a very useful tool for accident
severity prediction. Fewer hyper-parameters in the deep
forest will be more conducive to the transplantation of
models; that is, a set of hyper-parameters can be applied to
different datasets. )us, it can be easily adapted to solve lots
of different traffic problems as well, for instance, short-term
forecast of travel time on expressway sections and traffic
flow situation estimation, although from the analysis results
there is still room for improvement in prediction accuracy.
)is is because we have not done enough in the mining of
raw data. For future research of this study, in order to
improve prediction accuracy, we will try to summarize and
construct some features that do not exist in the features of
raw data based on the information of the data features. In
addition, it should be noted that this paper does not focus
on optimizing the model parameters, which is also a re-
search direction in the future. Nevertheless, the method
proposed in this paper has certain contributions to both
theory and practice.

Table 4: )e predictive performance of different accident categories.

Recall False alarm rates F1 score ROC
1 2 3 1 2 3 1 2 3 1 2 3

Deep Forests 0.93 0.82 1.00 0.17 0.09 0.01 0.88 0.86 1.00 0.91 0.88 1.00
RFs 0.91 0.77 1.00 0.19 0.10 0.01 0.86 0.83 1.00 0.90 0.86 1.00
XGboost 0.83 0.66 1.00 0.27 0.20 0.02 0.78 0.72 0.99 0.84 0.79 0.99
LightGBM 0.84 0.63 1.00 0.29 0.20 0.02 0.77 0.71 0.99 0.84 0.78 1.00
Decision tree 0.68 0.76 1.00 0.23 0.28 0.05 0.77 0.72 0.95 0.78 0.80 0.98
KNN 0.66 0.64 1.00 0.32 0.33 0.07 0.67 0.66 0.97 0.75 0.75 0.98
DNN 0.80 0.07 0.70 0.52 0.51 0.38 0.60 0.13 0.66 0.56 0.43 0.56

Ac
cu

ra
cy

 (%
)

50

55

60

65

70

75

80

85

90

95

10000 20000 30000 40000 50000 60000 70000 80000 900001000000

Training data size

Deep Forests
RFs
LightGBM

XGboost
Decision tree
KNN

Figure 11: Accuracy rate comparison under different training data
size.
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