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Hub location problems have been studied by many researchers for almost 30 years, and, accordingly, various solution methods
have been proposed. In this paper, we implement and evaluate several widely used methods for solving five standard hub location
problems. To assess the scalability and solution qualities of these methods, three well-known datasets are used as case studies:
Turkish Postal System, Australia Post, and Civil Aeronautics Board. Classical problems in small networks can be solved efficiently
using CPLEX because of their low complexity. Genetic algorithms performwell for solving three types of single allocation problems,
since the problem formulations can be neatly encoded with chromosomes of reasonable size. Lagrangian relaxation is the only
technique that solves reliable multiple allocation problems in large networks. We believe that our work helps other researchers to
get an overview on the best solution techniques for the problems investigated in our study and also stipulates further interest on
cross-comparing solution techniques for more expressive problem formulations.

1. Introduction

Hub location problems deal with the location of hub facilities
in a network [1].These problems are highly relevant in several
fields, such as transportation [2–6] and telecommunication
[7, 8]; see [9–11] for some excellent surveys. In general, flows
are routed from origin nodes to destination nodes through
a “spoke-hub-hub-spoke” structure. First, flows from each
origin node are collected by their hubs; then, the flows are
transferred through atmost another hub; andfinally, flows are
distributed to their destinations. Because of the economies
of scale, there are cost discounts while transporting flows
between hubs; the total cost with the “spoke-hub-hub-spoke”
structure may be less than that for transporting flows from
origins to destinations directly [10].

If the number of hubs 𝑝 is fixed at design time, the hub
location problem is called 𝑝-hub median problem (pHMP)
[12]. In this paper, we consider hub location problems where
the number of hubs 𝑝 is fixed. Based on the constraints

for node assignment, hub location problems have two basic
structures: single allocation (SA) and multiple allocation
(MA) [13]. In SA problems, each node is allocated to a specific
hub, and all inbound or outbound flows of each node must
travel through its hub. In MA problems, on the other hand,
the flows for different origin-destination (OD) pairs can be
routed through different hubs. An example for the SA and
MAproblem is shown in Figure 1. Over time,many variations
of the core problem, including uncertainty and reliability,
have been considered by researchers. In early research, it is
assumed that all nodes can always function properly. How-
ever, in reality, each hub can be disrupted because of possible
accidents. For instance, in air transportation networks, nodes
(i.e., airports) can be disrupted because of bad weather or
equipment outage [14, 15]. Therefore, the reliability of nodes
should be considered for more realistic modeling [11, 16],
taking into account the actual topology [17]. In early research,
the hub networks are assumed to be complete; that is, hubs are
fully connected with each other. In recent years, incomplete
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Figure 1: Single allocation problem and multiple allocation problem: (a) Flights from Pittsburgh must go through its hub New York City first
for different destinations in single allocation problems. (b) The flow can be assigned to New York City for destination of San Francisco and
to Chicago for destination of Houston in multiple allocation problems.

hub networks have also been studied [18]. In this case, some
hubs are not directly connected.

Apart from a few exceptions, hub location problems are
NP-hard [19, 20]. Therefore, many researchers have focused
on proposing reasonable models and efficient algorithms
for solving hub location problems. Reference [1] published
the first paper about hub location problems, and the first
mathematical formulation for pHMP in the following year
was proposed [12]. After that, the pHMP has been studied by
many researchers. Various types of efficient models and algo-
rithms have been proposed. In early studies for hub location
problems, researchers applied different solution methods for
solving them. For instance, [21] proposed a heuristic method
based on tabu search (TS) for solving single allocation
problems. Reference [22] proposed a new linear formulation
for single allocation model with fewer variables and con-
straints than the classical formulations. A heuristic based on
simulated annealing algorithm (SAA) and a linear program
based on branch-and-bound (BB) method are presented for
solving the problem as well. After that, branch-and-bound
methods and Lagrangian relaxation (LR) algorithm started to
be applied to hub location problems. Reference [23] proposed
a sophisticated approach based on Lagrangian relaxation for
solving single allocation hubproblems. Comparedwith simu-
lated annealing and branch-and-boundmethod, the problem
with 25 nodes can be solved within a reasonable time and
solutions with high quality can be obtained. Reference [24]
presented a branch-and-price algorithm (BP) for solving a
capacitated single allocation problem. To obtain a tight lower
bound, Lagrangian relaxation was applied to the problem.
Instances with up to 200 nodes were solved optimally with
their algorithm. Reference [25] studied the combination of
congestion and capacity decisions in hub-and-spoke network
design. They decomposed the problem into subproblems
with Lagrangian relaxation. Reference [26] proposed new
models with the consideration of uncertainties (hub fail-
ures and backup hubs) for single and multiple allocation
problems. Based on the heuristics proposed by [23], they
used Lagrangian relaxation and branch-and-bound method
to solve reliable models for these two allocation problems.

In addition to Lagrangian relaxation and branch-and-
bound method, genetic algorithms (GA) are also commonly
used for solving hub location problems. Authors of [27]
proposed an effective method based on a genetic search algo-
rithm. They showed that the GA-based method outperforms
other approaches in their study on both computation time
and solution quality. The method has a potential for solving
large problem instances. Based on their research, [28] pro-
posed two genetic algorithms for solving an uncapacitated
single allocation 𝑝-hub median problem. They compared
their methods with a tabu search, simulated annealing, and
path relinking method (PRM) [35]. Reference [30] proposed
a genetic algorithm approach for solving a capacitated single
allocation 𝑝-hub median problem, which can guarantee the
optimality for networks with up to 50 nodes. The fuzzy
capacitated 𝑝-hub center problem was considered by [36].
They provided a genetic algorithm method to solve it. Refer-
ence [37] proposed an efficient genetic algorithm for solving
the liner hub-and-spoke shipping network design problem.
The authors of [31] presented the formulation and a GA-
based algorithm for solving a planar hub location problem
in reasonable time. The Weiszfeld algorithm (WA) [38] and
the location-allocation algorithm (LAA) [39] were also com-
pared with their heuristic on different datasets. In addition,
genetic algorithms were also used to solve the reliable hub
location problem by [33]. With the consideration of hub
disruptions, they proposed a mathematical model for single
allocation cases. The proposed method performs better than
CPLEX.

Based on traditional models, several variants of the
problems with new constraints were also studied, such
as reliability. Reference [8] presented new reliable models
for maximizing expected flow between city nodes. Ref-
erence [40] proposed a compact mixed integer program
model and a continuum approximation model for the reli-
able uncapacitated hub location problem. With a custom-
design Lagrangian relaxationmethod, near-optimal solutions
can be obtained. In addition to reliability, the incomplete
hub networks have also been studied. Reference [18] pro-
posed models for several single allocation problems under
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Table 1: Summary of different allocation problems in the literature.

Classical single Classical multiple Reliable single Reliable multiple Incomplete single
[12] √
[21] √
[22] √
[23] √
[27] √
[28] √
[18] √
[8] √ √
[29] √
[24] √
[30] √
[26] √ √
[31] √
[32] √
[33] √
[34] √
incomplete hub network design and themathematical formu-
lations with 𝑂(𝑛3) variables were presented. Reference [34]
also modeled the incomplete hub location problem with and
without hop-constraints. Benders decomposition technique
was used to solve the problem in large scales.

In recent years, new algorithms and applications on
hub location problems have been proposed. Reference [41]
proposed approximation algorithms for solving the single
allocation problem. Reference [42] studied single allocation
problems with multiple capacity levels, where the decision
making process includes the size of hubs. An enhanced
Benders decomposition (EBD) algorithm was used to solve
multiple allocation uncapacitated hub location problem for
large-scale networks by [29]. The algorithm was evaluated
in computational experiments on different instances with up
to 500 nodes, compared with Benders decomposition [43],
adjustment procedure [44], relax-and-cut algorithm (RCA)
[45], and CPLEX. Reference [46] proposed two formulations
for capacitated ordered median hub location problems. Ref-
erence [32] proposed a new method for single allocation hub
location analysis. Based on the spatial and flow properties
of nodes, a clustering-based potential hub set (CBS) can
be generated, which can help narrow the solution sets and
reduce the computational complexity of the problems. In
addition to the standard hub location problems above, several
variants of hub location problems have also been studied. Ref-
erence [47] developed a model with equilibrium constraints
for the intermodal hub-and-spoke problem and proposed a
hybrid genetic algorithm for solving it. Reference [48] studied
hub location problems under uncertainty. Generic models
were proposed for single and multiple allocation problems.
Reference [49] also presented a programming formulation
for hierarchical multimodal hub location problem with time-
definite deliveries and analyzed the sensitivity on Turkish
network. Reference [50] studied the hub location problem
under competition with Civil Aeronautics Board (CAB) and
Turkish Postal (TR) datasets as case studies.

In Tables 1 and 2, a summary of allocation problems
and representative solution techniques in the literature is
shown.Most of other papers in the references that are covered
by them are not shown here. Various methods have been
proposed for solving hub location problems, such as LR, GA,
and CBS. Methods are often tuned for specific datasets, spe-
cific hardware properties, or specific parameters. Although
newly published methods compare with few prior works, the
selection of theseworks is often suboptimal, and comparisons
are carried out on different datasets with different param-
eters; datasets are not often made publicly available, which
means that results are not reproducible. Moreover, getting
an overview over the state of the art in this field is difficult,
as results are published in various domains without much
cross-talk and often study variations of the core problems.
It is difficult for new researchers to choose the best solution
algorithm for a given problem instance, because of the lack
of common benchmarks and the dispersal of research in dif-
ferent communities caused by the heterogeneity of problems
and approaches.

In this paper, the formulations of five types of p-hub
median problem variations (classical single, classical multi-
ple, reliable single, reliable multiple, and incomplete single
allocation problems) are surveyed first. Then, three different
solution techniques from the state of the art, GA, LR, and
restricted CBS (RCBS) method, for solving 𝑝-hub median
problems are provided. In addition, we use CPLEX as a
benchmark reference. Finally, to compare the performance
of these methods, the commonly used TR dataset [51], CAB
dataset [12], and Australia Post (AP) dataset [52] are selected
as case studies. In our experiment, the solution qualities,
computation time, and main memory usage are evaluat-
ed.

Wewould like to emphasize that this paper is not intended
as a theory-focused survey of solution techniques. There
exist plenty of excellent works in this area [9–11]. The major
contributions of our study are as follows:
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(1) We perform an exhaustive evaluation of five types of
hub location problems and four solution techniques.
We synthesize the essence of solution algorithms and
adapt them for different problem instances, to obtain
five competitors for each method.

(2) All competitors are evaluated against three stan-
dard datasets from the literature: TR, CAB, and
AP. Running all experiments with the same setup
(hardware/software) parameters allows us to provide
a comprehensive evaluation of all techniques. More-
over, we provide an unbiased view on the state of
the art, as it is perceived by the papers and their
methodological descriptions.

(3) The wealth of experiments we performed and the
number of techniques we compared allow us to draw
several insights into scalability, solution quality, and
the possibility of exploiting parallelism.

We would like to point out that a comparison of different
methodologies has to be taken with caution. Some method-
ologies were proposed to find provably optimal solutions,
while others are pure heuristics without any guarantees on
optimality. Comparing their solution quality and solution
time allows us to estimate the trade-off between running
time and solution quality by each method for different
datasets. This view is novel to the literature, where, usually,
methodologies are not cross-compared. In addition, we have
implemented several standard solution techniques in the
literature, a considerable amount of work, given that the
source code is not published alongside of papers. Clearly, we
implemented only a subset of existing methods. Finally, the
hub location models chosen for our study make simplified
assumptions about the network and the modeling level of
detail, for instance, ignoring delay and propagation of delay
through a network [53]. Therefore, our study should be
understood as a first step into the comparative evaluation of
hub location problems.

The remainder of this paper is organized as follows. The
formulations of five types of hub location problem models
are provided in Section 2. Selected solution techniques, that
is, genetic algorithm (GA), Lagrangian relaxation (LR), and
clustering-based (CBS) method, are abstracted and synthe-
sized in Section 3. To compare these methods, the evaluation
of TR dataset, AP dataset, and CAB dataset as case studies is
presented in Section 4. The paper concludes with Section 5.

2. 𝑝-Hub Median Problem

The 𝑝-hub median problems discussed in this study have
two distinct structures: single allocation (SA) and multiple
allocation (MA). In addition, each problem can also be
considered in the classical models and as a reliable model,
depending on whether the reliability of hubs is taken into
account. In classical models, all hubs are assumed to function
properly, while each hub can be disrupted in the reliable
models [54]. An example is shown in Figure 2: There is a
regular route from Pittsburgh to San Francisco with two
hubs, New York City and Los Angeles. If New York City

Figure 2: Hub-and-spoke structure and alternative routes: there
exists a regular route from Pittsburgh to San Francisco with New
York City and Los Angeles as hubs. If hub of New York City
is disrupted, an alternative route “Pittsburgh → Chicago → Los
Angeles→ San Francisco” can be used. Note that, the Los Angeles
hub is still in the alternative route.

hub is disrupted, an alternative route “Pittsburgh→ Chicago→ Los Angeles → San Francisco” can be used, and node
Chicago is the backup hub of New York City. At last, the
single allocation problem with incomplete hub networks
is also considered. All five formulations of 𝑝-hub median
problems are introduced and formalized in this section:
classical single allocation (CSA), classical multiple allocation
(CMA), reliable single allocation (RSA), reliable multiple
allocation (RMA), and incomplete single allocation (ISA).
Themajor reason for revisiting themathematical formulation
is that many slightly different problem formulations have
been used across existing studies, where modifications often
have a significant impact on expressivity and time complexity.

2.1. Classical Single Allocation Problem. In classical single
allocation problem, each node is allocated to a single hub
and all the inbound or outbound flows of each node must go
through its hub. Let𝐺 = (𝑉, 𝐸) be a network.Here𝑉 and𝐸 are
the set of nodes and links, respectively.The numbers of nodes
and hubs are 𝑛 and 𝑝. Let 𝑐𝑖𝑗 and 𝑤𝑖𝑗 be the cost and the flow
between nodes 𝑖 and 𝑗 for each pair of (𝑖, 𝑗). The formulation
for CSA is shown as follows [55].

CSA-P

min ∑
𝑖∈𝑉

∑
𝑘∈𝑉

∑
𝑚∈𝑉

∑
𝑗∈𝑉,𝑗<𝑖

𝑤𝑖𝑗𝐹𝑖𝑘𝑚𝑗𝑋𝑖𝑘𝑚𝑗 (1)

subject to ∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 = 𝑌𝑖𝑘, ∀𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉 (2)

∑
𝑘∈𝑉

𝑋𝑖𝑘𝑚𝑗 = 𝑌𝑗𝑚, ∀𝑖, 𝑗 < 𝑖, 𝑚 ∈ 𝑉 (3)

∑
𝑘∈𝑉

𝑌𝑖𝑘 = 1, ∀𝑖 ∈ 𝑉 (4)

∑
𝑘∈𝑉

𝑌𝑘𝑘 = 𝑝 (5)

𝑌𝑖𝑘 ≤ 𝑌𝑘𝑘, ∀𝑖, 𝑘 ∈ 𝑉 (6)
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𝑌𝑖𝑘 ∈ {0, 1} , ∀𝑖, 𝑘 ∈ 𝑉 (7)

𝑋𝑖𝑘𝑚𝑗 ∈ {0, 1} , ∀𝑖, 𝑘, 𝑚, 𝑗 < 𝑖 ∈ 𝑉. (8)

Here, (1) is the objective function of total costs. Let𝐹𝑖𝑘𝑚𝑗 =𝑐𝑖𝑘 + 𝛼𝑐𝑘𝑚 + 𝑐𝑚𝑗 be the cost of route (𝑖, 𝑘, 𝑚, 𝑗) [56]. Parameter𝛼 < 1 is the cost coefficient (economies of scale discount
factor, see, e.g., [57]) for transporting the flows between two
hubs. Variables 𝑋𝑖𝑘𝑚𝑗 and 𝑌𝑖𝑘 are the route variable and
assignment variable, respectively. They are defined as follows
[58]:

𝑌𝑖𝑘 = {1, if 𝑖 is assigned to hub 𝑘
0, otherwise,

𝑋𝑖𝑘𝑚𝑗
= {{{

1, if flow on (𝑖, 𝑗) is routed through 𝑘 and 𝑚
0, otherwise.

(9)

Equations (2)-(3) ensure that if node 𝑖 is assigned to hub𝑘 (or 𝑗 assigned to 𝑚), the flow from 𝑖 (or to 𝑗) must go
through hub 𝑘 (or 𝑚). Equation (4) ensures that each node
can be associated with one hub only. Equation (5) indicates
the number of hubs is 𝑝. Equation (6) indicates that each
node can only be assigned to a hub. Based on the fundamental
formulation for CSA presented by [59], [22] also formulated
CSA with a new model, in which they reduced the number
of variables for linear program from 𝑂(𝑛4) to 𝑂(𝑛3). Finally,
an assumption has been used in many studies: 𝑤𝑖𝑗 = 𝑤𝑗𝑖, ∀𝑖,𝑗 ∈ 𝑉. Therefore, in this paper, we consider only the case of𝑗 < 𝑖.
2.2. Classical Multiple Allocation Problem. In classical multi-
ple allocation problem, the flows from one origin to different
destinations can be routed through different hubs. Thus, we
do not need to assign each node to a specific hub. Let 𝑌𝑘 be
the variable that is used to indicate whether node 𝑘 is a hub,

and the route variable𝑋𝑖𝑘𝑚𝑗 is still used. The formulation for
the CMA problem is shown as follows [45, 60].

CMA-P

min ∑
𝑖∈𝑉

∑
𝑘∈𝑉

∑
𝑚∈𝑉

∑
𝑗∈𝑉,𝑗<𝑖

𝑤𝑖𝑗𝐹𝑖𝑘𝑚𝑗𝑋𝑖𝑘𝑚𝑗 (10)

subject to ∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 ≤ 𝑌𝑘, ∀𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉 (11)

∑
𝑘∈𝑉

𝑋𝑖𝑘𝑚𝑗 ≤ 𝑌𝑚, ∀𝑖, 𝑗 < 𝑖, 𝑚 ∈ 𝑉 (12)

∑
𝑘∈𝑉

∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 = 1, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉 (13)

∑
𝑘∈𝑉

𝑌𝑘 = 𝑝 (14)

𝑌𝑘 ∈ {0, 1} , ∀𝑘 ∈ 𝑉 (15)

𝑋𝑖𝑘𝑚𝑗 ∈ {0, 1} , ∀𝑖, 𝑘, 𝑚, 𝑗 < 𝑖 ∈ 𝑉. (16)
Here, (11)-(12) ensure that the route for eachOD pair (𝑖, 𝑗)

must go through hubs. Equation (13) shows that eachODpair(𝑖, 𝑗) can have only one route.

2.3. Reliable Single Allocation Problem. The problems above
are both without the consideration of hub reliability. In
real-world cases, however, each hub can be disrupted for
many reasons. For instance, in air transportation networks,
nodes (i.e., airports) can be disrupted due to bad weather
or equipment outage. In this case, backup hubs need to be
considered. Let 𝑞𝑘 ∈ [0, 1] be the disruption probability
of node 𝑘. Let 𝑞𝑘𝑚 be 𝑞𝑚 if 𝑚 ̸= 𝑘 and 0 otherwise. For
the backup assignment, we use the strategy proposed by
[26]. They made two major assumptions: first, only single
disruptions are considered; second, for the routes with two
hubs, the unaffected hub must still be inside the alternative
route. Assume𝑈𝑖𝑗𝑢 and𝑉𝑖𝑗𝑢 are the backup hub variables that
are defined as follows:

𝑈𝑖𝑗𝑢 = {1, if hub 𝑢 is the backup hub for the first hub of OD pair (𝑖, 𝑗)
0, otherwise

𝑉𝑖𝑗𝑢 = {{{
1, if hub 𝑢 is the backup hub for the second hub of OD pair (𝑖, 𝑗)
0, otherwise.

(17)

Therefore, the RSA problem is formulated as follows [26].

RSA-P

min ∑
𝑖∈𝑉

∑
𝑘∈𝑉/{𝑖}

∑
𝑚∈𝑉

∑
𝑗∈𝑉/{𝑚},𝑗<𝑖

𝑤𝑖𝑗𝐹𝑖𝑘𝑚𝑗 (1 − 𝑞𝑘 − 𝑞𝑘𝑚)𝑋𝑖𝑘𝑚𝑗
+ ∑
𝑖∈𝑉

∑
𝑗∈𝑉,𝑗<𝑖

𝑤𝑖𝑗( ∑
𝑚∈𝑉/{𝑗}

𝐹𝑖𝑖𝑚𝑗 (1 − 𝑞𝑖𝑚)𝑋𝑖𝑖𝑚𝑗 + ∑
𝑘∈𝑉/{𝑖}

𝐹𝑖𝑘𝑗𝑗 (1 − 𝑞𝑗𝑘)𝑋𝑖𝑘𝑗𝑗 + 𝐹𝑖𝑖𝑗𝑗𝑋𝑖𝑖𝑗𝑗)
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+ 𝜌∑
𝑖∈𝑉

∑
𝑗∈𝑉,𝑗<𝑖

𝑤𝑖𝑗( ∑
𝑘∈𝑉/{𝑖,𝑗}

∑
𝑚∈𝑉/{𝑖}

∑
𝑢∈𝑉

𝐹𝑖𝑢𝑚𝑗𝑞𝑘𝑋𝑖𝑘𝑚𝑗𝑈𝑖𝑗𝑢
+ ∑
𝑘∈𝑉/{𝑗}

∑
𝑚∈𝑉/{𝑖,𝑗}

∑
𝑢∈𝑉

𝐹𝑖𝑘𝑢𝑗𝑞𝑚𝑋𝑖𝑘𝑚𝑗𝑉𝑖𝑗𝑢 + ∑
𝑘∈𝑉/{𝑖,𝑗}

∑
𝑢∈𝑉

𝐹𝑖𝑢𝑢𝑗𝑞𝑘𝑋𝑖𝑘𝑘𝑗𝑈𝑖𝑗𝑢)
(18)

subject to ∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 = 𝑌𝑖𝑘, ∀𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉 (19)

∑
𝑘∈𝑉

𝑋𝑖𝑘𝑚𝑗 = 𝑌𝑗𝑚, ∀𝑖, 𝑗 < 𝑖, 𝑚 ∈ 𝑉 (20)

∑
𝑘∈𝑉

𝑌𝑖𝑘 = 1, ∀𝑖 ∈ 𝑉 (21)

∑
𝑘∈𝑉

𝑌𝑘𝑘 = 𝑝 (22)

𝑈𝑖𝑗𝑘 + 𝑌𝑖𝑘 ≤ 𝑌𝑘𝑘, ∀𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉 (23)

𝑉𝑖𝑗𝑚 + 𝑌𝑗𝑚 ≤ 𝑌𝑚𝑚, ∀𝑖, 𝑗 < 𝑖, 𝑚 ∈ 𝑉 (24)

∑
𝑘∈𝑉

𝑈𝑖𝑗𝑘 = 1 − 𝑌𝑖𝑖 − 𝑌𝑖𝑗, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉 (25)

∑
𝑚∈𝑉

𝑉𝑖𝑗𝑚 = 1 − 𝑌𝑗𝑗 − 𝑌𝑗𝑖, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉. (26)

Here, the first two terms of the objective function are
the cost for regular routes and the left term is the cost
for alternative routes. Equations (19)–(22) are the same
as (2)–(5). Equations (23)-(24) ensure that nodes can be
assigned only to hub nodes, and backup nodes must be
different from the corresponding hubs. Equations (25)-(26)
indicate that one hub needs an alternative hub only if it is
different from the OD pair (𝑖, 𝑗) and it cannot be disrupted
otherwise. It shows thatRSA-P is a quadratic integer program.

It can be linearized with the linearization method proposed
by [61].

2.4. Reliable Multiple Allocation Problem. Similar to Section
2.2, variable 𝑌𝑘 is used to denote whether node 𝑘 is a hub.
Therefore, the formulation of the RMA problem is shown as
follows [26].

RMA-P

min ∑
𝑖∈𝑉

∑
𝑘∈𝑉/{𝑖}

∑
𝑚∈𝑉

∑
𝑗∈𝑉/{𝑚},𝑗<𝑖

𝑤𝑖𝑗𝐹𝑖𝑘𝑚𝑗 (1 − 𝑞𝑘 − 𝑞𝑘𝑚)𝑋𝑖𝑘𝑚𝑗
+ ∑
𝑖∈𝑉

∑
𝑗∈𝑉,𝑗<𝑖

𝑤𝑖𝑗( ∑
𝑚∈𝑉/{𝑗}

𝐹𝑖𝑖𝑚𝑗 (1 − 𝑞𝑖𝑚)𝑋𝑖𝑖𝑚𝑗 + ∑
𝑘∈𝑉/{𝑖}

𝐹𝑖𝑘𝑗𝑗 (1 − 𝑞𝑗𝑘)𝑋𝑖𝑘𝑗𝑗 + 𝐹𝑖𝑖𝑗𝑗𝑋𝑖𝑖𝑗𝑗)

+ 𝜌∑
𝑖∈V

∑
𝑗∈𝑉,𝑗<𝑖

𝑤𝑖𝑗( ∑
𝑘∈𝑉/{𝑖,𝑗}

∑
𝑚∈𝑉/{𝑖}

∑
𝑢∈𝑉

𝐹𝑖𝑢𝑚𝑗𝑞𝑘𝑋𝑖𝑘𝑚𝑗𝑈𝑖𝑗𝑢
+ ∑
𝑘∈𝑉/{𝑗}

∑
𝑚∈𝑉/{𝑖,𝑗}

∑
𝑢∈𝑉

𝐹𝑖𝑘𝑢𝑗𝑞𝑚𝑋𝑖𝑘𝑚𝑗𝑉𝑖𝑗𝑢 + ∑
𝑘∈𝑉/{𝑖,𝑗}

∑
𝑢∈𝑉

𝐹𝑖𝑢𝑢𝑗𝑞𝑘𝑋𝑖𝑘𝑘𝑗𝑈𝑖𝑗𝑢)

(27)

subject to ∑
𝑚∈𝑉

𝑋𝑖𝑖𝑚𝑗 = 𝑌𝑖, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉 (28)
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∑
𝑘∈𝑉

𝑋𝑖𝑘𝑗𝑗 = 𝑌𝑗, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉 (29)

∑
𝑘∈𝑉

∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 = 1, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉 (30)

∑
𝑘∈𝑉

𝑌𝑘 = 𝑝 (31)

𝑈𝑖𝑗𝑘 + ∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 ≤ 𝑌𝑘, ∀𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉 (32)

𝑉𝑖𝑗𝑚 + ∑
𝑘∈𝑉

𝑋𝑖𝑘𝑚𝑗 ≤ 𝑌𝑚, ∀𝑖, 𝑗, 𝑚 ∈ 𝑉 (33)

∑
𝑘∈𝑉

𝑈𝑖𝑗𝑘 = 1 − 𝑌𝑖 − ∑
𝑚∈𝑉

𝑋𝑖𝑗𝑚𝑗, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉 (34)

∑
𝑚∈𝑉

𝑉𝑖𝑗𝑚 = 1 − 𝑌𝑗 − ∑
𝑘∈𝑉

𝑋𝑖𝑘𝑖𝑗, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉. (35)

Here, (28)-(29) ensure that each hub node can only be
assigned to itself. Equations (32)–(35) are similar to (23)–(26).

2.5. Incomplete Single Allocation Problem. For the incomplete
single allocation problem, in addition to hub location and
assignment, a fixed number 𝑞 hub links needs to be deter-
mined. The formulation for this problem is quite different
from the formulations introduced above. Let 𝑂𝑖 = ∑𝑗 𝑤𝑖𝑗 be
the total flow from source node 𝑖, 𝐷𝑗 = ∑𝑖 𝑤𝑖𝑗 be the total
flow to destination node 𝑗, and 𝑓𝑖𝑘𝑚 be the flow originating
from node 𝑖 which is routed on hub link (𝑘,𝑚). The decision
variable 𝑍𝑖𝑗 for hub links is defined as follows:

𝑍𝑖𝑗 = {{{
1, if hub 𝑖 and hub 𝑗 are connected

0, otherwise. (36)

Therefore, the ISA problem is formulated as follows [18].

ISA-P

min ∑
𝑖∈𝑉

∑
𝑘∈𝑉

𝑐𝑖𝑘𝑂𝑖𝑌𝑖𝑘 + ∑
𝑖∈𝑉

∑
𝑘∈𝑉

𝑐𝑘𝑖𝐷𝑖𝑌𝑖𝑘
+ 𝛼∑
𝑖∈𝑉

∑
𝑘∈𝑉

∑
𝑚∈𝑉

𝑐𝑘𝑚𝑓𝑖𝑘𝑚 (37)

subject to ∑
𝑘∈𝑉

𝑌𝑖𝑘 = 1, ∀𝑖 ∈ 𝑉 (38)

∑
𝑘∈𝑉

𝑌𝑘𝑘 = 𝑝 (39)

∑
𝑘∈𝑉

∑
𝑚∈𝑉,𝑚<𝑘

𝑍𝑘𝑚 = 𝑞 (40)

𝑌𝑖𝑘 ≤ 𝑌𝑘𝑘, ∀𝑖, 𝑘 ∈ 𝑉 (41)

𝑍𝑘𝑚 ≤ 𝑌𝑘𝑘, ∀𝑘, 𝑚 < 𝑘 ∈ 𝑉 (42)

𝑍𝑘𝑚 ≤ 𝑌𝑚𝑚, ∀𝑘, 𝑚 < 𝑘 ∈ 𝑉 (43)

∑
𝑚∈𝑉,𝑚 ̸=𝑘

𝑓𝑖𝑚𝑘 + 𝑂𝑖𝑌𝑖𝑘
= ∑
𝑚∈𝑉,𝑚 ̸=𝑘

𝑓𝑖𝑘𝑚 + ∑
𝑗∈𝑉,𝑗<𝑖

𝑤𝑖𝑗𝑌𝑗𝑘,
∀𝑖, 𝑘 ∈ 𝑉

(44)

𝑓𝑖𝑘𝑚 + 𝑓𝑖𝑚𝑘 ≤ 𝑂𝑖𝑍𝑘𝑚, ∀𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉 (45)

𝑓𝑖𝑘𝑚 ≥ 0, ∀𝑖, 𝑘, 𝑚 ̸= 𝑘 ∈ 𝑉 (46)

𝑌𝑖𝑘 ∈ {0, 1} , ∀𝑖, 𝑘 ∈ 𝑉 (47)

𝑍𝑘𝑚 ∈ {0, 1} , ∀𝑘, 𝑚 < 𝑘 ∈ 𝑉. (48)

In (37), the first two terms are the cost of flows between
hubs and nonhub nodes, and the third term is the cost of
flows in hubnetworks. Equations (38)-(39) are the constraints
of single allocation and number of hubs. Equation (40) is
the constraint for the number of hub links; that is, 𝑞 links
are established between hubs. Equations (41)–(43) indicate
that nodes can be assigned to a hub only and hub links can
be established between hubs only. Equations (44)-(45) are
the flow equilibrium constraint and flow capacity constraint,
respectively.

3. Solution Techniques

In Section 2, we revisited the formulations of five different𝑝-hub median problems. To solve these problems, various
solution techniques have been proposed, such as GA and
LR; see the introduction and relevant surveys for details.
In most literature, however, researchers usually compared
their approaches with very few/outdated methods instead
of new algorithms from the state of the art. Furthermore,
the properties of some new methods were compared only
with certain optimization solvers (e.g., CPLEX). Several
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approaches from the state of the art are summarized and
revised accordingly in this section, such as GA (Section 3.2),
LR (Section 3.3), and CBS (Section 3.4), all tailored towards
the five standard problem definitions.

3.1. Overview of Solution Techniques. In this section, the idea
of each method for solving five 𝑝-hub median problems is
revisited. Let us start with GA. A large number of near-
optimal solutions can be obtained with GA, which has been
used to solve many complicated problems and its feasibility
for solving hub locations problems has been shown in the
literature. When solving hub location problems with GA,
chromosomes are used to represent solutions [62]. In the
CSA problem, each node is allocated to one hub. Thus, node
assignments can be modeled as chromosomes directly. The
crossover and mutation operators are used to change the
node assignments and generate new solutions. For the CMA
problem, the chromosomes are represented by the routes
between OD pairs. In addition, in the reliable cases, we need
to add an operator for selecting the backup hubs, which
is used to find an optimal alternative route for each given
regular route. For incomplete problem, the connectivity of
hub networks is considered first while establishing hub links.
In LR, the formulations of five allocation problems can be
transformed into two independent subproblems, by adding
several Lagrangian multipliers. Then, the lower bounds and
upper bounds of the original problem can be obtained by
solving these subproblems. The Lagrangian multipliers can
be updated iteratively, until reaching the optimal solution.
The CBS method is a very novel approach for analyzing hub
location problem. This method was proposed for solving
single allocation problems. However, it can also be applied
to multiple cases. In this method, based on spatial properties
and travel demands of nodes, a subset of potential hubs is
obtained.Then, several constraints based on these subsets are
added to the problem formulations, and the computational
complexity is reduced significantly.

Note most solution methods that have been proposed
by researchers. We use the original procedures to describe
them. However, if a solution method has not been published
for solving a given problem, we do some modification based
on previous versions of the method. For instance, GA has
not yet been published for solving incomplete problems and
the procedure of this method is modified for incomplete
problems in our study.

3.2. Genetic Algorithms. To solve hub location problems,
several researchers presented GA-based methods in recent
years. Because most methods are proposed for solving single
allocation problems, the standard strategy for CSA using
GA is introduced first. Then, based on this simple strategy,
we develop an extension for RSA by adding a method for
the backup hub selection. The GA strategy developed in
this section is based mostly on the approaches proposed by
[27, 33].

Initial Population. In the single allocation problem, each node
is assigned to a particular hub. Thus, each individual has two
arrays: hub array (HS) and assignment array (AY). The hub

array HS has a length of 𝑝 and represents the hub set, and
the assignment array AY has a length of 𝑛 and represents the
assignment of nodes to hubs. If node 𝑖 is assigned to hub 𝑘,
then AY[𝑖] = 𝑘. Here we assume that if node 𝑘 is a hub,
then it must be assigned to itself; that is, AY[𝑘] = 𝑘. Based
on the solution representation above, the initial population
can be generated. However, before that, the hub set must be
determined. To reduce the total cost, large flows should travel
through the routes with less cost. Let 𝑂𝑖 = ∑𝑗∈𝑉,𝑗<𝑖 𝑤𝑖𝑗 and𝐷𝑖 = ∑𝑗∈𝑉,𝑗<𝑖 𝑤𝑗𝑖 be the total outboundflowand inboundflow
of node 𝑖, respectively.Thus, it should be more likely to locate
hubs at those nodes with large flows to travel (i.e., 𝑖with large𝑂𝑖 + 𝐷𝑖). Then, in each chromosome, we assign each node to
its closest hub.

Crossover. With initial population set, new offspring chromo-
somes can be generated by the crossover operator. To choose
the parent chromosomes, we use roulette wheel sampling
[27] and the fitness value of each individual is represented by
the reciprocal of the total cost of the solution. The crossover
operator is introduced with a small example. As shown in
Figure 3, two parent chromosomes are selected randomly and
the number of nodes and hubs is 𝑛 = 10 and 𝑝 = 3,
respectively. First, we choose a swapping number 𝑛ℎ from
1 to 𝑝/2 and a crossover point 𝑛𝑎 from 1 to 𝑛, randomly.
Then, 𝑛ℎ hubs are swapped between the two hub arrays. Each
assignment array can be divided into two parts by the point𝑛𝑎, and each part is combined with the opposite part of the
other assignment array. For instance, in this example, we
assume that 𝑛ℎ = 1 and 𝑛𝑎 = 4. One hub is swapped between
HS1 and HS2. If they are 4 and 6, then new hub arrays are
HS𝑜1 = [6, 7, 9] and HS𝑜2 = [4, 7, 8]. Next, we combine the left
part of AY1 with the right part of AY2, and new assignment
array AY𝑜1 is generated. With the same operator, AY𝑜2 can also
be obtained. Now, there may exist an infeasible case where
some nodes are assigned to a nonhub node. For instance,
in AY𝑜1, node 4 is assigned to itself which is not a hub in
the new individual. Therefore, to avoid the infeasibility, we
need to do a reallocation after each crossover operator. Each
node assigned to a nonhub node needs to be reallocated to its
closest hub in the new hub array. In addition, each hub must
be reallocated to itself, obviously.

Mutation. To avoid the early convergence near a local optimal
solution, the mutation needs to be operated on the chro-
mosomes with a probability. In this paper, two mutation
operators are applied to the assignment arrays only: (A) Select
two nonhub nodes randomly and swap their assignment. (B)
Select one nonhubnode randomly and reallocate it to another
hub.

Because each hub node must be assigned to itself, the
mutation operator is applied only to nonhub nodes (i.e.,
spokes). For each chosen individual, these two mutation
operators are both used, and the result with more total cost
is discarded. Using a crossover operator and a mutation
operator, two offspring individuals can be generated. Then,
elitism is applied in the population. The individuals with
worse fitness values are replaced by those with better fitness
values.
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Figure 3: A small example of crossover and mutation. Hubs are encoded by numbers: (a) Hubs 4 and 6 are swapped between two hub
arrays. The assignments of the nodes after the red lines are also swapped between two assignment arrays. After the reallocation, the offspring
individuals are generated. (b) The assignments of two spokes are exchanged in the first mutation; a random spoke is reassigned to a random
hub in the second mutation.

Backup Hub Selection. With the GA strategy introduced
above, the CSA problem can be solved. However, while solv-
ing the RSA problem, the backup hubs need to be considered
after determining the hub set and assignment. Because the
alternative route of each OD pair (𝑖, 𝑗) is independent, we
can find the best backup hubs for each individual (𝑖, 𝑗) by
considering the route cost. For eachOD pair (𝑖, 𝑗), the regular
route (𝑖, 𝑘, 𝑚, 𝑗) is determined by GA. Then, the best backup
hubs for 𝑘 can be found by computing the costs of all possible
backup hubs which is different from 𝑘 and selecting the
minimumone. A similar strategy is used for selecting the best
backup hub for𝑚.

GA Strategy for Multiple Allocation Problems. Each node is
assigned to one hub in single allocation problems. However,
inmultiple allocation problems, each node can be assigned to
different hubs for different OD pairs. Thus, the chromosome
size is equal to the number of OD pairs here. Because we only
consider the case 𝑗 < 𝑖, the size is equal to 𝑛(𝑛 − 1)/2. While
generating the initial population, we use the same method as
single allocation problem to construct the hub array.Then for
each (𝑖, 𝑗), where 𝑖, 𝑗 ∈ 𝑉 and 𝑗 < 𝑖, we choose a pair of hubs(𝑘,𝑚) as its regular hubs from the hub array randomly and
the backup hubs can also be selected with the method above
similarly.

In the crossover step, we sort OD pairs in the order
of [(1, 2), (1, 3), . . . , (1, 𝑛), (2, 3), (2, 4), . . . , (𝑛 − 2, 𝑛 − 1), (𝑛 −2, 𝑛), (𝑛−1, 𝑛)] and OD pair (𝑖, 𝑗) has an order number ((2𝑛−𝑖)(𝑖 − 1)/2 + 𝑗 − 𝑖). Then, we choose two parent chromosomes
with roulette wheel sampling and the hub arrays are swapped
with the crossover method introduced above. After selecting
a crossover point 𝑛𝑎 randomly, all the OD pairs with an
order number less than 𝑛𝑎 are swapped between two parent
chromosomes. Then, some OD pairs may use nonhub nodes
as their hubs.Therefore, theseODpairs need to be reallocated
to their best hubs [𝑘∗, 𝑚∗] with the least cost. After the
reassignment, the last offspring individuals are obtained. In

the mutation operator, a nonhub node 𝑖 and a hub 𝑘 are
chosen randomly. Then all first hubs (or second hubs) of OD
pairs (𝑖, 𝑗)(𝑗 < 𝑖) (or (𝑗, 𝑖)(𝑗 > 𝑖)) are set to hub 𝑘.
GA Strategy for ISA Problem. GA has not yet been published
for solving ISA problems and we propose a new strategy here.
In addition to the hub array and assignment array, the hub
links should also be determined in the ISA problem. Thus,
a set of hub links is added to each individual. We use the
same method as single allocation problem to construct the
hub array and assignment array while generating the initial
population. In order to guarantee the connectivity of the hub
network, a randomized version of the Prim algorithm [63] is
used to generate hub links (See Algorithm 1).

In crossover step, after obtaining offspring hub sets with
the same strategy as Figure 3, the link sets of offspring can
be generated as follows: Let HUB𝑜1 and HUB𝑜2 be hub sets of
two offspring. Let Link1 and Link2 be the link sets of two
parent chromosomes. Then, Link𝑑 = Link1 ∩ Link2, Link𝑢 =
Link1 ∪ Link2, and Link𝑐1 = Link𝑢 ∩ {links in complete
graph in HUB1}. For the first offspring, we remove several
links from Link𝑐1 with the guarantee of connectivity of HUB1
network. The remaining 𝑞 links construct the link set of the
first offspring individual. If Link𝑐1 is not connective or the
number of its links is less than 𝑞, we can add several links to
it randomly first. The same strategy is applied to the second
offspring. In the mutation step, in addition to the operation
on assignment array, a link is selected from the link set
randomly and replaced by another random link on the basis
of connectivity of hub network.

3.3. Lagrangian Relaxation. As a widely used algorithm,
Lagrangian relaxation has also been applied to hub location
problems [23, 26]. In this section, we introduce the procedure
of LR for solving hub location problems mostly based on the
formulation CSA-P (see (1)–(8)) presented in Section 2.1.The
methods for solving the other three problems are similar.
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(1) Input hub set H, empty link set 𝐿1 = 0, complete link set 𝐿2 = {links in complete graph of H},
empty hub set 𝑉1 = 0, set 𝑉2 = 𝐻, number of hubs p, number of hub links q.

(2) if 𝑞 ≥ 𝑝(𝑝 − 1)2 :(3) 𝐿1 = {links in complete graph of H}(4) else:(5) choose a hub u from 𝑉2 randomly(6) 𝑉1 = 𝑉1 ∪ {𝑢}(7) 𝑉2 = V2\{𝑢}(8) while 𝑉1 ̸= 𝐻:(9) choose a hub 𝑢 from 𝑉1 and a hub v from 𝑉2 randomly(10) generate a link (𝑢, V)(11) 𝐿1 = 𝐿1 ∪ {(𝑢, V)}(12) 𝐿2 = 𝐿2\{(𝑢, V)}(13) 𝑉1 = 𝑉1 ∪ {V}(14) 𝑉2 = 𝑉2\{V}(15) endwhile(16) choose 𝑞 − 𝑝 + 1 links from 𝐿2 randomly, marked as 𝐿3(17) 𝐿1 = 𝐿1 ∪ 𝐿3(18) endif(19) Output the set hub hub links 𝐿1
Algorithm 1: Random Prim algorithm for finding a connective hub network.

Lower Bound. Let 𝜂𝑖𝑗𝑘, 𝛽𝑖𝑗𝑚, 𝛾𝑖, (𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉) be
the Lagrangian multipliers of (2)–(4). Then CSA-P can be
transformed to a Lagrangian problem as follows:

𝐿 (𝜂, 𝛽, 𝛾) = min ∑
𝑖∈𝑉

∑
𝑘∈𝑉

𝐶𝑖𝑘𝑌𝑖𝑘 −∑
𝑖

𝛾𝑖
+ ∑
𝑖∈𝑉

∑
𝑗∈𝑉,𝑗<𝑖

∑
𝑘∈𝑉

∑
𝑚∈𝑉

𝐹𝑖𝑘𝑚𝑗𝑋𝑖𝑘𝑚𝑗 (49)

subject to (5)–(8) , (50)

where

𝐶𝑖𝑘 = 𝛾𝑖 − ∑
𝑗∈𝑉,𝑗<𝑖

𝜂𝑖𝑗𝑘 − ∑
𝑗∈𝑉,𝑗<𝑖

𝛽𝑖𝑗𝑘,
𝐹𝑖𝑘𝑚𝑗 = 𝑤𝑖𝑗𝐹𝑖𝑘𝑚𝑗 + 𝜂𝑖𝑗𝑘 + 𝛽𝑖𝑗𝑚.

(51)

Note that two groups of variables 𝑌𝑖𝑘 and 𝑋𝑖𝑘𝑚𝑗 are
independent now. Thus, the Lagrangian problem can be
decomposed into two subproblems as follows.

LSub1

min ∑
𝑖∈𝑉

∑
𝑘∈𝑉

𝐶𝑖𝑘𝑌𝑖𝑘 −∑
𝑖

𝛾𝑖.
subject to (5)–(7) (52)

LSub2

min ∑
𝑖∈𝑉

∑
𝑗∈𝑉,𝑗<𝑖

∑
𝑘∈𝑉

∑
𝑚∈𝑉

𝐹𝑖𝑘𝑚𝑗𝑋𝑖𝑘𝑚𝑗 (53)

subject to ∑
𝑘∈𝑉

∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 = 1, ∀𝑖, 𝑗 < 𝑖 ∈ 𝑉. (54)

(1) for node 𝑖 in 𝑉:(2) if ∑𝑗∈𝑉 ≤ 1:(3) find the nearest hub k from node 𝑖(4) set 𝑌𝑖𝑗 = 0, ∀𝑗 ∈ 𝑉(5) set 𝑌𝑖𝑘 = 1(6) endif(7) endfor
Algorithm 2: Finding the upper bound for Lagrangian relaxation.

Here (54) is used to reduce the size of the solution
set in the model, and the result qualities can be improved
significantly. The lower bound of the CSA-P can be obtained
by solving the two subproblems with the methods proposed
by [23]. To obtain the optimal solution efficiently, we need a
method for finding the upper bound.

Upper Bound. The upper bound can be obtained based on
the solution of LSub1. After solving this subproblem, a set of𝑝 hubs and some assignments 𝑌𝑖𝑘 are determined. However,
in these results, some nodes may be assigned to more than
one hub, and some nodes may be unassigned. Therefore,
Algorithm 2 is used to find an upper bound with a feasible
solution.

With the methods above, the lower bound and upper
bound can be obtained for a group of particular Lagrangian
multipliers. In this section, the complete procedure of LRwith
multiplier updating is shown as follows.

(a) Initialization includes the following: iteration number𝑟 = 0, max number of iterations 𝑁ite, max gap 𝑀gap, max
iteration number for no improvement of lower bound 𝑁imp,
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step size multiplier 𝜆 = 6, and initial Lagrangian multipliers𝜂, 𝛽, 𝛾 = 0.
(b) Finding the lower bound LB is by solving LSub1 and

LSub2.
Finding the upper bound UB is with Algorithm 2.
(c) Updating Lagrangian multipliers is as follows [64]:

𝜂𝑟+1𝑖𝑗𝑘 = 𝜂𝑟𝑖𝑗𝑘 + 𝜃𝑟(∑
𝑚∈𝑉

𝑋𝑖𝑘𝑚𝑗 − 𝑌𝑖𝑘) ,
∀𝑖, 𝑗 < 𝑖, 𝑘 ∈ 𝑉,

𝛽𝑟+1𝑖𝑗𝑚 = 𝛽𝑟𝑖𝑗𝑚 + 𝜃𝑟(∑
𝑘∈𝑉

𝑋𝑖𝑘𝑚𝑗 − 𝑌𝑗𝑚) ,
∀𝑖, 𝑗 < 𝑖, 𝑚 ∈ 𝑉,

𝛾𝑟+1𝑖 = 𝛾𝑟𝑖 + 𝜃𝑟(∑
𝑘∈𝑉

𝑌𝑖𝑘 − 1) , ∀𝑖 ∈ 𝑉,

(55)

where

𝜃𝑟 = 𝜆UB − LB𝑄 ,
𝑄 = ∑
𝑖,𝑗,𝑘

(∑
𝑚

𝑋𝑖𝑘𝑚𝑗 − 𝑌𝑖𝑘)2 + ∑
𝑖,𝑗,𝑚

(∑
𝑘

𝑋𝑖𝑘𝑚𝑗 − 𝑌𝑗𝑚)
2

+∑
𝑖

(∑
𝑘

𝑌𝑖𝑘 − 1)
2 .

(56)

(d) If the lower bound LB is not improved in 𝑁imp
continuous iterations, then 𝜆 = 𝜆/2, and 𝜂, 𝛽, 𝛾 also need
to be set to the current best values.

(e) If iteration number 𝑟 = 𝑁ite or (UB−LB)/UB < 𝑀gap,
stop; else, go to (b).

The CSA problem can be solved with the procedure
above. CMA, RSA, and RMA are solved with similar strate-
gies proposed by [23, 26]. LR-based technique has not yet
been published for solving ISA problems and, in fact, it is
nontrivial to develop such a method. We need to define
Lagrangian multipliers for several constraints and construct
the Lagrangian problems. The constraint like (54) that can
increase the convergence speed is necessary to be added to
the Lagrangian problems but difficult to construct.Therefore,
LR for the ISA problem is not evaluated in our study.

3.4. Clustering-Based Method. Reference [32] proposed a
novel method for analyzing hub location problems by con-
sidering clustering-based potential hub sets. They define the
travel demand of node 𝑖 as (𝑂𝑖 + 𝐷𝑖). Then, the following
observations are obtained: (1) Nodes with larger travel
demands are more likely to be chosen as hubs, especially
those nodes far away from other nodes. However, some of the
nodes are rarely chosen as hubs in the optimal solutions. (2)
In a cluster of nodes that are close to each other, at most one
of them can be selected as a hub usually, although the travel
demand of this hub is not the largest. (3) The hubs prefer

to be spread across the whole network. (4)The optimal hub
locations are almost insensitive to the value of 𝛼.

Thus, the solutions of hub location problems strongly
depend on both the spatial properties and the travel demands
of nodes. Based on these properties, a heuristic is developed
for generating a subset of potential hubs. The hubs for the
optimal solutions can be selected from this subset and the
computational complexity of the problem can be reduced. To
generate the potential hub sets, all nodes need to be sorted
by their importance, since the node importance depends on
spatial properties and travel demands. The node importance
can be measured with different formulations, and one of the
best measures identified by [32] is as follows:

Imp𝑖 = (𝑂𝑖 + 𝐷𝑖) ∗ 𝐶𝑖, (57)

where 𝐶𝑖 = ∑𝑗∈𝑉 𝑐𝑖𝑗. Here, those nodes with large travel
demands and far away from other nodes tend to be chosen
as hubs. Then, we list all the nodes in descending order with
the value of importance Imp𝑖 and the potential hub set 𝑁𝑝
is generated with 2𝑝 most important nodes. The hubs are
more likely to be selected from𝑁𝑝 (note that if 2𝑝 ≥ 𝑛, then𝑁𝑝 = 𝑉).

Let 𝑃𝑀 = ∑𝑖∈𝑁𝑝(min𝑗∈𝑁𝑝,𝑗 ̸=𝑖𝑐𝑖𝑗)/2𝑝 be the average short-
est distances between nodes in𝑁𝑝, and𝑁𝑝[𝑡] is the 𝑡th most
important node in𝑁𝑝.Therefore, the clustering-based poten-
tial hub set algorithm (CBS) can be shown as Algorithm 3.

Here, each potential hub has a “hub circle” with a radius
of 𝑃𝑀. Node 𝑖 will be assigned to set𝐻𝑠, if there are no other
nodes from 𝑁𝑝 in its hub circle; node 𝑖 will be assigned to
set 𝐻, if there are two or more nodes from 𝑁𝑝 that are less
important than itself; node 𝑘 will be assigned to set 𝑆𝑖, if 𝑘 is
within the hub circle of node 𝑖 and node 𝑖 is more important
than 𝑘. Therefore, some subsets of potential hub nodes are
generated based on the clustering properties, and several
constraints for hub location can be added to the problem
formulations as follows.

CBS

∑
𝑘∈𝑆𝑖

𝑌𝑘𝑘 ≥ 1, ∀𝑖 ∈ 𝐻,
∑
𝑘∈𝐻𝑠

𝑌𝑘𝑘 ≥ 1. (58)

There must be at least one hub in each set 𝑆𝑖, ∀𝑖, and at
least one hub in set 𝐻𝑠. There is a restricted variant of CBS,
called RCBS. In addition to (58), it adds another constraint
where all the hubs must be selected from the potential hub
sets, and the formulation is shown as follows:

∑
𝑘∈{⋃𝑖∈𝐻 𝑆𝑖}∪𝐻𝑠

𝑌𝑘𝑘 = 𝑝. (59)

Note that CBS adds constraints independently of the
problems at hand. Therefore, it is a prefiltering method for
hubs and can be used for all problems without modification.
In addition, there are several other variants of CBS, such
as augmented CBS and improved RCBS. The details can be
found in [32].
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(1) Input:𝐻 = 0,𝐻𝑠 = 0, 𝑆𝑖 = 0, ∀𝑖 ∈ 𝐻, PM, 𝑡 = 1(2) while 𝑡 ≤ min {2𝑝, 𝑛}:(3) 𝑓𝑙𝑎𝑔 = 0(4) for 𝑖 in𝐻:(5) if 𝑁𝑝[𝑡] ∈ 𝑆𝑖:(6) set 𝑓𝑙𝑎𝑔 = 1(7) break(8) endif(9) endfor(10) if 𝑓𝑙𝑎𝑔 = 0:(11) 𝑖 = 𝑁𝑝[𝑡](12) set 𝑆𝑜𝑖 = {𝑘 ∈ 𝑁𝑝 : 𝑐𝑖𝑘 ≤ 𝑃𝑀}(13) endif(14) if #𝑆𝑜𝑖 = 1:(15) 𝐻𝑠 = 𝐻𝑠 ∪ {𝑖}(16) elif # 𝑆𝑜𝑖 > 1:(17) 𝐻 = 𝐻 ∪ {𝑖}(18) 𝑆𝑖 = 𝑆𝑜𝑖(19) endif(20) 𝑡 = 𝑡 + 1(21) endwhile
Algorithm 3: Finding the clustering-based potential hub set (CBS).

(a) TR dataset with 𝑛 = 81 (b) AP dataset with 𝑛 = 100
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Figure 4: Visualization of three datasets used in this study: TR dataset, AP dataset, and CAB dataset.

4. Evaluation

In this section we report the results of our experimental
evaluation of all implementations. Section 4.1 introduces the
three datasets used in our study and describes the experimen-
tal setup. The results and analysis of the CSA, CMA, RSA,
RMA, and ISA problems in the TR dataset are provided from
Sections 4.2 to 4.6. In Section 4.7, we present the results for
the AP dataset and CAB dataset that corroborate our findings
for the TR dataset.The hub assignments for selected problem
instances and datasets are visualized in Section 4.8. The
analysis of parallel computation is shown in Section 4.9.

4.1. Introduction of Datasets and Experiments. To compare
the performance of the methods introduced in Section 3,
three commonly used datasets are utilized in this study. The
TR (Turkish Postal) dataset includes 81 cities with distance
and flows between them in Turkish Postal System [51]. The
AP (Australia Post) dataset provides 200 nodes represent-
ing postcode districts with their coordinates and the flows
between them in Australia [22]. The CAB (Civil Aeronautics
Board) dataset is based the airline passenger interactions

between 25 cities in USA in 1970 [12]. The numbers of nodes
for the TR, AP, and CAB dataset are set to 𝑛 ∈ {10, 25, 50, 81},𝑛 ∈ {10, 25, 50, 100}, and 𝑛 ∈ {10, 15, 20, 25}. We set
the cost discount coefficient 𝛼 ∈ {0.3, 0.5, 0.7} for the TR
dataset and CAB dataset, as well as 𝛼 = 0.75 (𝐹𝑖𝑘𝑚𝑗 =3𝑐𝑖𝑘 + 0.75𝑐𝑘𝑚 + 2𝑐𝑚𝑗) for the AP dataset. For complete (CSA,
CMA, RSA, and RMA) problems, we set the numbers of
hubs for three datasets 𝑝 ∈ {3, 5, 7}. For ISA problems,
we set (𝑝, 𝑞) ∈ {(2, 1), (3, 2), (3, 3), (4, 4), (4, 5), (4, 6), (5, 6),(5, 7), (5, 8), (5, 9), (5, 10)} [18]. The visualizations of all three
datasets are shown in Figure 4. For the reliable models, the
disruption probability 𝑞𝑘 of each node 𝑘 is set to a number
randomly from [0.01, 0.05]. The rerouting coefficient 𝜌 is set
to 2.

We use the settings for GA and LR here as recommended
in the literature. In GA, we set the population size 𝑝𝑛 = 200
for single allocation problem and 𝑝𝑛 = 1000 for multiple
allocation problem. The maximum number of generations is
200 [27]. If the best fitness value cannot be improved within
10 consecutive generations, the algorithmwill stop. In LR, the
step size multiplier 𝜆 is set to 6, and the maximum iteration
number is 3000 [23]. If the lower bound cannot be improved
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Figure 5: Results of five types of problems for TR dataset. The problems in five columns are CSA, CMA, RSA, RMA, and ISA. The
measurements of three rows are solution gaps, computation time, and main memory usage, respectively. In each subfigure, the results for
different numbers of nodes (𝑛 ∈ {10, 25, 50, 81}) obtained with four methods are presented.

within 50 consecutive iterations, then 𝜆 = 𝜆/2 and the
Lagrangianmultipliers will be set to the current best values. If
themaximum iteration number is reached or the gap between
the lower bound and upper bound is less than a certain value
(≤0.1%) or all Lagrangian multipliers are equal to zero, then
LR can be terminated. Note that the results for both GA
and LR could be further improved by tuning the parameters.
Since CBS provides a refinement of potential hubs, we use
it with CPLEX together as a preselection method. In this
experiment, its restricted variant RCBS is tested because of
its short computation time compared with CBS and other
variants. In addition, the results obtained by CPLEX are used
as a benchmark.

GAandLR are implementedwithPython, while theRCBS
and LP are solvedwith CPLEX. Because CPLEXusesmultiple
threads as default, we use a single thread in all experiments
to obtain comparable results. Finally, the maximum compu-
tation time is set to 3,600 seconds; that is, an experiment will
be terminated once the running time exceeds 3,600 seconds.
The results for the TR dataset, AP dataset, and CAB dataset
are presented in Figures 5–8. The solution gaps, computation
time, and main memory usage are used to measure the
performances of fourmethods [65]. Because the observations
on three datasets are generally similar, we only report the
results for TR in detail here and summarize the differences to
other datasets subsequently. All experiments were executed
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(c) Convergence for the CAB dataset

Figure 6: Convergence of CPLEX-LP and LR for RMA problems with 𝑛 = 25, 𝑝 ∈ {3, 5, 7}, and 𝛼 ∈ {0.3, 0.5, 0.7} for the TR dataset and CAB
dataset as well as 𝛼 = 0.75 for the AP dataset: LR converges gradually, whereas the gaps of CPLEX-LP stay almost stable after around 1,500
seconds.

on a server with 32 cores and 386GB RAM, running Fedora
24 (Linux 4.8.4-200.fc24.x86 64).

4.2. Classical Single Allocation Problems. The solution gaps,
computation time, and main memory usage of four methods
for CSA problems in the TR dataset with different numbers of
nodes (𝑛 ∈ {10, 25, 50, 81}) are shown in the first column (a,
f, k) of Figure 5. Note that 𝑦-axis of all three figures is in log
scale. In Figure 5(f), it can be seen that thesemethods all have
similar computation time (around 1 second) while solving
the problems with small size (𝑛 = 10). With an increasing
number of nodes, the computation time for CLPEX-LP, LR,
and RCBS increases significantly. In particular, when the
number of nodes is up to 50, both CPLEX-LP and LR reach
the maximum computation time of 3,600 seconds and they
cannot provide good solutions in this case. However, GA
performs well here. It provides very good solutions with
small gaps within a reasonable computation time for different
numbers of nodes. Note that RCBS can also terminate within
3,600 seconds for 𝑛 ≤ 50. However, it sometimes provides
a poor solution with a large gap even for small number of
nodes (𝑛 ∈ {10, 25}) because its additional constraints limit

the search space too much. In Figure 5(k), the main memory
usage of CPLEX-LP and RCBS increases significantly with an
increasing number of nodes.When 𝑛 = 81, thememory usage
of these two CPLEX-based methods both is over 10GB while
GA and LR use much less memory than them.Therefore, GA
performs the best for solvingCSAproblems in the TRdataset.
In addition, it needs more computation time to obtain good
solutions for larger numbers of hubs 𝑝 with CPLEX-LP, GA,
and RCBS.

4.3. Classical Multiple Allocation Problems. The computa-
tional complexity of multiple allocation problems is much
lower than for single allocation problems. Therefore, CMA
is solved in polynomial time if the hub set is determined
[26], because the problem can be solved by finding the best
route for each OD pair independently in this case.The results
for CMA problems in the TR dataset are presented in the
second column (b, g, l) of Figure 5. The results show that
CPLEX-LP and RCBS take much shorter time for solving
CMA than CSA. Thus, CPLEX-LP can be used to solve CMA
problems within a reasonable time for small numbers of
nodes (𝑛 ≤ 50). However, just like the performance in CSA
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Figure 7: Results of five types of problems for AP dataset. The problems in five columns are CSA, CMA, RSA, RMA, and ISA. The
measurements of three rows are solution gaps, computation time, and main memory usage, respectively. In each subfigure, the results for
different numbers of nodes (𝑛 ∈ {10, 25, 50, 100}) obtained with four methods are presented.

problems, RCBS sometimes provides relatively poor solutions
with large gaps. Note that GA becomes the worst method
with large-gap solutions and long computation time because
in the case of multiple allocation, the size of chromosomes
is up to the number of OD pairs (𝑂(𝑛2)). It is more difficult
to reach the near-optimal solutions with random exploration
in this case. We have increased the population size to 1000
in additional experiments with GA; however, results did
not improve significantly. LR still needs a long computation
time for large number of nodes. In Figure 5(l), similar to
Figure 5(i), CPLEX-LP and RCBS need much more memory
with an increasing number of nodes, while thememory usage
of LR is alwaysmuch less than them. Because of the larger size
of chromosomes, GA uses more memory for CMA than CSA
problems. Finally, similar to Section 4.2, it is more difficult to

obtain good solutions for larger 𝑝 with CPLEX-LP, GA, and
RCBS.

4.4. Reliable Single Allocation Problems. The reliable prob-
lems have more computation complexity than the classical
problems. Thus, the maximum number of nodes for the
evaluation of two reliable problems is set to 𝑛 = 50. The
performance of four approaches for solving RSA problems is
shown in the third column (c, h, m) of Figure 5, indicating
that when the number of nodes is 𝑛 ≥ 25, we cannot
obtain any optimal solution with CPLEX-LP directly. The
results provided by RCBS are slightly better, but it cannot still
guarantee the optimality of the solutions even for networks
with small sizes. LR can provide acceptable solutions in
networks of small size (𝑛 = 10). However, with an increasing
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(b) Classical multiple objective_ratio

CP
LE

X
G

A LR
RC

BS
CP

LE
X

G
A LR

RC
BS

CP
LE

X
G

A LR
RC

BS
CP

LE
X

G
A LR

RC
BS

10 15 20 25

G
ap

s (
%

)

1e + 02

1e + 01

1e + 00

1e − 01

1e − 02

(c) Reliable single objective_ratio

CP
LE

X
G

A LR
RC

BS
CP

LE
X

G
A LR

RC
BS

CP
LE

X
G

A LR
RC

BS
CP

LE
X

G
A LR

RC
BS

10 15 20 25

G
ap

s (
%

)

1e + 02

1e + 01

1e + 00

1e − 01

1e − 02

(d) Reliable multiple objective_ratio
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(e) Incomplete single objective_ratio
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(g) Classical multiple time
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Figure 8: Results of five types of problems for CAB dataset. The problems in five columns are CSA, CMA, RSA, RMA, and ISA. The
measurements of three rows are solution gaps, computation time, and main memory usage, respectively. In each subfigure, the results for
different numbers of nodes (𝑛 ∈ {10, 15, 20, 25}) obtained with four methods are presented.

number of nodes, the solution gaps become large because of
the slow computation for each iteration. The observation in
Figure 5(m) is still similar to Figures 5(k) and 5(l): the main
memory usage of CPLEX-LP and RCBS increases fast with
increasing numbers of nodes, while GA and LR use much
less memory than them. Finally, similar to the case of CSA
problems, GA presents solutions with high quality within a
reasonable time.

4.5. Reliable Multiple Allocation Problems. The results for the
RMA problems are presented in the fourth column (d, i,
n) of Figure 5. Similar to the condition in RSA problems,
the optimal solutions cannot be obtained with CPLEX-LP
within 3,600 seconds for 𝑛 ≥ 25. However, the gaps are

smaller than in Figure 5(c), because of the lower complexity
of multiple allocation problems. GA still performs the worst
and RCBS cannot still guarantee the optimality always. These
observations are similar to Section 4.3. The influence of the
number of hubs 𝑝 is still similar to the sections above.

In general, RMA problems with 𝑛 = 10 can be solved
by CPLEX-LP or LR with small gaps (<0.1%) within 3,600
seconds.However, for the cases of 𝑛 ≥ 25, the problem cannot
be solved within 3,600 seconds by any methods proposed
in this paper. Therefore, an additional evaluation for the
convergence is performed below.

The convergence progress of CPLEX-LP and LR for RMA
problems with 𝑛 = 25 within 3,600 seconds is shown in
Figure 6 which indicates that with the increase of time the
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(a) TR dataset with LP (108.55%)
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(b) TR dataset with GA (0.67%)
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(c) TR dataset with LR (0%)
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(d) TR dataset with RCBS (1.49%)
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(e) AP dataset with LP (186.43%)
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(f) AP dataset with GA (0%)
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(g) AP dataset with LR (2.45%)
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(h) AP dataset with RCBS (2.73%)
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(i) CAB dataset with LP (0%)
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(j) CAB dataset with GA (0%)
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(k) CAB dataset with LR (0%)
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(l) CAB dataset with RCBS (5.29%)

Figure 9: Visualization of CSA problems for the TR dataset with 𝑛 = 50, 𝑝 = 7, and 𝛼 = 0.5, AP dataset with 𝑛 = 50, 𝑝 = 7, and 𝛼 = 0.75,
and CAB dataset with 𝑛 = 25, 𝑝 = 5, and 𝛼 = 0.5: red points are hubs and blue points are nonhub nodes. The red links are hub links. For the
TR dataset, CPLEX-LP provides a feasible solution only, and therefore the assignment is rather useless. The results obtained by GA, LR, and
RCBS are quite similar to each other. For the AP dataset, CPLEX-LP and RCBS provide poor solutions, while the results of GA and LR are
different regarding one hub. For the CAB dataset, CPLEX-LP, GA, and LR are all up to the optimality, while RCBS selects Detroit (DTT) as a
hub because of its high node importance instead of Dallas (DFW).

solutions obtained by LR converge gradually. Finally, the gaps
approach small numbers. However, although CPLEX-LP can
provide gaps less than 10%within 1,500 seconds for all 9 cases(𝑝 ∈ {3, 5, 7}, 𝛼 ∈ {0.3, 0.5, 0.7}), the gaps stay nearly stable
within the remaining computation time; that is, providing
more computational resources does not improve the solution
qualities. In addition, GA and RCBS cannot provide a near-
optimal solution for RMAbecause of the algorithm structure.
Therefore, LR is the best technique to solve reliable multiple
allocation problems.

4.6. Incomplete Single Allocation Problems. For the ISA
problems, the number of hub links 𝑞 also needs to be
considered in addition to the number of hub 𝑝. We evaluate
the following combinations of 𝑝 and 𝑞: (𝑝, 𝑞) ∈ {(2, 1), (3,2), (3, 3), (4, 4), (4, 5), (4, 6), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10)},
similar to existing work on ISA problems [18]. The results
are shown in the fifth column (e, j, o) of Figure 5. We only
evaluate CPLEX-LP, GA, and RCBS here, because LR is a
nontrivial algorithm and has not yet been published for
solving ISA problems. CPLEX-LP still performs well in
small networks (𝑛 ≤ 25) and RCBS cannot guarantee the
optimality. GA strategy proposed by us performs worse than
CPLEX-LP for 𝑛 ≤ 25. However, it can guarantee small gaps
(≤3%) for all the instances while CPLEX-LP and RCBS often
provide gaps over 10%.The scale of variables of ISA problems
is 𝑂(𝑛3) in (37)–(48). Thus, the main memory usage of these
three methods for ISA problems all is much less than that for
the other four problems.

4.7. Results for the AP Dataset and CAB Dataset. In addition
to the TR dataset, the results for the AP dataset and CAB
dataset are presented in Figures 7 and 8. The results corrob-
orate our findings for the TR dataset proposed in Sections
4.2 to 4.6. CPLEX-LP computes optimal solutions for CSA,
CMA, and ISA problems in small instances because of their
low complexity. GA still has the best performance, with short
computation time and low solution gaps for solving CSA,
RSA, and ISA problems, because the problem formulations
can be neatly encoded with chromosomes of reasonable sizes.
LR needs a long computation time for all problems with large
network scales. However, similar to the results in Section 4.5,
RMA with large networks scales cannot be solved by any of
these methods within 3,600 seconds. From the observation
in Figure 6, LR should be used to solve RMA problems. The
computation time of RCBS is shorter than LP.However, RCBS
sometimes provides poor solutions with high gaps because of
the additional constraints in the method.

4.8. Visualization of Results. In the sections above, we ana-
lyzed the solution gaps, computation time, andmainmemory
usage of four solution techniques for five types of hub
location problems. In this section, the results of CSA and ISA
problems for the three datasets are visualized in Figures 9 and
10. The number at the end of the caption of each subfigure is
the relative difference between the solution and theminimum
one.

In the first row (a–d) of Figure 9, results of CSA problems
for the TR dataset with 𝑛 = 50, 𝑝 = 7, 𝛼 = 0.5 are proposed.
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(a) TR dataset with CPLEX-LP (0%)
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(b) TR dataset with GA (3.35%)
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(c) TR dataset with RCBS (2.23%)
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(d) AP dataset with CPLEX-LP (0%)
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(e) AP dataset with GA (0%)
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(f) AP dataset with RCBS (3.65%)
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(g) CAB dataset with CPLEX-LP (0%)
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(h) CAB dataset with GA (1.33%)
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(i) CAB dataset with RCBS (4.37%)

Figure 10: Visualization of ISA problems for the TR dataset with 𝑛 = 50, 𝑝 = 5, 𝑞 = 6, and 𝛼 = 0.5, AP dataset with 𝑛 = 50, 𝑝 = 5, 𝑞 = 6, and𝛼 = 0.75, and CAB dataset with 𝑛 = 25, 𝑝 = 5, 𝑞 = 6, and 𝛼 = 0.5: red points and blue points are hubs and nonhub nodes. The red links are
the links between hubs. For the TR dataset, the structures of links obtained by three methods are similar to each other. For the AP dataset, the
optimal solution is obtained with CPLEX-LP and GA while RCBS selects node 35 and node 16 as hubs because of their high importance. For
the CAB dataset, CPLEX-LP provides an optimal solution. The solutions of GA and CPLEX-LP only have a difference of 1.33% while having
significantly different hub assignments in the figures. RCBS still selects Detroit (DTT) as a hub instead of Dallas (DFW).

CPLEX-LP only provides a feasible solution in 3,600 seconds
because of the large network scale. Thus, the assignment in
Figure 9(a) is rather useless. The assignments of other three
methods also have some difference, and their solutions are
not far away from each other. The results of CSA problems
for AP dataset with 𝑛 = 50, 𝑝 = 7, 𝛼 = 0.75 are shown in the
second row (e–h) of Figure 9. CPLEX-LP and RCBS provide
only feasible solutions with bad assignments. The results of
GA and LR have a difference on one hub, but the difference
between the values of their objective functions is only 2.45%.
In the third row (i–l) of Figure 9, results of CSA problems
for the CAB dataset with 𝑛 = 25, 𝑝 = 5, 𝛼 = 0.5 are
shown. It indicates that the hub sets and node assignments
obtained by CPLEX-LP, GA, and LR are all optimal. However,
the results of RCBS are different: Detroit (DTT) is selected as
a hub because of its high node importance (obtained by (57))
instead of Dallas (DFW).

In the first row (a–c) of Figure 10, results of ISA problems
for the TR dataset with 𝑛 = 50, 𝑝 = 5, 𝑞 = 6, 𝛼 = 0.5 are
presented. The structures of links obtained by three methods
are similar to each other. Only a few of hubs are different
between three figures. In the second row (d–f) of Figure 10,
results for the AP dataset with 𝑛 = 50, 𝑝 = 5, 𝑞 = 6, 𝛼 = 0.75
are shown. The optimal solution is obtained with CPLEX-LP

and GA. RCBS selects node 35 and node 16 as hubs because
of their high importance. Results for the CAB dataset with𝑛 = 25,𝑝 = 5, 𝑞 = 6, 𝛼 = 0.5with threemethods are shown in
the third row (g–i) of Figure 10. Here, the optimal solution is
obtained with CPLEX-LP. Although the assignment provided
by GA looks quite different from that by CPLEX-LP, their
solutions only have a difference of 1.33%.Detroit (DTT) is still
selected as a hub instead of Dallas (DFW) by RCBS.

4.9. Analysis of Parallel Computation. The results from Sec-
tions 4.2 to 4.7 are obtained using a single thread only.
However, the number of threads can be modified easily
for CPLEX-LP and RCBS. In this section, we analyze the
performance of these two solution techniques with different
numbers of threads.

As shown in Figure 11, two classical problems with 𝑛 =25, 𝑝 = 5, 𝛼 = 0.7, two reliable problems with 𝑛 = 10,𝑝 = 5, 𝛼 = 0.7, and the ISA problem with 𝑛 = 25, 𝑝 =5, 𝑞 = 6, 𝛼 = 0.7 for the CAB dataset are used as case
studies. CPLEX-LP and RCBS provide good solutions, with
gaps less than 0.1% within 3,600 seconds for all five problems.
Thus, we consider the computation time in this section. It
can be seen that in the RMA problem (Figure 11(d)) the
computation time of two solution techniques can be reduced
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(a) CSA (𝑛 = 25, 𝑝 = 5, 𝛼 = 0.7)
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(b) CMA (𝑛 = 25, 𝑝 = 5, 𝛼 = 0.7)
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(c) RSA (𝑛 = 10, 𝑝 = 5, 𝛼 = 0.7)

C
om

pu
ta

tio
n 

tim
e (

s)

0
10
20
30
40
50
60
70
80

The number of threads
4 8 12 16 20 24

CPLEX-LP
RCBS

(d) RMA (𝑛 = 10, 𝑝 = 5, 𝛼 = 0.7)
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Figure 11: Computation time of LP and RCBS with different number of threads for the CAB dataset: for the RMA problem, the computation
time of two solution techniques can be reduced significantly with an increasing number of threads. For the ISA problem, the computation
time of CPLEX-LP can be reduced by adding the threads when the number of threads is less than a fixed number (here, the fixed number is
8).

significantly with an increasing number of threads. For the
ISA problem (Figure 11(e)), the computation time can be
reduced by adding the threads when the number of threads
is less than a fixed number (here, the fixed number is 8).
However, in the other three figures, there is no significant
correlation between computation time and the number of
threads. For future work, the parallel computation of GA and
LR should be implemented. The impact of the number of
threads will also be analyzed.

5. Conclusions

In this paper, we reviewed, implemented, and compared
several methods (genetic algorithm, Lagrangian relaxation,
clustering-based method, and CPLEX) for solving five types
of hub location problems (CSA, CMA, RSA, RMA, and ISA).
Because most methods were proposed for solving one or
two types of hub location problems, we made appropriate
modifications for these methods to solve all kinds of hub
location problems. In order to evaluate the scalability and
solution quality of these methods under the same com-
putational environment, three standard datasets (TR, AP,
and CAB) were used as case studies. In the evaluation,
gaps of the objective functions, computation time, and main
memory usage were used to compare the performance of
these methods. There are seven major observations obtained
from our evaluation:

(1) CPLEX-LP performs best on solving two classical
(CSA, CMA) problems and incomplete single alloca-
tion (ISA) problemswith small size because of the low
problem complexity.

(2) GA provides good solutions within short time for
solving three single allocation (CSA, RSA, and ISA)
problems, because small chromosomes are sufficient
for modeling single allocation problems. However, it
might be a poor choice for solving multiple allocation
(CMA and RMA) problems, because the size of the
chromosomes is in 𝑂(𝑛2) (here 𝑛 is the number of
nodes).

(3) LR should be used to solve reliable multiple alloca-
tion (RMA) problems, since other methods perform
poorly for solving these problems, because the com-
putational complexity of RMA and CMA is similar
for LR. However, while using other methods, the
complexity of RMA is much higher than CMA.

(4) RCBS can be used to obtain a solutionwithin a shorter
time than CPLEX-LP. However, because there are
additional constraints in the algorithm, the optimality
of the solution cannot be guaranteed with RCBS.
Although these constraints can reduce the compu-
tation time, the problems may be changed already.
Because of the constraints of potential hub set, some
nodes with high importance are more likely to be
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selected as hubs no matter whether they are the
optimal hubs, such as Detroit (DTT) in Figures 9(l)
and 10(i).

(5) CPLEX-LP, GA, and RCBS use more main memory
for larger networks, whereas the memory usage of LR
remains almost stable for different numbers of nodes.
CPLEX-LP and RCBS needmuchmorememory than
GA and LR.

(6) The structures of solutions obtained with several
methods are sometimes completely different, yet, the
values of their objective functions usually are not so
far away from each other. For a given problem, more
computation time is needed to obtain good solutions
for large numbers of hubs 𝑝with CPLEX-LP, GA, and
RCBS.

(7) For reliable multiple allocation (RMA) problems, the
computation time of CPLEX-LP and RCBS can be
reduced significantly with an increasing number of
threads. For incomplete single allocation (ISA) prob-
lems, the computation time of CPLEX-LP can be
reduced by adding the threads when the number of
threads is less than a fixed number. However, there is
no significant correlation between computation time
and the number of threads for other three types of
problems.

Finally, note that several other types of hub location prob-
lems, such as the uncapacitated hub location problem and the𝑟-allocation 𝑝-hub median problem [66], are not evaluated
in this paper. For further work, these different problems
and solution techniques should be considered. Hub location
problems can be applied to other network design problems,
multimodal systems, ormultiple airport systems [67–70], and
this can also be studied for future work. In this paper, we
used CPLEX directly; future work could implement more
sophisticated methods, such as Benders decomposition. In
addition, GA performs well in single allocation problems in
the current study. However, the computation time and the
usage of main memory increase quickly with the growth of
the network. Therefore, the combination of GA and CBS can
be considered, that is, operating the GA evolution in the
initial population obtained by CBS. In addition, the compres-
sion for representation of allocation arrays can reduce the
usage of main memory. The parallel computation of several
independent subpopulations in multiple threads may also
speed up the algorithms.

Abbreviation Summary of Methods

AP: Australia Post
BB: Branch-and-bound
BP: Branch-and-price
(R)CBS: (Restricted) clustering-based potential

hub set
EBD: Enhanced Benders decomposition
GA: Genetic algorithm
LAA: Location-allocation algorithm
LP: Linear program

LR: Lagrangian relaxation
PRM: Path relinking method
RCA: Relax-and-cut algorithm
SAA: Simulated annealing algorithm
TS: Tabu search
WA: Weiszfeld algorithm.
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genetic algorithms for solving the uncapacitated single alloca-
tion p-hub median problem,” European Journal of Operational
Research, vol. 182, no. 1, pp. 15–28, 2007.

[29] I. Contreras, J.-F. Cordeau, and G. Laporte, “Benders decom-
position for large-scale uncapacitated hub location,”Operations
Research, vol. 59, no. 6, pp. 1477–1490, 2011.
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