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Amultidepot VRP is solved in the context of total urban traffic equilibrium. Under the total traffic equilibrium, themultidepot VRP
is changed to GDAP (the problem of Grouping Customers + Estimating OD Traffic + Assigning traffic) and bilevel programming
is used to model the problem, where the upper model determines the customers that each truck visits and adds the trucks’ trips
to the initial OD (Origin/Destination) trips, and the lower model assigns the OD trips to road network. Feedback between upper
model and lower model is iterated through OD trips; thus total traffic equilibrium can be simulated.

1. Introduction

The VRP is a generic name referring to a class of combina-
torial optimization problems in which a number of vehicles
serve the customers. The vehicles leave the depot, serve
customers in the network, and return to the depot after
completion of their routes. Dantzig and Ramser (1959) first
proposed this problem in the literature. VRP is generally
defined by a graph 𝐺 = (𝑉, 𝜀, 𝐶), where 𝑉 = (V0, . . . , V𝑛) is
the set of vertices; 𝜀 = {(V𝑖, V𝑗) | (V𝑖, V𝑗) ∈ 𝑉2, 𝑖 ̸= 𝑗} is the
arc set; and 𝐶 = (𝐶𝑖𝑗)(V𝑖 ,V𝑗)∈𝜀 is a cost matrix defined over 𝜀,
representing distances, travel times, or travel costs. The VRP
consists in finding a set of routes for𝐾 identical vehicles based
at the depot(s), such that each of the vertices is visited exactly
once, while minimizing the overall routing cost.

Travel cost ((𝐶𝑖𝑗)(V𝑖 ,V𝑗)∈𝜀) is a decisive influence factor for
VRP. In early researches on vehicle routing problems [1], the
vehicle travel time was computed by the Euclidean distance
between two nodes (the customers or the depots) and a given
speed. As all known, it is not a reasonable way to use the
Euclidean distance to compute travel time between two nodes
for real vehicle routing problems due to the nonlinear feature
of roadways and time-varying traffic situation. Later on, some

researchers, to meet practical requirements, used travel time
through the shortest path on road network to represent the
cost. After realizing that changes of traffic flows on an urban
road network may change the shortest path and thus the
travel time between two sites, adopting the travel time on
the dynamic shortest path as the travel cost was introduced,
and the travel cost between two sites in a corresponding time
window is calculated dynamically.

Currently, based on partial traffic equilibrium, some
researches calculate the shortest path travel time in delivery
time windows dynamically. For example, in recent years,
several work [2] considered the actual traffic situation in the
urban road network for real vehicle routing problems. They
suppose that, in an urban road network, the traffic situation
is just determined by the OD traffic of other vehicles but not
the delivery vehicles themselves and the delivery vehicles will
choose paths based on the traffic equilibrium of the other
vehicles. This method is rational when the delivery vehicles
are a small number and their influence on roadways can be
neglected. However, if the delivery vehicles are in a large
number, and their trafficmay influence other vehicles tomake
some of them change their travel paths, themethod could not
get the real travel time. As a result, the actual travel time of
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Figure 1: Urban traffic condition.

the optimal loops/paths under partial equilibrium cannot be
obtained (in this paper, loop means the access sequence to
customers, and path means links sequence passed by a truck
in road network).

When location of depots/facilities and demand flows
between depots and facilities are stable, VRP should be
solved statically (a priori) rather dynamically. In this case,
the routing behavior of delivery trucks is similar to other
vehicles. Both take traffic condition into account. For exam-
ple, delivery trucks will choose the roadways with less traffic,
and other vehicles may keep away from the roadways where
the traffic is heavily affected by the travelling and unloading
of delivery trucks. It means that interactions exist among
all vehicles and traffic flows on roadways result from all
drivers’ choice of their path. Then, travel times on roadways
are determined by links’ capacities and the corresponding
traffic flows. Moreover, because different VRP schemes will
result in different OD traffic of delivery trucks, the delivery
loops/paths also interact with urban OD traffic. Therefore,
it can be said that delivery loops/paths, which are obtained
under the assumption that other vehicles are not affected by
delivery trucks, are not optimized for the real situation.

When the influence of delivery trucks on road traffic
cannot be ignored, the VRP should be treated as a traffic
problem at macro level rather than a logistics issue at micro
level. Then, we must design the delivery loops/paths from
the view of total traffic equilibrium, namely, considering the
interactions among all vehicles.

In the real world, the phenomena that the delivery
trucks give no influence on road traffic in a city have been
disappearing because (1) road capacity in most large cities
(especially Chinese ones) is at the critical point where a
few additional vehicles may cause severe congestion in some
roadways and further result in the change of the whole urban
road traffic pattern and (2) rapid developed e-commerce
changes citizen’s shopping behavior. Online shopping reduces
personal travel but increases delivery truck traffic. Currently,
the delivery trucks have become a significant part of overall
urban traffic, which is shown in Figures 1(a) and 1(b).

Due to the above reasons, the VRP is no more just the
problem that assigns customers and travel paths for delivery
trucks based on a given OD traffic. One should consider
delivery and other vehicles as a whole when studying their
path choice behaviors.Thus, one should take the interactions
between the delivery trucks and other vehicles into account
directly because delivery schemes will change OD trips and
then the roadway traffic, while the OD trips and roadway
traffic inversely determine the VRP schemes. This is a
solution method of VRP in terms of total traffic equilibrium.
Here, the “total” traffic equilibrium means the interactions
between delivery trucks and other vehicles are considered
directly. Under the “total” user equilibrium, neither delivery
trucks nor other vehicles have willingness to change their
travel paths.

Therefore, in terms of total traffic equilibrium, the VRP
becomes GDAP (problem of Grouping Customers + Estimat-
ing OD Traffic + Assigning Traffic), among which “Grouping
Customers” means the works that customers are assigned to
different depots, and then a multidepot VRP is solved by
transforming into a group of single-depot VRPS; “Estimating
OD Traffic” means the works that the trip chains of the
deliveries trucks are added to the given OD(0); “Assigning
Traffic” means the works that the updated OD matrices are
assigned onto the road network. Its mathematical description
is shown as

(i) VRP = 𝑓 (Traffic Flow) ;
(ii) Traffic Flow = 𝑔 (OD) ;
(iii) OD = OD(0) + ℎ (VRP) .

(1)

We think the delivery schemes (namely, the being served
customers and travel paths of the trucks) should be obtained
by solving the three equations simultaneously. Here, first
equation is VRP model, the second equation is traffic assign-
ment model, and the third one is the method to put delivery
truck trip chains into the OD matrix.
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Figure 2: Different variants of the VRP.

We may use the bilevel programming to model above
problem, where the interactions between delivery trucks and
other vehicles are considered. The upper model determines
the customers that each delivery truck visits and the path of
each delivery truck, then we add these delivery trucks OD
trips into the initial OD matrix, and the lower model is a
traffic assignment model that finds paths for all the vehicles.
Interactions between the LM and UM are iterated through
updating OD. Thus, the total traffic equilibrium on a road
network can be simulated and loops/paths of delivery trucks
can be found in convergent outputs.

The rest of the paper is organized as follows. In Section 2,
we perform a literature review to summarize the existing
researches, in particular to discover their shortcomings. In
Section 3, we state our ideas and contributions. In Section 4,
we present the model structure of GDAP and design the
solution algorithm. In Section 5, we do a case study to
demonstrate the solution process and results of the model
using data for delivery of marine products in Dalian (China).
In Section 6, we summarize the study and consider future
research.

2. Literature Review

2.1. Researches on VRP. Over the last three decades, the num-
ber of academic publications on the numerous variants of the
VRP has increased extensively [3] including a brief review of
the development of VRP published in 2009 [4].

After Dantzig and Ramser (1959), a considerable number
of variants of VRP have been studied, including (1) the VRP
with hard, soft, and fuzzy service time windows (VRPTW);

(2) the VRP considering backhauls (VRPB); (3) the VRP
considering maximum route length, (DVRP); (4) periodic
VRP (PVRP); (5) VRP with multiple trips (VPRMT); (6)
split delivery vehicle routing problem (SDVRP) and others;
(7) the VRP with minimized emissions [5]. Montoya-Torres
et al. [6] illustrate the hierarchy of the VRP variants with
Figure 2. According to them, the most impressive growing of
VRP study was observed between 2006 and 2014 with a total
of 103 publications.

Sincemany variants of VRP areNP-hard problems, lots of
researchers have proposed solution algorithms. For example,
Clarke and Wright [7] proposed the Clarke-Wright solving
algorithm in 1964, which is the first to solve the multidepot
VRP (MDVRP) by a heuristic algorithm. Cordeau et al.
[8] described a “tabu” search algorithm for the MDVRP.
Simulated annealing (SA) has been employed as well to
solve VRP by Wu et al. [9]; Yu et al. [10] proposed an
improved ant colony optimization with coarse-grain parallel
strategy, ant-weight strategy, and mutation operation for the
MDVRP; Vidal et al. [11] propose an algorithmic framework
that successfully addresses three vehicle routing problems:
the multidepots VRP, the periodic VRP, and the multidepots
periodic VRP; Martonák et al. [12] proposed a path-integral
Monte Carlo quantum annealing scheme for the symmetric
travelling-salesman problem; Crispin and Syrichas [13] apply
the quantum annealing algorithm for VRP and study the
effectiveness of quantum annealing. Polacek et al. [14] used
the variable neighborhood search for the MDVRP. Yu et al.
[15] solved the MDVRP with time windows by a two-stage
heuristic approach. More detailed VRP solution algorithms
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are presented in the literatures of Montoya-Torres et al. [6];
Lin et al. [16]; Wang et al. [17]; and Zhang et al. [18].

At present, solution of VRP is not only vital in the
design of distribution systems in supply chain management,
but also important in urban solid waste collection, street
cleaning, school bus routing, routing of salespeople, and
courier services. Researches can be roughly divided into
theoretical papers providing mathematical formulations and
exact or approximate solution methods for academic prob-
lems and case-oriented papers. More recently, attention has
been devoted to more complex variants of the VRP (usually
called “rich”VRPs) that are closer to the practical distribution
problems than classic VRP models.

There is also literature which puts VRP in real-world
context to consider the dynamics of travelling times on
an urban road network because in urban areas the travel
speeds (or times) typically vary during the day due to
differing congestion patterns. Malandraki and Daskin [19]
presented mixed integer linear programming formulations
of the TDTSP and the TDVRP that treat the travel time
functions as step functions. Time-dependent travel times are
one of the main challenges in the optimization of vehicle
routes for urban goods movements. For example, Ichoua et
al. [20] presented a model based on time-dependent travel
speeds that satisfies the nonpassing property. Polimeni and
Vitetta [21] and Cattaruzza et al. [22] studied time-dependent
approaches and supposed that the link cost depends also on
time.Actually, for the traditional dynamicVRP, the link travel
times are thought to be different in different time windows
and then assign tasks to trucks. The interaction between the
delivery trucks and other vehicles is not considered directly
yet.

Taniguchi and Yamada [23] studied the vehicle routing
and scheduling procedures using advanced information sys-
tems and freight transport systems in urban areas. Ando
and Taniguchi [24] studied travel time reliability in vehicle
routing based on the data obtained by probe vehicles. Conrad
and Figliozzi [25] proposed Traffic Queuing Algorithm and
Arrival and Departure Time Algorithms to quantify the
impacts of congestion on time-dependent real-world urban
freight distribution networks; Deflorio et al. [26] applied
the performance indicators to compare different service
settings and introduced a simulation approach to build the
demand; Muñuzuri et al. [27] believed that modelling urban
freight transport is difficult and highly data-demanding and
proposed a trip generation model to achieve the estimation
of an origin-destination matrix for freight transport in a city.

Çetinkaya et al. [28] introduced a new variant of VRP,
namely, the Two-Stage Vehicle Routing Problem with Arc
Time Windows, which generally emerges from both mil-
itary and civilian transportation in Turkey. They divided
the network into three layers (facility, depots, and cus-
tomers) and routing operations into two successive layers
(i.e., between facility-depots, and depots-customers). Tang
et al. [29] proposed a VRP model subject to travel time
reliability constraint. Mancini [30] took into account rush
hours traffic congestion and addressed a VRP on a real road
network with time-dependent travel speed expressed by a
polynomial function. Despite the difficulty to work with

these kinds of function, this way more precisely represents
congestion evolution behavior. However, this study calculates
the actual travel time of road network based on partial traffic
equilibrium without considering the interaction between the
delivery trucks and other vehicles directly. Chiabaut et al. [31]
introduced a general methodology to anticipate and evaluate
the impacts of urban logistics on the global performance of a
transportation network.

Real-world applications of VRP often include two impor-
tant dimensions: evolution and quality of information [32].
Evolution of information relates to the fact that in some prob-
lems the information available to the planner may change
during the execution of the routes. Quality of information
reflects possible uncertainty on the available data. In addition,
depending on the problem and the available technology,
vehicle routes can either be designed statically (a priori) or
dynamically.

In real-world applications, static design is more impor-
tant when VRP is between the layers of depots and facilities.
In a small period of time (e.g., a quarter or a month), spa-
tial distribution of depots/facilities, demand flows between
depots and facilities of the urban solid waste collection,
street cleaning, school bus routing, routing of salespeople,
and courier services may hardly change. Thus one delivery
scheme may be used for the whole quarter or month. This
is similar to bus transit service, where daily personal travel
demand is relatively stable and the redesign of bus routes day
by day and the dynamic scheduling of buses hour by hour are
not necessary.

2.2. Researches on Interactions between Other Vehicles and
Delivery Trucks. Taniguchi et al. [33] considered the interac-
tions between the background traffic and the service trucks of
the logistics terminals when locating the terminals.They used
a bilevel programming model, and the upper-level problem
describes the behavior of the planner for minimizing the
total cost. The lower level problem describes the behavior of
each company and each truck in choosing optimal logistics
terminals and transportation routes. The model explicitly
takes into account traffic conditions in the network and
was successfully applied to an actual road network in the
Kyoto-Osaka area in Japan. They only dealt with the location
problem not VRP problem because each service truck runs
between a terminal and only one depot.

Researchers in Taniguchi team also adopted bilevel pro-
gramming model to integrate a supply chain network (SCN)
with a transportation network (TN) in terms of traffic equi-
librium. Among them, Yamada et al. [34] proposed a strategic
transportation planning model for designing interregional
freight TN and freight terminal development.The lower level
is a multimodal multiclass user traffic assignment model,
while the best combination of actions, in the upper-level
problem, is determined. Yamada et al. [35] proposed a sup-
ply chain-transport super-network equilibrium (SC-T-SNE)
model, in which the behaviors of six entities—manufacturers,
wholesalers, retailers, freight carriers, demand markets, and
TN users—are interpreted. With the behavior of TN users
including delivery trucks being incorporated, the model
allows for endogenously determining transport costs based
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on freight carriers’ decision-making, as well as for investi-
gating mutual effects between behavioral changes in SCNs
and the TN. Notably, the effects of traffic conditions in
the road network on the behavior of the entities on each
SCN and vice versa were explored. Yamada and Febri [36]
further presented a discrete network design problem, with
the assumption of SCN-TN interaction. They developed
their discrete optimization model for a TN with equilibrium
constraints. Their research studies mainly network planning
problems (i.e., facility location, link construction) with equi-
librium constraints, rather than delivery management. With
the OD of TN users, the same as the OD of goods, the truck
path choice behavior differs from that in VRP where delivery
loop of a truck is a trip chain.Thus, with the same equilibrium
constraints, the key issues and model structure are different.

3. Motivation and Contribution

When location of depots/facilities and demand flows between
depots and facilities are stable, VRP should be solved stati-
cally (a priori) rather dynamically. In this case, the routing
behavior of delivery trucks is similar to other vehicles. Both
take traffic condition into account. For example, delivery
trucks will choose the roadways with less traffic, and other
vehicles may keep away from the roadways where the
traffic is heavily affected by the travelling and unloading
of delivery trucks. It means that interactions exist among
all vehicles and traffic flows on roadways result from all
drivers’ choice of their path. Then, travel times on roadways
are determined by links’ capacities and the corresponding
traffic flows. Moreover, because different VRP schemes will
result in different OD traffic of delivery trucks, the delivery
loops/paths also interact with urban OD traffic. Therefore,
it can be said that delivery loops/paths, which are obtained
under the assumption that other vehicles are not affected by
delivery trucks, are not optimized for the real situation.

When the influence of delivery trucks on road traffic
cannot be ignored due to the recurring congestion and
sophisticated e-commerce business models [37], VRP prob-
lem should be treated as a traffic problem at the macro level
rather than a logistics issue at the micro level. Then, we must
design the delivery loops/paths from the view of total traffic
equilibrium, while considering the interactions among all
vehicles and traffic generation/attraction in traffic zones.

Our contributions in this study are as follows.
(1) Under the total traffic equilibrium, transforming the

multidepot VRP to GDAP (the problem of Grouping Cus-
tomers + Estimating OD Traffic + Assigning traffic) to take
the interactions between delivery trucks and other vehicles
into account to obtain delivery schemes under “the total
traffic equilibrium.”

(2) Solving GDAP with bilevel model. Based on the
feedback loop of “the problem of Grouping Customers -
determining the delivery routes - updating OD traffic -
assigning OD traffic – re-grouping. . .,” firstly the customers
are divided into several groups and secondly the delivery
loops/paths for the groups are obtained and the initial
OD matrix is updated, and thirdly links’ traffic flows are
calculated by user equilibrium traffic assignment model.

(3) Carrying out a case study with actual data in Dalian
to examine and verify the method and provide some useful
findings.

(4) Evaluating the delivery schemes based on not only the
delivery time but also the traffic situation of the entire road
network.

4. Model Structure

4.1. Model Assumptions

(A1) Study area consists of continuous but nonover-
lapping traffic zones, the OD trips of vehicles other
than delivery trucks do not change, but the paths
between origins and destinations are not fixed, which
will be determined based on UETheory.
(A2) Demand of each costumer is given.
(A3) Depots’ supply amounts are big enough.
(A4) Length of delivery loop is shorter than the truck’s
maximum range.
(A5) All delivery trucks are the same type, with the
loading capacity given.
(A6) Loading and discharging times during the deliv-
ery are ignored.
(A7) One truck is equivalent to 3 per car units.
(A8) Drivers know the travel times of all roadways
and try to choose the shortest path.

4.2. The Upper Model. The variables are defined as follows:
𝑍𝑛1 : the total delivery time of all delivery trucks in 𝑛th
round of grouping, which is the objective value of the
upper model;
𝑥𝑛𝑖𝑗𝑘: 0-1 variable, 𝑥𝑛𝑖𝑗𝑘 = 1means vehicle 𝑘 via path 𝑖-𝑗
in 𝑛th round of grouping; it is the decision variable to
determine the route of a delivery truck, and further
the entire delivery network; 𝑥𝑛𝑖𝑗𝑘 is decision variable,
which determines the OD trips of delivery trucks,
the path between two customers will be determined
through UE in the lower model;
𝑅: the set of origins of other vehicles;
𝑅̂: the set of origins of delivery trucks (depots or
customers);
𝑅: the set of origins of all vehicles, 𝑅 = 𝑅 + 𝑅̂;
𝑆: the set of destinations 𝑓 of other vehicles;
𝑆: the set of destinations 𝑓 of delivery trucks (depots
or customers);
𝑆: the set of destinations 𝑓 of all vehicles, 𝑆 = 𝑆 + 𝑆;
𝐾: the set of delivery trucks;
𝑇𝑛𝑖𝑗𝑘: the travel time of truck 𝑘 from 𝑖 to 𝑗 in 𝑛th round
of grouping;
𝑞𝑗: the demand of costumer j;
𝑄: load capacity of truck k;
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𝑑𝑖𝑗: length of delivery path from site 𝑖 to site j;
𝐷: maximum travel range of a truck;
𝑀𝑟: the number of delivery trucks in depot r;

𝜅𝑛𝑎𝑖𝑗: (0-1) variable, 𝜅𝑛𝑎𝑖𝑗 = 1 means path 𝑖-𝑗 via link 𝑎
in 𝑛th round of grouping.

The upper model is as follows:

min: 𝑍𝑛1 = ∑
𝑖∈𝑅̂

∑
𝑘∈𝐾

∑
𝑗∈𝑆

(𝑥𝑛𝑖𝑗𝑘𝑇𝑛𝑖𝑗𝑘 + 𝑥𝑛𝑗𝑖𝑘𝑇𝑛𝑗𝑖𝑘) +∑
𝑖∈𝑆

∑
𝑘∈𝐾

∑
𝑗∈𝑆

𝑥𝑛𝑖𝑗𝑘𝑇𝑛𝑖𝑗𝑘 (2)

s.t.: ∑
𝑟∈𝑅̂

∑
𝑗∈𝑆

𝑥𝑛𝑟𝑗𝑘𝑞𝑗 +∑
𝑖∈𝑆

∑
𝑗∈𝑆

𝑥𝑛𝑖𝑗𝑘𝑞𝑗 ≤ 𝑄, ∀𝑘 ∈ 𝐾 (3)

∑
∀𝑟∈𝑅̂

∑
𝑗∈𝑆

𝑥𝑛𝑟𝑗𝑘𝑑𝑟𝑗 +∑
𝑗∈𝑆

∑
∀𝑟∈𝑅̂

𝑥𝑛𝑗𝑟𝑘𝑑𝑗𝑟 +∑
𝑖∈𝑆

∑
𝑗∈𝑆

𝑥𝑛𝑖𝑗𝑘𝑑𝑖𝑗 ≤ 𝐷, ∀𝑘 ∈ 𝐾 (4)

∑
𝑗∈𝑆

𝑥𝑛𝑟𝑗𝑘 = ∑
𝑗∈𝑆

𝑥𝑛𝑗𝑟𝑘 ≤ 1, ∀𝑟 ∈ 𝑅̂, ∀𝑘 ∈ 𝐾 (5)

∑
𝑖∈𝑅̂

∑
𝑘∈𝐾

𝑥𝑛𝑖𝑗𝑘 +∑
𝑖∈𝑆

∑
𝑘∈𝐾

𝑥𝑛𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝑆 (6)

∑
𝑘∈𝐾

∑
𝑗∈𝑆

𝑥𝑛𝑟𝑗𝑘 ≤ 𝑀𝑟, 𝑟 ∈ 𝑅 (7)

∑
𝑖∈𝑅̂

∑
𝑗∈𝑅̂

𝑥𝑛𝑖𝑗𝑘 = 0, 𝑘 ∈ 𝐾 (8)

𝑥𝑛𝑖𝑗𝑘 = {1, Path of truck 𝑘 f rom 𝑖 to 𝑗 in 𝑛th round of grouping
0, Otherwise

(9)

𝑇𝑛𝑖𝑗𝑘 = ∑
𝑎

𝑡𝑛𝑎 × 𝜅𝑛𝑎𝑖𝑗. (10)

Equation (2) is the objective function, minimizing the
total delivery time, including the travel time of the trucks;
(3) ensures that for a delivery loop the total demand of the
costumers should be less than the capacity of the delivery
truck; (4) ensures that the length of a loop (namely, the
travel distance of a delivery truck) should be shorter than its
maximum travel range; (5) ensures the times that the delivery
trucks start from depot 𝑟 and return to depot 𝑟 are the same,
which is 0 or 1. It ensures that a truck starts from its depot
and finally returns to the same depot; (6) means that for each
customer only one truck from a depot or another customer is
available. It ensures that the demand of a costumer should
be served by only one truck; (7) ensures that the number
of trucks that started from each depot (𝑖 ∈ 𝑅̂) should be
less than the available ones; (8) ensures that trucks do not
travel between depots; (9) is 0-1 variable; (10) represents the
shortest travel time between depot and customer or between
two customers.

Actually, {𝑡𝑛𝑎} is used to describe the traffic flow in road
network. It is obtained in the lower model; {𝑥𝑛𝑖𝑗𝑘} is the OD
trip of delivery trucks. It is the input of lower model.

4.3. The Lower Model. The variables used are defined as
follows:

𝑍2: objective value, which is the sum of travel times
on all links;𝑡𝑛𝑎: travel time on link 𝑎 in the 𝑛th round of assign-
ment;

𝑥𝑛𝑎: traffic flow on link 𝑎 in the 𝑛th round assignment;

𝑓𝑛𝑟𝑠𝑘: traffic flow on path 𝑘 between OD(𝑟, 𝑠) in the 𝑛th
round of assignment;

𝑞𝑛𝑟𝑠: traffic flow between OD(𝑟, 𝑠) in the 𝑛th round of
assignment;

𝛿𝑛𝑎𝑟𝑠𝑘: (0-1) variable, if link 𝑎 is on path 𝑘 from 𝑟 to 𝑠 in𝑡 the 𝑛th round of assignment, is 1, otherwise, is 0;

𝑡𝑎(0): free flow travel time of link a;

𝛼, 𝛽: parameters (here 𝛼 = 0.15, 𝛽 = 4).
The lower model is as follows:

min: 𝑍2 = ∑
𝑎

∫𝑥𝑛𝑎
0
𝑡𝑛𝑎 (𝑤) 𝑑𝑤 (11)

s.t.: ∑
𝑘

𝑓𝑛𝑟𝑠𝑘 = 𝑞𝑛𝑟𝑠, ∀𝑟, 𝑠 (12)
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𝑓𝑛𝑟𝑠𝑘 ≥ 0, ∀𝑟, 𝑠 (13)

𝑥𝑛𝑎 = ∑
𝑟

∑
𝑠

∑
𝑘

𝑓𝑛𝑟𝑠𝑘𝛿𝑛𝑎𝑟𝑠𝑘, ∀𝑎 (14)

𝑡𝑛𝑎 = 𝑡𝑎 (0) [1 + 𝛼( 𝑥
𝑛
𝑎𝐶𝑎)
𝛽] (15)

𝛿𝑛𝑎𝑟𝑠𝑘 = {{{
1, Link 𝑎 is on path 𝑘 f rom 𝑟 to 𝑠 in 𝑛th assignment

0, Otherwise. (16)

Equation (11) is the objective function; (12), (13), and (14)
are flow constraints, which ensure that the traffic flow should
not be negativity and satisfy the flow conservation. Equation
(15) is the link performance function; (16) is the (0-1) variable.

5. Model Solution

Themodel can be solved by iterative calculation of “Grouping
Customers→ Determining the delivery schemes→ Chang-
ing OD matrix → Assigning OD traffic → Re-Grouping
Customers → ⋅ ⋅ ⋅ .” Here we use the network in Figure 3,
where “1-5” and “6-8”, respectively, represent costumers and
depots, as an example to explain the solution approach.

5.1. Optimizing the Delivery Scheme. We optimize the deliv-
ery scheme in the context of fixed links’ travel speeds for
the multidepot VRP by Generic Algorithm (GA). Firstly,
the multidepot VRP is transformed into several single-depot
VRPs by grouping the customers. Due to the grouping, 𝐿-
types of customer clusters will be formed. Secondly, several
delivery schemes, respectively, for several sets of single-depot
VRPs, which are corresponding to the 𝐿-types of customer
clusters, are designed. Finally, the optimal delivery schemes
of a group of single-depot VRPs are found by comparing the
values of the objective functions corresponding to the𝐿-types
of customer clusters.

The grouping works are as follows.

Step 1. Calculate TMij and TQij from 3 Depots to 5 Cus-
tomers to obtain travel time vector; for customer j, it is [TM6j,
TM7j, TM8j, TQ6j, TQ7j, TQ8j].

Step 2. Find the minimum TMij of each customer j.

Step 3. Compare the minimum 𝑇𝑀6𝑗 of customer 𝑗 with𝑇𝑄7𝑗 and 𝑇𝑄8𝑗, if 𝑇𝑀6𝑗 < 𝑇𝑄7𝑗 and 𝑇𝑀6𝑗 < 𝑇𝑄8𝑗, then
customer 𝑗 is served by Depot 6 (Group 1). Otherwise, assign
customer 𝑗 to Group 4, the depots for the customers of this
group have not been determined yet.

Step 4. Assign the customers of Group 4 to Groups 1–3
through enumeration method, and obtain L-types of cus-
tomer clusters, for example, Type 1: Depot 6 (Customers 1, 2),
Depot 7 (Customer 5), and Depot 8 (Customers 3, 4); Type 2:
Depot 6 (Customer 2), Depot 7 (Customers 1, 5), and Depot
8 (Customers 3, 4).

Here, 𝑇𝑀𝑖𝑗, 𝑇𝑄𝑖𝑗 are the shortest travel time from depot 𝑖
to customer 𝑗 in the cases of whether considering the impacts
of delivery trucks on links’ travel speeds, respectively.

The delivery schemes are optimized as follows.
Calculating 𝑍𝑛1s for all clusters of groups and comparing𝑍𝑛1s to select that with the least value to get the corresponding

delivery schemes. The steps are as follows.

Step 1. Code and generate the initial population, namely,
vehicle routes.

Step 2. Examine the feasibilities of each individual according
to the constraints.

Step 3. For the feasible individuals, calculate their fitness.

Step 4. Perform selection and mutation operations.

Step 5. Determine terminating the calculation.

Step 6. Perform crossover and mutation operations, and
return to Step 2.

For each step, the detailed calculations are as follows.

(1) Chromosome Design. Set the initial population size of
feasible solutions to 𝑚 and generate the chromosomes of
initial population as follows:

(a) Count customers in Group 1 in 𝑙th type of grouping
cluster to get𝑁𝐶𝑙1, and randomly generate an array (Array 1)
of customers for Group 1.

(b) Determine the insertion times of ID of Depot 6 to get𝑃𝑁𝑙1 (𝑃𝑁𝑙1 = 𝑁𝐶𝑙1 − 1) and then insert “6” into Array 1 𝑃𝑁𝑙1
times randomly to get a new array (Array 2).

(c) Add “6” to the head and end of Array 2 to ensure the
truck starting and returning to Depot 6. Get the final array
for Group 1 (Array 3).

(d) Repeat the above works for Group 2 and Group 3.
(e) Group the final arrays of Groups 1, 2, and 3 in

turn to get an individual set of the initial population. With
this method, 𝑚 individual sets are produced in the initial
population.

For example, the initial population is coded by natural
coding method, and each chromosome is encoded by three
Gene Segments (Gene Segment 1, Gene Segment 2, and Gene
Segment 3), which represent the code of Groups 1, 2, and 3,
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Figure 3: Example of an area with 3 depots and 5 costumers.

respectively. In the case of Chromosome [6 2 1 6 7 4 7 8 3
8 5 8], (6 2 1 6) is Gene Segment 1 representing that a truck
from Depot 6 delivers goods to Costumer 2 and Costumer 1
in turn; (7 4 7) is Gene Segment 2 representing that a truck
from Depot 7 delivers goods to Costumer 4 and returns to
Depot 7; (8 3 8 5 8) is Gene Segment 3 representing that the
first truck from Depot 8 delivers goods to Costumer 3 and
returns toDepot 8 and the second truck fromDepot 8 delivers
goods to Costumer 5 and returns to Depot 8; that is why in
this chromosome, number 8 appears twice.

(2) Fitness Calculation. Calculate the fitness values by (2).

(3) Selection Operator. The roulette wheel method is used
for the selection operation based on the fitness values 𝑓(𝑖).
Firstly, calculate the probability (𝑝(𝑖) = 𝑓(𝑖)/∑𝑓(𝑖)) of each
chromosome; (2) calculate the cumulative probability (𝑞(𝑖) =∑𝑖1 𝑝(𝑖)) of each chromosome; (3) generate a random number𝑟 ∈ [0, 1]; if 𝑟 < 𝑞(1), select chromosome 1; if 𝑞(𝑖 − 1) < 𝑟 ≤𝑞(𝑖), 𝑖 ≥ 2, select chromosome 𝑖.
(4) Crossover Operation. Perform a crossover on the same
Gene Segment. Take Chromosome A- [6 2 1 6 7 4 7 8 3 8 5
8] and Chromosome B- [6 2 1 6 7 3 7 8 4 5 8] as example.
Firstly, remove the number for each distribution center and
obtain Chromosome A1- [2 1 4 3 5] and Chromosome B2-
[2 1 3 4 5]. Secondly, determine two crossing points (the
underlined gene locus). Next, the gene between these two
points are exchanged to obtain Chromosome A2- [2 1 3 3 5]
and Chromosome B2- [2 1 4 4 5]. Then change the repeating
number into themissing number to obtain ChromosomeA3-
[2 1 3 4 5] and Chromosome B3- [2 1 4 3 5]. Finally, add the
numbers, which represent the distribution center, into the
original position to obtain Chromosome A4- [6 2 1 6 7 3 7
8 4 8 5 8] and Chromosome B4- [6 2 1 6 7 4 7 8 3 5 8].

(5) Mutation Operator. Perform a mutation within the same
Gene Segment, for example, Chromosome A- [6 2 1 6 7 4 7 8
3 8 5 8]. Firstly, determine a mutating point (the underlined
gene locus). Next, the mutating point will be changed into
another customer number of this group, [6 2 1 6 7 4 7 8 3
8 3 8]. Then, change the repeating number into the missing
number and then obtain [6 2 1 6 7 4 7 8 5 8 3 8].

5.2. Estimate Demand (Renew the OD Matrix). Determine
the OD trips of the delivery trucks based on the optimal

grouping pattern, and then add the OD trips of the delivery
trucks to the former OD matrix.

5.3. Assign Traffic. Frank-Wolfe (FW) approach is used to
solve the lower model, which is a normal user equilibrium
traffic assignment model, as follows.

Step 1 (initialization). Set 𝐶0𝑖𝑗 = 𝐶𝑖𝑗(0), ∀Link(𝑖, 𝑗), do all-or-
nothing assignment to obtain a set of feasible flows {𝑥1𝑖𝑗}, and
set 𝑛 = 1.
Step 2 (link-impedance update). Set 𝐶𝑛𝑖𝑗 = 𝐶𝑖𝑗(𝑥𝑛𝑖𝑗), ∀link(𝑖, 𝑗).
Step 3 (direction finding). Repeat all-or-nothing assignment
with 𝐶𝑛𝑖𝑗 = 𝐶𝑖𝑗(𝑥𝑛𝑖𝑗), ∀arc(𝑖, 𝑗) to additional link flows {𝑦𝑛𝑖𝑗}.
Step 4 (move-size determination). Solve ∑𝑖𝑗(𝑦𝑛𝑖𝑗 − 𝑥𝑛𝑖𝑗) ×𝐶𝑖𝑗[𝑥𝑛𝑖𝑗 + 𝜆(𝑦𝑛𝑖𝑗 − 𝑥𝑛𝑖𝑗)] = 0 to obtain 𝜆.
Step 5 (flow update). One has 𝑥𝑛+1𝑖𝑗 = 𝑥𝑛𝑖𝑗 + 𝜆(𝑦𝑛𝑖𝑗 − 𝑥𝑛𝑖𝑗).
Step 6 (convergence judgment). If ∑𝑖𝑗(𝑥𝑛+1𝑖𝑗 − 𝑥𝑛𝑖𝑗)2/∑𝑖𝑗 𝑥𝑛𝑖𝑗 <𝜀 (𝜀: a given threshold), stop calculation and output 𝑥𝑛+1𝑖𝑗 .
Otherwise, set 𝑛 = 𝑛 + 1, and go to Step 2.

In this paper, themainmodel (the upper one) is proposed
to describe VRP. The decision variable for the upper model
is 𝑥𝑛𝑖𝑗𝑘, which is finite and discrete. In this case, the optimal
solutionmust exist. Actually, only the uniqueness of the lower
model can be proved [38], while uniqueness of the upper
model cannot be guaranteed.

6. Case Study

6.1. Needed Data. The retailing delivery of aquatic products
in the Xigang district in Dalian (China) is used to do the
case study. As shown in Figure 4(a), there are four depots, 27
retailers (customers). The daily demands of the 27 customers
are listed in Table 1. For the delivery, both the aquatic
products and cold keeping materials (such as refrigerators,
ice, and sea-water)must be loaded on the delivery trucks; thus
the actual capacity (rated one) of the trucks is 0.35 t (1 t).

The study area is divided into 31 traffic zones
(Figure 4(a)), and the road network is shown in Figure 4(b).
Other vehicle OD trip matrices during time 7:30–8:30 come
from the personal trip survey of Dalian in 2011. Assigning
the initial OD matrix on the road network, we can get the
initial link flow𝑋0𝑎 and travel time 𝑡0𝑎.
6.2. Solution Analysis. The solution of the optimization
model, which is the delivery schemes under total traffic equi-
librium, is shown in Figure 5(a), where the customers served
by different trucks/depots are illustrated by different shaped
and colored points, respectively. The distance travelled by all
delivery trucks is 109.7 km and the corresponding travelling
time is 329.1 minutes. Figure 5(b) shows the delivery schemes
when the interactions between the delivery trucks and other
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Figure 4: Traffic zones, depots, costumers, and road network.
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Figure 5: Delivery loops and travel paths.
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Table 1: The demands of the customers (Ton/Day).

Costumer 1 Wal-Mart 2 METRO 3 Tesco 4 Shunming 5 Daqing 6 Zhongbei 7 New Mart
(Zhongshan Rd) (Shugang Rd) (Changchu Rd) Supermarket Supermarket Supermarket (Yuouyi Street)

Amount 0.19 0.17 0.18 0.21 0.18 0.21 0.18

Costumer 8 Dalian seafood 9 Champs 10 Future 11 Tesco 12 Dashang 13 Wal-Mart 14 Tesco
Supermarket Supermarket Supermarket (Changchun Rd) (Changchun Rd) (XiAn Rd) (Victory Rd)

Amount 0.2 0.15 0.21 0.18 0.16 0.18 0.17

Costumer 15 Tesco 16 Carrefour 17 Carrefour 18 Hualian 19 Wilson 20 Sanbao 21 Lihua
(Jiefang Road) (Huanghe Rd) (Changjiang Rd) Supermarket Supermarket Supermarket Supermarket

Amount 0.15 0.15 0.18 0.2 0.19 0.2 0.21

Costumer 22 Yongfu fresh 23 Tesco 24 All Poly 25 YiFeng 26 Food 27 Triumph
Supermarkets (Baishan Rd) supermarkets Supermarket Supermarket Seafood Mall

Amount 0.2 0.15 0.09 0.21 0.1 0.32

vehicles are not considered, namely, the delivery schemes
under partial traffic equilibrium. In this case, the total travel
distance of the delivery trucks is 94.8 km and the total travel
time is 425.2 minutes. Although the distance of the schemes
under total traffic equilibrium is 15.7% longer, its travel time
is 29.2% shorter. Therefore, we cannot say that the schemes
obtained under partial traffic equilibrium are the real optimal
ones and should not be adopted for the real work.

To demonstrate the validity of the proposedmodel, we set
some scenarios by changing ODmatrices and the numbers of
delivery trucks, respectively and then do sensitivity analysis.
For building the scenarios, we adjust vehicle OD trip matrix
of Dalian in 2011 with 𝜂1 (𝜂1 ∈ [0.2, 2] by step = 0.2) and
multiply the number of delivery vehicles by 𝜂2 (𝜂2 ∈ [0.2, 2]
by step 0.2). Then, we use the 0.2, 0.4, . . . , 2.0 times of the
initial OD traffic and the 0.2, 0.4, . . . , 2.0 times of the delivery
trucks to test the model and give some findings, respectively.
The comparing indices are the overlapping ratio 𝜌1 (17) of the
delivery loops/paths, which means the sensitivities of traffic
volumes to the delivery loops, and the ratio of customers not
changing service depot 𝜌2 (18), which means the sensitivities
of traffic volumes to the groupings, and the total travel time
(𝑇𝑑) of the delivery trucks.
𝜌1
= length of overlapping routes in different scenarios
total length of routes under the situation of free flow traffic

(17)

𝜌2 = number of the customers not changeing service depot
number of customers

. (18)

The indices are shown in Figure 6. When 𝜂1 = 0.2 or𝜂1 = 0.4, 𝜌1 = 1 and 𝜌2 = 1. It can be seen that the delivery
schemes under the total traffic equilibrium and the situation
of free flow traffic are the same. In this three case (namely,𝜂1 = 0.0, 0.2, 0.4), the total travel times (𝑇𝑑) of the delivery
trucks hardly change, and the loops/paths of the delivery
trucks are totally the same.

When 𝜂1 = 0.6, 𝜌1 < 1, 𝜌2 = 1. It means that the
delivery loops/paths under the total traffic equilibrium and
the situation of free flow traffic are not the same anymore. For
example, we can see the difference in the delivery loops/paths
from Depot 1 to Customer 21. The length of the path of
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Figure 6: 𝜌1, 𝜌2, and 𝑇𝑑 in different scenarios.

the total traffic equilibrium is longer (2.58 km, thick line in
Figure 7(b)), while the length of the path of the shortest road
distance (same as the path of the shortest travel time because
the network is in free flow situation) is shorter (2.34 km, thick
line in Figure 7(a)); however, the travelling times are 13.6
minutes and 15.3 minutes, respectively.

When 𝜂1 = 0.8, 𝜂1 = 1.0, and 𝜂1 = 1.2, 𝜌1 < 1 and 𝜌2 < 1.
In this case, some customers may change service depots. For
example, when 𝜂1 = 1.2, Customer 8 is served by Depot 3
(red solid line in Figure 8), while it is served by Depot 1 in the
shortest road distance method (blue dotted line in Figure 8).
The length of the path under the total traffic equilibrium is
longer (4.4 km), while the length of the path of the shortest
road distance is shorter (3.0 km). However, the travel times
are 15.4 minutes and 17.3 minutes, respectively.

When 𝜂1 = 1.4, 𝜂1 = 1.6, 𝜂1 = 1.8, and 𝜂1 = 2.0, 𝜌1 and𝜌2 remain unchanged (𝜌1 < 1 and 𝜌2 < 1). It may be because
all roadways have reached saturation, and drivers cannot
reduce the travel time by changing the paths. Although after𝜂1 ≥ 1.4 the delivery trucks do not change their travelling
paths, their total travel times (𝑇𝑑) increase faster. It is
because in saturation roadway the V/C (Volume/Capacity)
ratio is bigger than 1 and the roadways impedance increases
exponentially with the ratio.

Based on the above analyses, we can understand that the
delivery schemes under total traffic equilibrium change as the
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Figure 7: Delivery routes from Depot 1 to Customer 21 by two methods.
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two schemes.

changes of the traffic volume. In case of free flow, the trucks
travel along the loops/paths with the shortest travel distance
(or time). As the traffic volume increment the path with the
shortest road distancemay not be that with the shortest travel
time. According to the congestion degrees, some other paths
may become the shortest travel time ones. Therefore, the
delivery schemes under total traffic equilibrium are practical.

Furthermore, the traffic of delivery trucks may also
change the travel behaviors of other vehicles. To demonstrate
this, we set some scenarios by setting the ODmatrix of other
vehicles as OD × 𝜂1 and multiplying the number of delivery
vehicles by 𝜂2 (𝜂2 ∈ [0.2, 2] by step 0.2). Then we solved the
model for each scenario.

The obtained results are shown in Figure 9. It can be seen
that the travel times of other vehicles positively relate to the
number of trips of themselves and the number of delivery
trucks.

In many Chinese large cities, in order to manage traffic,
trucks are banned from travelling in themorning and evening

rush hours. With the information in Figure 9, a city can
manage the trafficmore efficiently in terms of trucks banning.
For example, if setting 25 minutes as the critical point of the
average travel time of all trips, then we get the following three
analyses.

Case 1. It is the green point in Figure 9, where 𝜂1 = 0.6
and 𝜂2 = 1.0. The corresponding average travel time is 23.9
minutes (shorter than 25minutes); therefore, there is no need
for banning the delivery trucks in the rush hours.

Case 2. It is the blue triangle in Figure 9, where 𝜂1 = 0.6
and 𝜂2 = 1.4. The corresponding average travel time is 26.4
minutes (larger than 25 minutes). In this case, if the delivery
trucks are banned from travelling in the rush hours, the
average travel time of all other vehicle trips will decrease to
22.3 minutes (the right black point shown in Figure 9), which
shows the effectiveness and necessity of the banning.

Case 3. It is the red square in Figure 9, where 𝜂1 = 1.2
and 𝜂2 = 1.0. The corresponding average travel time is 45.1
minutes (much larger than 25 minutes). In this case, if the
delivery trucks are banned from travelling in the rush hours,
the average travel time of all other vehicle trips will decrease
to 40.6 minutes (the left black point shown in Figure 9),
which is also much bigger than 25 minutes. Thus, we can say
that it is not very necessary to ban the delivery trucks because
of the tiny effects.

In addition, VRP schemes based on partial traffic equilib-
riummay worsen the service level of the whole road network
and cause severe congestion, because some roadways on
the delivery paths may already have large amount of traffic
to be at saturation, and a few delivery trucks may lead to
severe congestion. Figure 10 demonstrates the influence of
the delivery trucks on road traffic. When the delivery is
done based on VRP scheme under partial traffic equilibrium,
the congestions on Link 1, Link 2, and Link 3 get worse
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Figure 10: Road traffic flows with delivery vehicles under different equilibriums.

(Figure 10(a)). If delivery is done based on delivery scheme
under total traffic equilibrium, congestions will not happen
on Link 1, Link 2, and Link 3 and the traffic flow on the entire
network is more balanced. It indicates that our method is
more realistic and helpful as it fully uses the road network.

Moreover, the results also show that in the situation of the
total equilibrium the travel flow and travel speed on Link 2 are
1699 pcu/h and 13.4 km/h. However, in the situation of partial
equilibrium, the corresponding figures are 1746 pcu/h and
12.5 km/h, respectively. It proved that without taking them
into account, more delivery trucks will choose Link 2, which
will be more congested after the delivery trucks join in.Thus,
the shortest path under partial equilibrium on it is a fake one.

In terms of calculation time for the solution, for the
partial traffic equilibrium method it is 13 seconds and for

the total traffic equilibrium method it is 256 seconds (CUP:
Core i5, 1.5 G). It is obvious that to simulate the interactions
between all vehicles and between delivery schemes and OD
trips, iterative computations should be done; thus ourmethod
costs more time for solution calculation. However, since
GDAP is not a dynamic problem but prior simulation of
total traffic equilibrium with bilevel model and real-time
calculation is not needed, the computing speed and efficiency
are not important.

7. Conclusion

In this paper, we change multidepot VRP into GDAP, which
is an alternative way of designing routes for a multidepot
VRP and then modelling urban goods transport. A bilevel
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programming is proposed to model the GDAP, and the inter-
action among the path choice behaviors of all vehicles and
the interaction between delivery schemes andOD tripmatrix
can be simulated. Then the solution for multidepot VRP is
obtained by hybrid grouping method, genetic algorithm, and
Frank-Wolf algorithm. The delivery schemes outputs from
the model are those under total traffic equilibrium and thus
are realistic, which can make full use of road capacity and
balance the traffic flow in the entire network.

Compared with the solution under partial traffic equi-
librium, the solution under the total traffic equilibrium can
not only shorten the delivery time, but also help to avoid
traffic congestions on the roadswhich are near saturation.The
bilevel model has good adaptability for optimizing MDVRP.
It can be used as a reference for further study on combination
optimization problems.

We recommend that further research be done comparing
our new method with other methods for real life situations.
More research could also be done on algorithms for cases
where loads on trucks are not constant.

The limits of the method are that (1) it is difficult to get
the OD of other vehicles; (2) the GA cannot assure the global
optimal solution of the delivery schemes.
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