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Previous studies have investigated various factors that contribute to the severity of work zone crashes. However, little has been
done on the specific effects of light conditions. Using the data from the Enhanced Tennessee Roadway Information Management
System (E-TRIMS), crashes that occurred in the Tennessee work zones during 2003–2015 are categorized into three light conditions:
daylight, dark-lighted, and dark-not-lighted. One commonly used decision tree method—Classification and Regression Trees
(CART)—is adopted to investigate the factors contributing to crash severity in highwaywork zones under these light conditions.The
outcomes from the three decision trees with differing light conditions show significant differences in the ranking and importance
of the factors considered in the study, thereby indicating the necessity of examining traffic crashes according to light conditions. By
separately considering the crash characteristics under different light conditions, somenewfindings are obtained from this study.The
study shows that an increase in the number of lanes increases the crash severity level in work zones during the day while decreasing
the severity at night. Similarly, drugs and alcohol are found to increase the severity level significantly under the dark-not-lighted
condition, while they have a limited influence under daylight and dark-lighted conditions.

1. Introduction

Work zones have been an important research topic because
they have a substantial effect on a nation’s economy and
traffic flow. Statistics show the economic cost of a fatal crash
was $1,398,916 in 2010 in the United States [1]. Based on
this estimate, the annual cost of work zone fatalities is more
than seven billion dollars per year. Moreover, considering the
26,000 nonfatal injury crashes and 60,000 property–damage-
only (PDO) crashes that occur in work zones, additional
billions of dollars of economic damage occur annually. At this
time, the number of work zones is increasing. During peak
construction season, approximately 20% of highway system
is under construction and motorists may encounter a work
zone every 100 miles [2].

To reduce adverse traffic impacts on the public, more and
more work zones require night construction. An extensive
survey conducted of 175 work zones in 13 states revealed that
58% of the work zones involvedmostly daylight construction,

33% involved primarily night work, and the remaining 9%
were active day and night [3].This has raised concerns about
whether work zones have influenced traffic safety at night.

Previous studies have found the night crash rate was
higher than daylight crash rate in work zones [4–6]. Arditi
et al. [7] used Illinois fatality crashes from work zones to
investigate safety differences between night and daylight
construction in the period 1996–2011, showing that night
work zones were more hazardous. In one study, crash rates
per million vehicle miles were higher in night work zones by
67 to 156 percent [8]. The differences in crash rate between
day and night work zones suggest that both should be
examined separately in varying light conditions. Although
there is a consensus that the night crash rate has improved,
there is debate about improvement in night crash severity.

Knowing crash risk factors is a key to create safe work
zones. With more night work zones and the evident differ-
ences between day and night work zone crashes, there is an
urgent need to investigate work zone crashes under different
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light conditions and little research has been undertaken on
this topic.

Severity is considered the most important crash outcome
and is the core of this paper. This study analyzes crash
injury severity in work zones with respect to its inherent
casualties and not frequency. A decision tree method is used
to model the severity of traffic accidents using available risk
factors. Unlike most of the previous studies, in which light
condition was treated as a single contributing factor, this
study divides light conditions into three categories: daylight,
dark-lighted, and dark-not-lighted. Three decision trees are
built to reveal the relationship between crash severity and
different contributing factors under differing light conditions
in work zones.

2. Literature Review

2.1. Effects of Light Condition on Crashes. Light condition is
a significant factor affecting traffic crashes. Previous studies
have confirmed that adverse light conditions may increase
both crash frequency and severity [4–6]. In fact, Gray et al.
[4], Abdel-Aty [5], andHuang et al. [6] all reported that injury
severity increases during darkness. Pande and Abdel-Aty [9]
concluded that there is a significant correlation between lack
of illumination and high crash severity. de Oña et al. [10, 11]
pointed out that fatal accidents are associated with roadways
with no lighting. Wanvik [12] found that good road lighting
can decrease road accidents by one-half based upon a study
of 763,000 injury accidents and 3.3 million property-damage
accidents in Norway. Some studies (e.g., [13]) found that
drivers are less likely to be injured in a construction work
zone under darkness (with good illumination) than under
daylight conditions. Moreover, researchers found that crash
prediction models can reveal detailed information about
contributing factors [14–16]. For example, Ullman et al. [17]
found that some contributing factors are significant in a
daytime crash rate model (e.g., low speed limit and the
number of entering ramps per lane per mile), while others
become significant in a nighttime model (e.g., snow and
percentage of trucks). In summary, light condition has an
important effect on traffic crashes but little has been done
to explore the relationship between work zone crash severity
and its contributing factors. More research efforts are needed
in this area.

2.2. Decision Tree Method. Crash models are used to inves-
tigate the effects of risk factors on crashes in work zones.
Regressionmodels (such as logit and probit) have beenwidely
employed [18–21]. In regression models, binary or multiple
levels of severity are typically set as dependent variables and
the risk factors affecting severity as independent variables. A
common assumption for regression models is that there is no
dependency among the risk factors. In addition, regression
models need to assume a specific functional form to model
the relationships between dependent and independent vari-
ables. Therefore, use of regression models is limited if the
assumptions do not hold well [22].

In order to overcome the limitations of regressionmodels,
classification models using data-mining approaches have

been applied to the risk factor analysis problem. Typically,
severity level is set as a class variable and risk factors as feature
variables [22–26]. The decision tree classifier is one classi-
fication model, and the three commonly used decision tree
methods are Classification and Regression Trees (CART), the
Iterative Dichotomiser 3 (ID3) algorithm [27], and the C4.5
algorithm [28]. The CART method [29] uses a split criterion
based on the Gini Index. Quinlan’s method uses Information
Gain (IG) as a split criterion based on the entropymeasure on
probabilities [30]. Subsequently Quinlan [31] also presented
the algorithmC4.5, which is an advanced version of ID3 with
a split criterion, called the Information Gain Ratio (IGR),
similar to the one used in the ID3 procedure that penalizes
variables with many states. Among these methods, CART is
the most widely used [25, 28, 32–36]. It should be noted,
however, that compared to conventional statistical models,
CART still has its limitations such as simplicity and difficulty
in interpreting. Nonetheless, previous studies have confirmed
that the CART algorithm can be adopted in crash severity
analyses and provide a more precise result compared with
other prediction models [34].

3. Method

From the above discussion, many modeling approaches have
been used to investigate the effects of risk factors on crashes
in work zones. Different modeling approaches have different
advantages and disadvantages. In this study, the decision
tree method is selected and the CART algorithm is used
to generate a decision tree. The split criterion in the CART
method is based on gini, which represents the diversity of a
factor, and is calculated as follows:

gini = 1 −
𝑛

∑
𝑖

𝑝2𝑖 , (1)

where 𝑖 is the category of the target (injury or PDO), 𝑛 is the
total number of targets, and 𝑝 is the percentage of injury or
PDO. Since CART is a binary tree here, our total number of
targets is two.

Gini is used to calculate the diversity of the beginning
node, while the Ginidex is created to measure the hetero-
geneity of the following node. For each node, the Ginidex is
calculated as follows:

Ginidex (𝑥) =
𝑛

∑
𝑗

𝑝𝑥𝑖𝑗gini (𝑥𝑖𝑗) , (2)

where 𝑥 is the contributing factor like lane number and 𝑥𝑖𝑗
means the severity 𝑖 of character 𝑗. For instance, 𝑖 can be
injury or PDO and 𝑗 may represent lane number >2 or <2.
Finally 𝑝𝑥𝑖𝑗 represents the percentage of 𝑥𝑖𝑗.

In order to determine the next split node, the category
with the largest diversity improvement is chosen:

Maxnode = Max {giniparent − Ginidex (𝑥 = 𝑖)childi} , (3)

where giniparent is the gini of higher layer and Ginidex is the
index of second layer. Then this process is repeated several
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times until the improvement equals 0 or reaches the maxi-
mum level. Since large trees could lead to higher percentage
of misclassification [22], decision trees with different layers
are tried in this study. When a decision tree with two layers
is built, it presents less information. When a four-layer tree is
built, it appears that many nodes in the fourth layer contain
less than 1% of the total crashes. According to previous
research [28], if one node contains less than 1% of samples,
the results are not reliable. Therefore, three layers are chosen
as the maximum depth for a decision tree in this study.

One of the major advantages of decision tree analysis is
the decision rule. Decision rules have logical structure like
“If A, then B”. While regression models show the impact of
single factors, a decision tree can show the effect produced by
a combination of several factors. In this study, decision rules
are inferred when injury rate > 50%, or PDO rate > 80% and
the population on that node > 1%. This is because the overall
injury rate is approximately 20%–30%, and injury rates above
50% are extreme.

In order to feel confident of the results, the data used in
this study are divided into two subsets: 70% of the data is used
for training the model, while the remaining 30% is used for
validation. The accuracy can be calculated as follows:

Percentage Correct =
∑𝑛𝑖=1 TP𝑖
∑𝑛𝑖=1 TP𝑖 + FN𝑖

∗ 100, (4)

where TP𝑖 is true positive and FN𝑖 is false negative.
In addition, the CART algorithm can also calculate the

importance of each factor based on the improvement in
Ginidex. The Importance Index (IM) is defined as follows:

IM (𝑥𝑗) =
𝑇

∑
𝑡=1

𝑛𝑡
𝑁
ΔGinidex𝑗𝑡, (5)

where 𝑥𝑗 is a variable,ΔGinidex𝑗𝑡 is the reduction in Ginidex,
𝑛𝑡 is the number of the observations in the dataset that belong
to node 𝑡, 𝑇 is the total number of nodes, and 𝑁 is the total
number of observations.Thedetailed calculationmethod and
principles can be found in Montella et al. [25], Chang and
Chien [35], and J. S. Lee and E. S. Lee [37].

4. Data

The data from the Enhanced Tennessee Roadway Informa-
tionManagement System (E-TRIMS) is used in the study.The
crashes that happened in the work zones during 2003–2015
are used. There are five variables describing light conditions
in the database including daylight, dark-lighted, dark-not-
lighted, dusk, and dawn.The light conditions are based on the
fixed streetlights in this study. Since the numbers of crashes
under dusk and dawn conditions are relatively small (279 and
215, resp.), these data are excluded. Thus, a total number of
19941 crashes are analyzed. The class variable of the study is
accident severity. The injury severity analyzed in the study
includes that of drivers, passengers, and pedestrians.

When analyzing injury risk factors, it is desirable to
include as many injury severity levels as possible because
different factors may have different effects on the injury
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Figure 1: Crash severity distribution under different light condi-
tions.

levels. However, among the 19941 crashes used in the study,
fatal crashes only account for less than 1%. The number
of fatal crashes is not high enough to conduct a reliable
analysis. Therefore, several severity levels including fatal,
incapacitating, and slight injuries are combined into a single
injury level. Similar to previous studies [22], two levels of
injury severity are used in the study: injury and property-
damage-only (PDO). PDO refers to a crash where no one
was injured but only the vehicle was damaged. Figure 1 shows
the crash data according to two severity levels and three light
conditions.

As demonstrated in Figure 1, the injury rate increases
when light conditions worsen (24.3% < 25.4% < 33.5%).
It can be seen that crashes under limited light conditions
were more severe than those under dark-lighted condition,
which is consistent with findings from other studies [4–6].
In order to investigate factors affecting work zone crashes
under different light conditions, 15 variables are identified
and presented in Table 1. In order to achieve more concise
results, all the covariates are divided into two categories
according to previous studies [20, 38, 39].

The variables describe characteristics related to the driver
(at fault, drugs and alcohol, etc.), vehicle (body type), road
(number of lanes, speed limit, terrain, and operation), and
environment (weather condition, crash date, etc.). SPSS 19 is
used to build the decision trees in the study.

5. Results and Discussion

5.1. Decision Trees under Different Light Conditions. Figure 2
and Table 2 present the results of the decision tree under the
daylight condition. The first node is split by collision type,
demonstrating that a head-on collision has a predicted injury
probability more than twice that of other noncollision types
(51.8% versus 23.5%).This is consistentwith the findings from
Kockelman and Kweon [19].

The lowest injury probability appears at node 8, with an
injury rate of 11.7%. This node represents the most advan-
tageous situation in daytime work zone crashes, indicating
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Table 1: Description of variables.

Category Variables Description: code
Light condition

Daylight Dark-lighted Dark-not-lighted
% (𝑛) % (𝑛) % (𝑛)

Driver

At fault (AF) No (N) 49.4% (7946) 42.2% (1003) 44.3% (651)
Yes (Y) 50.6% (8152) 57.8% (1372) 55.7% (817)

Drugs and alcohol (D&A) No (N) 99.2% (15974) 93.7% (2225) 92.5% (1358)
Yes (Y) 0.8% (124) 6.3% (150) 7.5% (110)

Vehicle maneuver (VM) Changing lanes or merging (CL) 25.3% (4065) 19.2% (456) 12.1% (178)
Other (O) 74.7% (12033) 80.8% (1919) 87.9% (1290)

Vehicle Body code (BC) Not-truck-related (NT) 97.1% (15632) 98.8% (2347) 98.9% (1452)
Truck-related (T) 2.9% (466) 1.2% (28) 1.1% (16)

Road

No. of lanes (NL) <=2 20.0% (3218) 13.1% (312) 23.8% (350)
>2 80.0% (12880) 86.9% (2063) 76.2% (1118)

Speed Limit (SL) <=40 50.9% (8188) 58.0% (1377) 39.2% (576)
>40 49.1% (7910) 42.0% (998) 60.8% (892)

Terrain (TR) Flat (F) 6.9% (1118) 9.1% (215) 3.7% (54)
Not flat (NF) 93.1% (14980) 90.9% (2160) 96.3% (1414)

Operation (OP) One-way (1) 0.8% (124) 0.7% (16) 0.3%(4)
Two-way (2) 99.2% (15974) 99.3% (2359) 99.7% (1464)

Environment

Traffic control device (TCD) At control (AC) 66.65% (10729) 68.67% (1631) 62.36% (918)
Not at control (NAC) 33.35% (5369) 31.33% (744) 37.64% (554)

Location (LC) Along Roadway (AR) 41.4% (6662) 27.0% (641) 46.9% (688)
At an Intersection (AI) 58.6% (9436) 73.0% (1734) 53.1% (780)

Date of Crash Other months (OM) 59.4% (9566) 77.9% (1849) 78.2% (1148)
Summer vacation (SV) 40.6% (6532) 22.1% (526) 21.8% (320)

Weather condition (WC) Clear (C) 90.6% (14592) 85.7% (2035) 80.8% (1186)
Not clear (NC) 9.4% (1506) 14.3% (340) 19.2% (282)

Relation to first roadway (RFR) Off roadway (OR) 4.7% (752) 10.6% (252) 20.0% (294)
On roadway (OR) 95.3% (15346) 89.4% (2123) 80.0% (1174)

Urban or rural (UR) Rural (R) 15.8% (2538) 1.7% (40) 28.6% (420)
Urban (U) 84.2% (13560) 98.3% (2335) 71.4% (1048)

Manner of first collision (MFC) Head-on (HO) 2.2% (358) 7.6% (181) 6.8% (100)
Not-head-on (NHO) 97.8% (15740) 92.4% (2194) 93.2% (1368)

Table 2: Decision rules for crash severity of daylight condition.

Node Rules [if (and. . .and. . .)] Then 𝑃 (%)
2 If (CT = HO) Injury 51.5
6 If (CT = HO) and (LC = AR) Injury 59.5
8 If (CT = NHO) and (LC = AI) and (TR = FL) PDO 88.2

that if the collision type is a non-head-on collision at an
intersection and if a driver is involved in a collision, there
would be an 11.7% chance of an injury and an 88.3% chance
of a PDO crash on flat terrain. It should be noted that if the
terrain is not flat, the predicted injury rate increases to 22.1%.
One possible reason could be that flat terrain provides good
visibility, which can slow crash speed and help decrease the
severity level.

Of three decision rules inferred from the tree (see
Table 3), two are injury rules. Note that both rules contain
head-on collision, suggesting that avoiding head-on colli-
sions is critical in lowering the daylight work zone crash

severity. Measures like adopting hard barrier to separate
traffic from two directions can be helpful.

Figure 3 and Table 3 present the results of the decision
tree under the dark-lighted condition. In the same manner
as discussed previously, collision type is the criterion based
on which node 0 was split under the dark-lighted condition
(Figure 3). It shows that head-on collisions account for a
much higher percentage of injury crashes that occur under
the dark-lighted condition.

However, compared to the daylight model, lane number
plays a different role in the crash severity in the dark-lighted
model. In the daylight model, an increase in lane number
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Table 3: Decision rules for crash severity of dark-lighted condition.

Rule Node Rules [if (and. . .and. . .)] Then 𝑃 (%)
(1) 2 If (CT = HO) Injury 54.5
(2) 5 If (CT = HO) and (NL <= 2) Injury 100
(3) 8 If (CY = NHO) and (NL > 2) and (WC = NC) PDO 89.2

Node 0
Injury 24.2%2724
PDO 75.8%8553
Total 100%11277

Node 2
Injury 51.8%130
PDO 48.2%121
Total 2.2%251

Collision type
Non-head-on Head-on

Node 3
Injury 21.4%1387
PDO 78.6%5085
Total 57.4%6572

Node 4
Injury 26.5%1207
PDO 73.5%3347
Total 40.4%4554

Node 5
Injury 45.2%61
PDO 54.8%74
Total 1.2%135

Node 6
Injury 59.5%69
PDO 40.5%47
Total 2.0%116

Node 7
Injury 22.1%1336
PDO 77.9%4700
Total 53.5%6036

Node 8
Injury 11.7%51
PDO 88.3%385
Total 3.9%436

Node 9
Injury 26.3%1186
PDO 73.7%3325
Total 40.0%4511

Node 10
Injury 48.8%21
PDO 51.2%22
Total 0.4%43

Node 12
Injury 25%9
PDO 75%27
Total 0.3%36

Node 13
Injury 65.8%52
PDO 34.2%27
Total 0.7%79

Node 14
Injury 45.9%17
PDO 54.1%20
Total 0.3%37

Node 11
Injury 52.5%52
PDO 47.5%47
Total 0.9%99

Location
At an intersection Along roadway

Node 1
Injury 23.5%2594
PDO 76.5%8432
Total 97.8%11026

Location
At an intersection Along roadway

Terrain
Not flat flat

Drug and alcohol Number of lanesTaffic contral devices

No controlAt controlYesNo >2 <=2

Figure 2: Decision tree under daylight condition.

increases the injury percentage of head-on collisions, while
an increase in lane number decreases the injury rate in the
dark-lightedmodel. Specifically, crashes occurring on narrow
roads (<=2 lanes) predict a 100% injury rate in a head-on
collision, whereas the predicted injury rate decreases to 47.4%
on multilane roads. At the same time, the rate on narrow
roads is 33.3%, while the rate on wider roads is 21.6% for
non-head-on collisions.This phenomenon may be attributed
to the changes in drivers’ maneuvers under different light
conditions. Weng and Meng [40] reported that drivers are
more likely to be involved in risky driving maneuvers on
multilane roads under daylight conditions, whereas at night
most risky driving behavior occurred on narrower roads.

Node 8 gave the lowest predicted injury rate of 10.8%,
indicating that the minimum severity case happens in non-
head-on collisions on multiple lane (>2) roads when the
weather condition is not clear under the dark-lighted condi-
tion.

Comparing node 9 and node 10, it can be seen that under
the same conditions of multilane road and head-on collision,
the use of a traffic control device significantly reduces the
predicted injury rate by more than one-half (33.8% versus
69.8%). This indicates that a traffic control device is very
helpful in lowering head-on crash severity on multilane
roads under the dark-lighted condition.Therefore, it is highly
recommended that traffic control devices be installed in work
zones with multiple lanes under illumination.

Similar to the daylight model, three decision rules are
obtained under the dark-lighted condition. However, the
injury rate for the dark-lighted condition is slightly higher
than that for the daylight condition.The fact that lane number
plays an important role in work zone crashes under the dark-
lighted condition may be due to decreased visibility (see rule
(2) of Table 3).

Figure 4 and Table 4 present the results of the decision
tree under the dark-not-lighted condition. Under dark-not-
lighted condition, the darkest light condition, some signifi-
cant changes in crash severity are found. Unlike the daylight
and the dark- lighted decision tree models, the first partition
node is not based on collision type but on speed limit. A
higher speed limit (>40 miles/h) contributes to more severe
crashes compared to a lower speed limit (<=40 miles/h)
(37.9% versus 23%) for the dark-not-lighted condition. As
we know, the dark-not-lighted condition is characterized
by a sharp reduction of visibility that affects the driver’s
ability to perceive obstacles. With the high speed limit and
limited visibility, drivers may have insufficient time to stop
the vehicle.

The factor of drugs and alcohol shows a significant impact
on crash severity under the dark-not-lighted condition. If a
driver is under the influence, the predicted injury percentage
climbs to 72.7% even with the speed limit lower than 40
miles/h. This rate reduces dramatically to 20.1% if the driver
is not under the influence. This verifies the findings from
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Node 0

Injury 25.5%425
PDO 74.5%1240
Total 100%1665

Node 1
Injury 23.1%354
PDO 76.9%1180
Total 92.1%1534

Node 2
Injury 54.2%71
PDO 45.8%60
Total 7.9%131

Collision type

Non-head-on Head-on

Node 3
Injury 33.2%65
PDO 66.8%131
Total 11.8%196

Node 4
Injury 21.6%289
PDO 78.4%1049
Total 80.4%1338

Node 5
Injury 100%17
PDO 0%0
Total 1%17

Node 6
Injury 47.4%54
PDO 52.6%60
Total 6.8%114

Node 7
Injury 23.4%269
PDO 76.6%883
Total 69.2%1152

Node 8
Injury 10.8%20
PDO 89.2%166
Total 11.2%186

Node 9
Injury 33.8%24
PDO 66.2%47
Total 4.3%71

Node 10
Injury 69.8%30
PDO 30.2%13
Total 0.6%43

Number of lanes

Weather condition

Not clear At controlClear

Traffic control devices

No control

Number of lanes

>2<=2>2<=2

Figure 3: Decision tree under dark-lighted condition.

Node 0
Injury 67.9%702
PDO 32.1%332
Total 100%1034

Node 1
Injury 37.9%240
PDO 62.1%394
Total 61.3%634

Node 2
Injury 23%92
PDO 77%308
Total 38.7%400

Speed Limit

Node 3
Injury 41.1%211
PDO 58.9%303
Total 49.7%514

Node 4
Injury 24.2%29
PDO 75.8%91
Total 11.6%120

Node 5
Injury 20.1%76
PDO 79.9%302
Total 36.6%378

Node 6
Injury 72.7%16
PDO 27.3%6
Total 2.1%22

Node 7
Injury 44.6%178
PDO 55.4%221
Total 38.6%399

Node 8
Injury 28.7%33
PDO 71.3%82
Total 11.1%115

Node 9
Injury 6.5%3
PDO 93.5%43
Total 4.4%46

Node 10
Injury 35.1%26
PDO 64.9%48
Total 7.2%74

Node 12
Injury 47.6%10
PDO 52.4%11
Total 2.1%21

Node 13
Injury 45.5%5
PDO 54.5%6
Total 1.1%11

Node 14
Injury 100%11
PDO 0%0
Total 1.1%11

Node 11
Injury 18.5%66
PDO 81.5%291
Total 34.5%357

Weather condition
Clear Not clear

Traffic control devicesDate of crash
Summer vocation Other months

Drug and alcohol

At control Non-head-on

No

Along roadwayNot at control
Collision type Location

Yes

At an intersectionHead on

Speed Limit > 40 m/h Speed Limit < 40 m/h

Figure 4: Classification tree under dark-not-lighted condition.
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Table 4: Decision rules for crash severity of dark-not-lighted condition.

Rules Node Rules [if (and. . .and. . .)] then 𝑃 (%)
(1) 6 If (SL <= 40) and (D & A =Y) Injury 72.7
(2) 9 If (SL > 40) and (WC = NC) and (TCD = N) PDO 93.5
(3) 11 If (SL <= 40) and (D & A = N) and (CT = NHO) PDO 81.5
(4) 14 If (SL <= 40) and (D & A = Y) and (LC = AI) Injury 100

Table 5: Rank of the importance of variables under different light conditions.

Rank Daylight Dark-lighted Dark-not-lighted
(1) Manner of first collision Manner of first collision Drugs and alcohol
(2) Location No. of lanes Speed limit
(3) Drugs and alcohol Traffic control devices Weather cond.
(4) Terrain Location Traffic control devices
(5) Urban or rural Weather cond. Date of crash
(6) Traffic control devices Drugs and alcohol Manner of first collision
(7) Speed limit Relation to first roadway Location
(8) Date of crash Urban or rural No. of lanes
(9) No. of lanes Speed limit Operation
(10) Body code Terrain Body code
(11) Relation to first roadway Relation to first roadway
(12) At fault Urban or rural
(13) Vehicle maneuver

previous studies that drug and alcohol intake significantly
increases the likelihood of severe injuries [41, 42] and further
reveals that the impact of drugs and alcohol is significantly
higher under the dark-not-lighted condition. One possible
reason may be that drivers need to be more alert under this
condition and impaired drivers under the influence are likely
not to stop, change lanes to avoid obstacles, or otherwise
avoid severe crashes.

Also, under the influence of drugs and alcohol, the injury
rate of traffic crashes doubles at intersections compared to
long open roadways at a speed limit less than 40 miles/h,
indicating that intersections introduce additional risk under
the dark-not-lighted condition. Node 9 shows the lowest
injury rate of 6.5% under the dark-not-lighted condition, at a
speed limit above 40 miles/h without traffic control devices.
This is significantly different from the findings from Chang
and Chien [35], which concluded that traffic control devices
can enhance traffic safety. The reason for the seemingly
contradictory findings may be due to the fact that traffic
control devices usually appear at crash-prone siteswhere road
conditions are more complex. It is improper to compare two
places with different geometry features and traffic patterns.
The effect of traffic control devices can only be validated by a
before-after test in a future study.

Table 4 shows the decision rules inferred from the dark-
not-lighted condition. Two of the rules are injury rules,
indicating that the involvement of drugs and alcohol and
a speed limit less than 40 miles/h are common in severe
crashes. It is highly recommended that fines for driving
under the influence be increased significantly in work zones
including dark-not-lighted zones.
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Figure 5: The importance of variables under different light condi-
tions.

5.2. Comparison of the Importance of Variables. Table 5 and
Figure 5 rank and compare the importance of various risk fac-
tors under different light conditions. For the daylight decision
tree model, the top five factors contributing to crash severity
are collision type, location, drugs and alcohol, terrain, and
urban or rural location. For the dark-lighted model, the top
five factors are collision type, number of lanes, traffic control
devices, location, and weather condition. From the dark-not-
lighted model, the top five factors are drugs and alcohol,
speed limit, weather condition, traffic control devices, and
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Table 6: Prediction Performance.

Sample Observed Predicted
Injury PDO Percentage correct

Daylight
Injury 46 1134 3.9%
PDO 32 3609 99.1%

Overall percentage 1.6% 98.4% 75.8%

Dark-lighted
Injury 19 159 10.7%
PDO 9 523 98.3%

Overall percentage 3.9% 96.1% 76.3%

Dark-not-lighted
Injury 5 155 3.1%
PDO 0 274 100.0%

Overall percentage 1.2% 98.8% 64.3%

date of crash. The ranking of the top five contributing factors
is different under the three light conditions, indicating that
the effects of the major contributing factors vary significantly
under different light conditions within work zones. Table 5
also shows that vehicle body type, location (rural or unban),
and road operation (one-way or two-way) do not show an
important effect on crash severity in work zones. In order
to achieve safer work zones, safety guidelines should be
established according to different light conditions.

5.3. Validation. Table 6 presents the results from the valida-
tion of the decision trees. For all three models, the percentage
predicted correctly was above 60%. This rate is higher than
those reported in previous studies using the same method
[35]. All three models are capable of predicting PDO crashes
with an accuracy rate above 98%. On the other hand, these
models show a poor ability to predict injury crashes with an
accuracy ranging from 3.1% to 10.7%.This rate for predicting
injuries is close to that reported in other studies using CART
decision method [36].The reasonmay lie in the dataset itself.
There are more than 70% of the crashes that are PDO while
only less than 30% belong to injury. In order to achieve the
minimum error of the whole dataset, models or prediction
methods tend to classify a result to PDO which is the major
crash type.

6. Conclusions

In this study, three decision trees are generated using the
CART method to investigate the factors contributing to
crashes in work zones. The light-based individual decision
tree models use detailed information of work zone crashes
to identify risk factors. Identification of these factors then
suggests mitigation measures that may help establish safer
work zones. In the study, the following are found.

(i) The daylight model indicates that in head-on crashes
occurring along roadways, as opposed to intersec-
tions, drivers are at a higher risk, up to 59.7%, of being
involved in injury crash.

(ii) The dark-lighted model demonstrates that the injury
rate of head-on crashes occurring on a narrow road
(<=2 lanes) could reach 100%.

(iii) Under the dark-not-lighted condition, a combination
of a speed limit less than 40miles/h and drivers being
under the influence of drugs and alcohol could lead
to an injury rate of up to 72.7%.

By examining the effects of specific light conditions on
crash severity, this study reveals some new findings never
reported before. The study shows that if drivers are under
the influence of drug/alcohol, they have a larger chance of
being involved in severe crashes when passing a work zone
without street light than a work zone with street light. This
study reveals that collision type is the most important risk
factor under daylight and dark-lighted conditions but not
under dark-not-lighted condition. On the other hand, the
study suggests that traffic control devices do not reduce crash
severity under the dark-not-lighted condition, yet, they do
under the dark-lighted condition. This implies that traffic
control devices should be designed and used differently
according to light conditions. Additionally, the number of
roadway lanes shows opposite effects on crash severity under
the daylight and the dark-not-lighted conditions. Specifically,
under the daylight condition, an increase in the number of
lanes may increase crash severity, whereas it may help reduce
crash severity under the dark-not-lighted condition.

The CART decision tree method was found to be useful
in revealing crash severity characteristics and the factors
contributing to traffic crashes in work zones. In future work,
these results may be helpful in developing work zone safety
guidelines to mitigate crash severity. In addition, it will be
of practical significance to use the decision tree method to
investigate drivers’ behavior under different light conditions.
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[28] J. Abellán, G. López, and J. de Oña, “Analysis of traffic accident
severity using decision rules via decision trees,” Expert Systems
with Applications, vol. 40, no. 15, pp. 6047–6054, 2013.

[29] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification
and Regression Trees, Chapman and Hall, Belmont, Calif, USA,
1984.

[30] C. E. Shannon, “Amathematical theory of communication,” Bell
System Technical Journal, vol. 27, no. 4, pp. 623–656, 1948.

[31] J. R. Quinlan, C4.5: Programs for machine learning, Morgan
Kaufmann Publishers, San Mateo, Calif, USA, 1993.

[32] P. M. Kuhnert, K.-A. Do, and R. McClure, “Combining non-
parametric models with logistic regression: an application to
motor vehicle injury data,” Computational Statistics & Data
Analysis, vol. 34, no. 3, pp. 371–386, 2000.

[33] A. Pakgohar, R. S. Tabrizi, M. Khalili, and A. Esmaeili, “The
role of human factor in incidence and severity of road crashes
based on theCART and LR regression: a datamining approach,”
Procedia Computer Science, vol. 3, pp. 764–769, 2010.

[34] O. H. Kwon,W. Rhee, and Y. Yoon, “Application of classification
algorithms for analysis of road safety risk factor dependencies,”
Accident Analysis & Prevention, vol. 75, pp. 1–15, 2015.

[35] L. Chang and J. Chien, “Analysis of driver injury severity in
truck-involved accidents using a non-parametric classification
tree model,” Safety Science, vol. 51, no. 1, pp. 17–22, 2013.



10 Journal of Advanced Transportation

[36] A. T. Kashani, A. Shariat-Mohaymany, and A. Ranjbari, “A
data mining approach to identify key factors of traffic injury
severity,” Promet - Traffic - Transportation, vol. 23, no. 1, pp. 11–
17, 2011.

[37] J. S. Lee and E. S. Lee, “Exploring the usefulness of a decision
tree in predicting people’s locations,” Procedia - Social and
Behavioral Sciences, vol. 140, pp. 447–451, 2014.

[38] R. Tay, “A random parameters probit model of urban and rural
intersection crashes,” Accident Analysis & Prevention, vol. 84,
pp. 38–40, 2015.

[39] D. M. Cerwick, K. Gkritza, M. S. Shaheed, and Z. Hans, “A
comparison of themixed logit and latent classmethods for crash
severity analysis,” Analytic Methods in Accident Research, vol. 3-
4, pp. 11–27, 2014.

[40] J. Weng and Q. Meng, “Effects of environment, vehicle and
driver characteristics on risky driving behavior at work zones,”
Safety Science, vol. 50, no. 4, pp. 1034–1042, 2012.

[41] S. P. Baker, E. R. Braver, L.-H. Chen, G. Li, and A. F. Williams,
“Drinking histories of fatally injured drivers,” Injury Prevention,
vol. 8, no. 3, pp. 221–226, 2002.

[42] B. E. Smink, B. Ruiter, K. J. Lusthof, J. J. De Gier, D. R. A. Uges,
and A. C. G. Egberts, “Drug use and the severity of a traffic
accident,”Accident Analysis & Prevention, vol. 37, no. 3, pp. 427–
433, 2005.



Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


