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This paper proposes a simplified network model which analyzes travel time reliability in a road network. A risk-averse driver is
assumed in the simplified model. The risk-averse driver chooses a path by taking into account both a path travel time variance
and a mean path travel time. The uncertainty addressed in this model is that of traffic flows (i.e., stochastic demand flows). In the
simplified network model, the path travel time variance is not calculated by considering all travel time covariance between two
links in the network. The path travel time variance is calculated by considering all travel time covariance between two adjacent
links in the network. Numerical experiments are carried out to illustrate the applicability and validity of the proposed model. The
experiments introduce the path choice behavior of a risk-neutral driver and several types of risk-averse drivers. It is shown that
the mean link flows calculated by introducing the risk-neutral driver differ as a whole from those calculated by introducing several
types of risk-averse drivers. It is also shown that the mean link flows calculated by the simplified network model are almost the
same as the flows calculated by using the exact path travel time variance.

1. Introduction

Conventional frameworks for analyzing and modeling trans-
portation systems have been confined to average representa-
tions of the network state (e.g., average link flow or average
travel flow). For instance, in the traditional traffic assignment
model, one can obtain a deterministic prediction of a future
flow on a certain link in the network based on average
origin-destination (O-D) flows, link capacities, and a form
of proportional path choice model (either deterministic user
equilibrium (DUE) or stochastic user equilibrium (SUE)).
This represents a deterministic view of the environment and
themodeler’s postulation that the variability or uncertainty in
the system is not influential in system design and evaluation.

There has been a growing concern over the uncertainty of
travel time in transport systems and its effect on the reliability
of transport services [1]. Research on network reliability has
begun to address this problem [2–5]. From the traveler’s
perspective, the issue of travel time reliability has been a
major concern. Travelersmay experience excessive variability
of travel time from day to day on the same trips [6–8].

In transport modeling, some advances have been made
toward incorporating traffic flow uncertainties into the net-
work modeling framework (i.e., developing a stochastic net-
work model). Watling [9] proposed a second-order network
equilibrium model that explicitly considers random path
choice behavior. His model, in contrast to the conventional
SUE model, uses path choice probability, as predicted by
a SUE model, to define stochastic path flows that follow
a multinomial distribution. The path flows derived using
the traditional SUE model are, in fact, the expected flows
of this multinomial distribution. In this model, the drivers
choose their paths so as tominimize their perceived long-run
expected travel costs. With a nonlinear travel cost function,
this long-run expected travel cost will differ from the equi-
librium cost computed by the conventional SUE model [10].

Clark and Watling [6] extended this stochastic network
model to the case with a Poisson distribution of O-D
flows. Similarly, Nakayama and Takayama [11] proposed a
stochastic network model with random path choice behavior
but using a binomial distribution of O-D flows.Thesemodels
fully represent stochastic/uncertain path choice behavior
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with uncertain flows. Lo et al. [12] extended their original
model to consider the concept of travel time budget in path
choice decision-making. Shao et al. [13] adopted a similar
postulation of the central limit theorem to derive the normal
distribution of the path travel time but with O-D flow
distribution (normal distribution). Szeto and Solayappan [14]
proposed a nonlinear complementarity problem formulation
for the risk-aversive stochastic transit assignment problem.
Sumalee et al. [15] address stochastic flow and stochastic
capacity in a multimodal network. Uchida et al. [16] address
network design problem in a stochastic multimodal network
model. Uchida [17] proposed a model which simultaneously
estimates the value of travel time and of travel time reliability
based on the risk-averse driver’s path choice behavior. Uchida
[18] proposed a network equilibrium model which estimates
travel time reliability from the observed link flows in the
network. Kato and Uchida [19] proposed a benefit estimation
method that considers travel time reliability.

In the context of the advancements in theoretical studies
on travel time variability in road networks, transporta-
tion benefit-cost analysis (BCA) considering travel time
variability (https://sites.google.com/site/benefitcostanalysis/
benefits/travel-time-reliability; [20]) is now becoming a big
concern. The traditional DUE traffic assignment model has
been widely used to estimate the value or benefits of a policy,
program, or project considering no travel time variability. If
we consider the value of travel time variability in estimating
the benefit of a policy, the DUE traffic assignment model
cannot be applied, since it does not address the stochastic
nature of a travel time variability. Therefore, a plausible
network equilibrium model which is well established in
terms of theory and practice is needed. For BCA in which
travel time variability is considered, a measure of travel time
variability, which is discussed in the next section, needs
to be determined. Once the travel time variability measure
is determined, then a network equilibrium model which
combines risk-averse driver’s path choice behavior with the
generalized travel time, which is defined as a mean travel
time plus a travel time variability measure multiplied by a
calibration parameter, is developed. If we put more weight on
the accuracy than the practicality of a network equilibrium
model, then the validity of BCA may increase; however, the
costs required for calculating BCA may increase, and vice
versa. Therefore, the modeler has to consider the trade-off
between accuracy and practicality.The objective of this study
is to propose a simplified and plausible network equilibrium
model which takes into account both the risk-averse driver’s
path choice behavior and the travel time variability. The
difference between this study and the other studies that the
authors have presented is that we propose a model that
can be applied to a large network problem. The stochastic
networkmodels that the authors have developed require path
enumeration in the network. However, the enumeration of
all possible paths is difficult in the case of a large network.
Therefore, a stochastic networkmodel for travel time reliabil-
ity analysis that solves a large network problem is demanded.

This paper starts by examining several measures of
travel time variability in the next section. Based on the
discussion provided in the next section, we will employ a

travel time variance as a measure of travel time variability in
this study. Then, link and path travel time under stochastic
demand flows are formulated in Section 3. In Section 4,
two network equilibrium models under stochastic demand
flows are formulated considering a risk-averse driver’s path
choice behavior in a road network.The firstmodel introduces
path travel time variance which is calculated considering all
travel time covariances between two links in the network.
The generalized travel time in this model is not additive since
the generalized path travel time is not equal to the sum of
the generalized link travel times related to that path. The
second model, which we propose in this study, is a simplified
version of the first model. In this model, the path travel
time variance is not calculated by considering all travel time
covariance between two links in the network.The path travel
time variance is calculated by considering all travel time
covariance between two adjacent links in the network. The
generalized path travel time in this model is additive. It is
shown that a unique solution is provided by the simplified
network model. Numerical experiments are carried out to
illustrate the applicability and validity of the proposedmodel.
Finally, concluding remarks are provided in Section 6.

2. Measures of Travel Time Variability

We will briefly review how to obtain a measure of travel
time variability based on the expected utility maximization
principle. Vickrey [21] considered a separable or additive
utility function which is a sum of utilities obtained from time
spent at an origin and time spent at a destination of a trip.
Using such formulation of utility, it is possible to consider
a driver who chooses a departure time optimally in order
to maximize expected utility when facing uncertain travel
time. Noland and Small [22], Bates et al. [23], Fosgerau and
Karlström [24], Fosgerau and Engelson [25], and Engelson
[26] have shown how measures of travel time variability can
be derived from the drivers’ scheduling preferences.

A popular formulation of scheduling preferences is the𝛼-𝛽-𝛾 preference inwhich themarginal utility of time (MUT)
at the origin is constant and that at the destination is a
step function [27, 28]. By assuming an exponential travel
time distribution or a uniform travel time distribution,
Noland and Small [22] derived the scheduling utility which
is linear in (𝜇, 𝜎), where 𝜇 and 𝜎 are the mean and standard
deviation (SD) of the stochastic travel time. Fosgerau and
Karlström [24] generalized this result to any travel time
distributions. Fosgerau and Engelson [25] considered the
value of travel time reliability under scheduling preferences
that were defined in terms of linear MUTs being at the origin
and at the destination. They found that the scheduling utility
was linear in (𝜇, 𝜇2, 𝜎2) and that this result was independent
of the shape of a travel time distribution.

Engelson [26] derived the scheduling utility for the
two cases when the MUTs at both the origin and the
destination are either quadratic or exponential in form, and
demonstrated special cases when the scheduling utility is
additive.The necessary condition when the scheduling utility
is additive is that theMUT at the origin is a positive constant.

https://sites.google.com/site/benefitcostanalysis/benefits/travel-time-reliability
https://sites.google.com/site/benefitcostanalysis/benefits/travel-time-reliability
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Engelson and Fosgerau [29] derived a measure of travel
time variability for travelers equipped with scheduling pref-
erences defined in terms of MUT and who chose departure
time optimality. In the case of ℎ(𝑡) = ℎ0 and 𝑤(𝑡) = ℎ0 +(𝛾/𝛽) ⋅ (𝑒𝛽⋅(𝑡−𝑡0) − 1) which are, respectively, MUT at the
origin and that at the destination evaluated at clock time 𝑡
(the parameters in theMUTs satisfy the following conditions:ℎ0 > 0, 𝛽 ≥ 0, 𝛾 > 0, and ℎ(𝑡0) = 𝑤(𝑡0)), the scheduling
utility is

𝑢 (𝑡, 𝑇) = ∫𝑡0
𝑡
ℎ0𝑑𝜏

+ 𝐸[∫𝑡+𝑇
𝑡0

(ℎ0 + 𝛾𝛽 ⋅ 𝑒𝛽⋅(𝜏−𝑡0) − 𝛾𝛽)𝑑𝜏]
= ℎ0 ⋅ 𝜇 − 𝛾𝛽 ⋅ (𝑡 − 𝑡0 + 𝜇) + 𝛾𝛽2⋅ (𝑒𝛽⋅(𝑡−𝑡0) ⋅ 𝐸 [𝑒𝛽⋅𝑇] − 1) ,

(1)

where 𝑇 is an independently distributed random travel time
with a mean value of 𝜇 and an SD of 𝜎 and 𝑡0 is the time such
that the individual prefers being at the origin before this time
and at the destination after this time. From the first-order
condition, the scheduling utility is derived as

𝑢 (𝑇) = ℎ0 ⋅ 𝜇 + 𝛾𝛽2 ⋅ ln𝐸 [𝑒𝛽⋅(𝑇−𝜇)] , (2)

where ln𝐸[𝑒𝛽⋅(𝑇−𝜇)] is the cumulant-generating function
(CGF) of the centralized travel time distribution. A limiting
case of 𝛽 → 0 yields

lim
𝛽→0

𝑢 (𝑇) = ℎ0 ⋅ 𝜇 + 𝛾2 ⋅ 𝜎2. (3)

If the travel time distribution has compact support, then the
scheduling utility is finite for any 𝛽 and can be presented as
the convergent Taylor series

𝑢 (𝑇) = ℎ0 ⋅ 𝜇 + 𝛾2 ⋅ 𝜎2 + 𝛾 ⋅ ∞∑
𝑛=3

𝛽𝑛−2 ⋅ 𝑘𝑛𝑛! , (4)

where 𝑘𝑛 is the cumulant of order 𝑛 of the travel time
distribution. If the travel time follows a normal distribution,
however, the normal distribution does not have compact
support, and for any 𝛽 the scheduling utility is

𝑢 (𝑇) = ℎ0 ⋅ 𝜇 + 𝛾2 ⋅ 𝜎2. (5)

A special case of this problem with constant ℎ(𝑡) ≡ 𝛼 and the
two-valued function 𝑤(𝑡) = 𝛼 − 𝛽 for 𝑡 < 𝑡0 and 𝑤(𝑡) =𝛼 + 𝛽 for 𝑡 ≥ 𝑡0 leads to the 𝛼-𝛽-𝛾 preferences model. It
was reported that (2) and (3) have advantages over the 𝛼-𝛽-𝛾
preferences model. First, they do not depend on the shape
of the travel time distribution. The second is additivity with
respect to parts of trip with independent travel time, which
is an important property to analyze travel time reliability in
a road network. Travel time variance as a measure of travel

time variability may be criticized for not taking into account
the skewness of the travel time distribution [30]. The CGF
depends on the skewness (𝑘3/𝜎3 = 𝐸[(𝑇 − 𝜇)3]/𝜎3) of the
travel time distribution for nonzero 𝛽. However, the travel
time covariance between two links is not taken into account
in a CGF in which independent link travel time is assumed.
The effect of link travel time covariance terms on the path
travel time variance becomes larger than that of the skewness
as the number of links in a path increases. For example, if a
path is comprised of 𝑛 links, the number of link travel time
covariance terms taken into account in calculating the path
travel time variance is 𝑛𝐶2. We recognize that the travel time
covariance between two links is a more important factor in
analyzing travel time reliability in a road network than the
skewness of the travel time distribution.

Hjorth et al. [31] analyzed the stated preference data
by applying the scheduling preferences model that assumes
MUTs at the origin and at the destination. They have shown
that the value of travel time variability can be proportional to
the variance of travel time. This result can partially support
the use of travel time variance as a measure of travel time
variability.

The additivity of the scheduling utility is a convenient
property for a network equilibriummodel from the practical
viewpoint (calculation cost efficiency, ease of handling the
network equilibriummodel, etc.). If we employ an SD related
measure of the travel time variability (SD, percentile value,
etc.), unrealistic drivers’ path choice behavior as shown next
may be generated.

The following example is cited from Cominetti and
Torrico [32]. The generalized travel time of a random travel
time 𝑇 is given by 𝑐 (𝑇) = 𝜇 + 𝜔̂ ⋅ 𝜎, (6)

where we assume 𝜔̂ = 1 without loss of generality. We
consider then the traffic situation shown in Figure 1 in which
a road network consists of three nodes and three links, and
the stochastic link travel time is shown. In the network, link
travel time is denoted by 𝑇𝑖 (𝑖 = 1, . . . , 3), where 𝑖 is link
number, which follows the normal distribution𝑁(𝜇, 𝜎2)with
a mean of 𝜇 and a variance of 𝜎2. From the link travel times
shown in the figure, we obtain 𝑐(𝑇1) = 12, 𝑐(𝑇2) = 10 + √5,𝑐(𝑇1 + 𝑇3) = 21 + √3, and 𝑐(𝑇2 + 𝑇3) = 20 + √7. From
these four generalized travel times, the following results can
be obtained. The minimum generalized travel time between
nodes 1 and 2 is 12, and the minimum path consists of link 1.
The minimum generalized travel time between nodes 1 and 3
is min(𝑐(𝑇1 + 𝑇3) 𝑐(𝑇2 + 𝑇3)) = 20 +√7, and the minimum
path consists of links 2 and 3.This example shows that a driver
in a network with an origin node 1 and a destination node 2
will choose the path comprising link 1 if he/she prefers smaller
generalized travel time. However, the same driver in the
networkwhose origin and destination nodes are, respectively,
1 and 3 will choose the path comprising two links 2 and
3. However, the path choice criterion is clear, and the path
choice behavior of the driver is somehow unrealistic. Even
though the mean deviation is used instead of SD, such an
unrealistic case can occur since the generalized path travel
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T1 = N(11, 1)

T3 = N(10, 2)

T2 = N(10, 5)

Figure 1: A paradoxical path choice.

time is not equal to the sum of the generalized travel times
of the links that comprise that path in the case of mean
deviation.

We examined the convenience and importance of the
additivity of the generalized path travel timewhen addressing
it in a network problem. In the following, we formulate some
network equilibrium models in which travel time variance
is employed as a measure of the travel time variability in
reference to (5). According to (5), the generalized travel time
is given by

𝑐 = 𝑢ℎ0 = 𝜇 + 𝜔 ⋅ 𝜎2, (7)

where 𝜔 = 𝛾2 ⋅ ℎ0 . (8)

3. Link and Path Travel Times under
Stochastic Flows

3.1. Notation. The notations below are used in this paper.𝐴: Set of links in the network𝐼: Set of O-D pairs in the network𝐽𝑖: Set of paths between O-D pair 𝑖𝛿𝑎𝑗: Variable that equals 1 if link 𝑎 is part of path 𝑗 and
equals 0 otherwise𝑉𝑎: Stochastic flow of link 𝑎
V𝑎: Mean flow of link 𝑎
V𝑎𝑏: Mean flow that passes through both links 𝑎 and 𝑏𝑐𝑎: Capacity of link 𝑎𝐹𝑖𝑗: Stochastic flow of path 𝑗 between O-D pair 𝑖𝑓𝑖𝑗: Mean flow of path 𝑗 between O-D pair 𝑖𝑄𝑖: Stochastic flow for O-D pair 𝑖𝑞𝑖: Mean flow for O-D pair 𝑖𝑄: Stochastic total O-D flow𝑞: Total mean O-D flow𝑝𝑖𝑗: Path choice probability for O-D pair 𝑖 choosing
path 𝑗𝑝𝑖: Proportion of mean flow for O-D pair 𝑖, 𝑞𝑖, to total
mean flow, 𝑞𝑐V𝑖: Coefficient of variation of random flow 𝑄𝑖

Ξ𝑖𝑗: Stochastic travel time of path 𝑗 which serves O-D
pair 𝑖𝑐𝑖𝑗: Generalized travel time of path 𝑗which servesO-D
pair 𝑖.

3.2. Stochastic Traffic Flows. An O-D flow, 𝑄𝑖, is assumed
to be a random variable with a mean of 𝐸[𝑄𝑖] = 𝑞𝑖 and a
variance of var[𝑄𝑖] = (𝑐V𝑖 ⋅ 𝑞𝑖)2, where 𝑐V𝑖 is the coefficient
of variation of the random flow𝑄𝑖. Following Lam et al. [33],
the stochastic flow on path 𝑗 ∈ 𝐽𝑖, 𝐹𝑖𝑗, is then given by

𝐹𝑖𝑗 = 𝑝𝑖𝑗 ⋅ 𝑄𝑖 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖. (9)

𝐹𝑖𝑗 is a random variable with a mean of 𝑓𝑖𝑗 = 𝑝𝑖𝑗 ⋅ 𝑞𝑖 ≥ 0
and a covariance of cov[𝐹𝑖𝑗, 𝐹𝑖𝑘] = 𝑝𝑖𝑗 ⋅ 𝑝𝑖𝑘 ⋅ var[𝑄𝑖], where𝑝𝑖𝑗(𝑗 ∈ 𝐽𝑖) is path choice probability which can be determined
by a path choice model (DUE, SUE, etc.). The following flow
conservation law holds for each O-D pair:

∑
𝑗∈𝐽𝑖

𝑓𝑖𝑗 = 𝑞𝑖 ∀𝑖 ∈ 𝐼. (10)

The variance of 𝐹𝑖𝑗 is given by

var [𝐹𝑖𝑗] = var [𝑝𝑖𝑗 ⋅ 𝑄𝑖] = (𝑝𝑖𝑗)2 ⋅ var [𝑄𝑖]= (𝑐V𝑖 ⋅ 𝑓𝑖𝑗)2 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖. (11)

The conservation of the path flow variance in relation to the
O-D flow variance holds (Appendix A). The stochastic flow
of link 𝑎, 𝑉𝑎, is given by

𝑉𝑎 = ∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝛿𝑎𝑗 ⋅ 𝐹𝑖𝑗 ∀𝑎 ∈ 𝐴. (12)

The mean and covariance of the stochastic link flow are then

V𝑎 = ∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝛿𝑎𝑗 ⋅ 𝑓𝑖𝑗 = ∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝛿𝑎𝑗 ⋅ 𝑝𝑖𝑗 ⋅ 𝑞𝑖∀𝑎 ∈ 𝐴, (13)

cov [𝑉𝑎, 𝑉𝑏] = var[[∑𝑖∈𝐼∑𝑗∈𝐽𝑖 𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑗 ⋅ 𝐹𝑖𝑗]] ∀𝑎, 𝑏 ∈ 𝐴, (14)

where ∑𝑖∈𝐼∑𝑗∈𝐽𝑖 𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑗 ⋅ 𝐹𝑖𝑗 is the sum of all stochastic path
flows that pass through both links 𝑎 and 𝑏.
3.3. Stochastic Link Travel Time and Stochastic Path Travel
Time. In this study, link travel time is represented by the
following BPR function [34]:

𝑡𝑎 (V𝑎) = 𝑡0𝑎 ⋅ (1 + 𝜅 ⋅ (V𝑎𝑐𝑎 )𝜆) ∀𝑎 ∈ 𝐴, (15)
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where 𝑡0𝑎 is free flow travel time of link 𝑎 and 𝜅(≥ 0) and𝜆(≥ 1)
are calibration parameters. By substituting V𝑎 in (15) with 𝑉𝑎,
we obtain 𝑡𝑎 (𝑉𝑎) = 𝑡0𝑎 + 𝜅𝑎 ⋅ (𝑉𝑎)𝜆 ∀𝑎 ∈ 𝐴, (16)

where 𝜅𝑎 = 𝑡0𝑎 ⋅ 𝜅/(𝑐𝑎)𝜆.
Next, we will show how to calculate both a mean value

and variance of the stochastic link travel time shown by (16).
By performing an𝑚th-order (𝑚 ≥ 1)Taylor expansion to (16)
at 𝑉𝑎 = V𝑎, we obtain

𝑡𝑎 (𝑉𝑎) = 𝑚∑
𝑘=0

𝑏𝑘𝑎 ⋅ (𝑉𝑎 − V𝑎)𝑘 ∀𝑎 ∈ 𝐴, (17)

where 𝑏𝑘𝑎 is the coefficient of the 𝑘th term of the Taylor
expansion given by

𝑏𝑘𝑎 = 1𝑘! ⋅ 𝜕(𝑘)𝑡𝑎 (𝑉𝑎)𝜕𝑉(𝑘)𝑎
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎

= {{{{{
𝑡𝑎 (V𝑎) if 𝑘 = 0𝜅𝑎 ⋅ ∏𝑘𝑙=1 (𝜆 − 𝑙 + 1)𝑘! ⋅ V𝜆−𝑘𝑎 otherwise.

(18)

The mean link travel time is then calculated as

𝐸 [𝑡𝑎 (𝑉𝑎)] = 𝑚∑
𝑘=0

𝑏𝑘𝑎 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘] ∀𝑎 ∈ 𝐴. (19)

The travel time covariance between two links is

cov [𝑡𝑎 (𝑉𝑎) , 𝑡𝑏 (𝑉𝑏)] = 𝑚∑
𝑘=0

𝑚∑
𝑙=0

𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏
⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙]− 𝐸 [𝑡𝑎 (𝑉𝑎)] ⋅ 𝐸 [𝑡𝑏 (𝑉𝑏)]∀𝑎, 𝑏 ∈ 𝐴.

(20)

As shown in Clark and Watling [6], (19) and (20) can be
calculated by applying a method proposed by Isserlis [35]
given the moments of 𝑉𝑎 by assuming that the link flow
follows normal distribution [17, 18, 33]. This assumption was
supported by Rakha et al. [36], which demonstrated that
the normality assumption may be sufficient from a practical
standpoint given its computational simplicity. Equation (19)
can be calculated as follows:

𝐸 [𝑡𝑎 (𝑉𝑎)] = {{{{{{{{{{{
𝑏0𝑎 + 𝑚/2∑
𝑘=1

𝑘∏
𝑙=1

(2𝑙 − 1) ⋅ 𝑏2𝑘,𝑎 ⋅ (var [𝑉𝑎])𝑘 𝑚: even number

𝑏0𝑎 + (𝑚−1)/2∑
𝑘=1

𝑘∏
𝑙=1

(2𝑙 − 1) ⋅ 𝑏2𝑘,𝑎 ⋅ (var [𝑉𝑎])𝑘 𝑚: odd number
∀𝑎 ∈ 𝐴. (21)

The results of𝑚 = 4 are provided in Appendix B.
We now assume that the coefficient of each O-D flow

takes a specific value. By applying this assumption to (14) (i.e.,𝑐V𝑖 = 𝑐V ∀𝑖 ∈ 𝐼), we obtain
cov [𝑉𝑎, 𝑉𝑏] = var[[∑𝑖∈𝐼∑𝑗∈𝐽𝑖 𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑗 ⋅ 𝐹𝑖𝑗]] = (𝑐V ⋅ V𝑎𝑏)2

∀𝑎, 𝑏 ∈ 𝐴, (22)

where

V𝑎𝑏 = ∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑗 ⋅ 𝑓𝑖𝑗 ∀𝑎, 𝑏 ∈ 𝐴. (23)

V𝑎𝑏 in (23) is the mean flow that passes through both links 𝑎
and 𝑏. If 𝑎 = 𝑏 in (22), thenwe obtain var[𝑉𝑎] = (𝑐V ⋅V𝑎)2 ∀𝑎 ∈
A.

In fact, this assumption can be justified if we regard total
O-D flow in the network, 𝑄 = ∑𝑖∈𝐼𝑄𝑖, as a random variable
with amean of𝐸[𝑄] = 𝑞(= ∑𝑖∈𝐼 𝑞𝑖) and a variance of var[𝑄] =(𝑐V⋅𝑞)2, where𝑄𝑖 = 𝑝𝑖 ⋅𝑄.𝑝𝑖 = 𝑞𝑖/𝑞 is the proportion of theO-
D flow, 𝑞𝑖, to total O-D flow, 𝑞. In this case, all O-D flows are

statistically dependent on each other.The conservation of the
O-D flow variance in relation to the total O-D flow variance
holds (Appendix C).

By substituting (22) into (19) and (20), we obtain

𝐸 [𝑡𝑎 (𝑉𝑎)] = 𝑡𝑎 (V𝑎) + ∑
𝑘=1

𝑘∏
𝑙=1

(2𝑙 − 1) ⋅ 𝑏̂2𝑘,𝑎
⋅ (V𝑎)𝜆 ∀𝑎 ∈ 𝐴, (24)

cov [𝑡𝑎 (𝑉𝑎) , 𝑡𝑏 (𝑉𝑏)] = 𝑚∑
𝑘=1

𝑐𝑚𝑘 ⋅ (V𝑎)𝜆−𝑘 ⋅ (V𝑏)𝜆−𝑘
⋅ (V𝑎𝑏)2𝑘 ∀𝑎, 𝑏 ∈ 𝐴, (25)

where

𝑏̂𝑘,𝑎 = 𝜅𝑎 ⋅ (𝑐V)𝑘 ⋅ ∏𝑘𝑙=1 (𝜆 − 𝑙 + 1)𝑘! . (26)

𝑐𝑚𝑘 in (25) is the coefficient for the 𝑘th term. The results of𝑚 = 4 are provided in Appendix D.
Note that it is shown from (24) and (25) that the mean,

variance, or covariance of link travel time is expressed by
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using onlymean link flow(s)with some given parameters, and
it will be shown that both𝐸[𝑡𝑎(𝑉𝑎)] and cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] are
increasing functions with respect to V𝑎 and V𝑎𝑏, respectively.
It will be shown that these two mathematical properties are
convenient for developing a network equilibriummodel.The
most dominant reason for these two properties is that the
coefficients of variation of all O-D flows are assumed to
be the same. Thanks to this assumption, any moments for
the stochastic link flow can be calculated by using its mean
value. Also, as far as the Taylor series expansion provides
good approximation, the method presented in this study can
be applied to any functional forms. Since the Taylor series
expansion can approximate well the function of 𝑓(𝑥) =1/(1 − 𝑥) for 0 < 𝑥 ≤ 1, the proposed method can
be applied to the Davidson type link cost function. From
(25), cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] > 0 if and only if V𝑎𝑏 > 0. From
(23), if V𝑎𝑏 > 0, then V𝑎 > 0 and V𝑏 > 0; however, the
inverse relationship does not always hold for any two links
in the network (i.e., even though V𝑎 > 0 and V𝑏 > 0, V𝑎𝑏
can be zero). These two mathematical properties show that
the travel time covariance of two links, cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)],
is greater than zero if and only if V𝑎𝑏 is greater than zero
and that V𝑎 and V𝑎 can influence the travel time covariance
of two links, cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)], if and only if V𝑎𝑏 is greater
than zero. Therefore, a calculation of V𝑎𝑏 is important to
calculate cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] in the network. As discussed in
the next section, the calculation of V𝑎𝑏 for two adjacent links
in the network is easily implemented since there is no need
to enumerate a path set in the network. In contrast, the
calculation of V𝑎𝑏 for two unconnected links in the network
becomes more difficult than that for two adjacent links since
that may need to enumerate a path set in the network.

For notational simplicity, in the rest of the paper,𝐸[𝑡𝑎(𝑉𝑎)], var[𝑡𝑎(𝑉𝑎)], and cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] are denoted by𝑡̂𝑎(V𝑎),𝜎2𝑎(V𝑎), and𝜎𝑎𝑏(V𝑎𝑏; V𝑎, V𝑏), respectively.The travel time
of path 𝑗 which serves O-D pair 𝑖 (Ξ𝑖𝑗) is given by

Ξ𝑖𝑗 = ∑
𝑎∈𝐴

𝑡𝑎 (𝑉𝑎) ⋅ 𝛿𝑎𝑗 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖. (27)

The mean path travel time and path travel time variance are,
respectively, given by

𝐸 [Ξ𝑖𝑗] = 𝐸[∑
𝑎∈𝐴

𝑡𝑎 (𝑉𝑎) ⋅ 𝛿𝑎𝑗] = ∑
𝑎∈𝐴

𝑡̂𝑎 (V𝑎) ⋅ 𝛿𝑎𝑗
∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖,

var [Ξ𝑖𝑗] = var[∑
𝑎∈𝐴

𝑡𝑎 (𝑉𝑎) ⋅ 𝛿𝑎𝑗]
= ∑
𝑎∈𝐴

∑
𝑏∈𝐴

𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑗 ⋅ 𝜎𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏)
= ∑
𝑎∈𝐴

𝜎2𝑎 (V𝑎) ⋅ 𝛿𝑎𝑗 + 2 ∑
𝑎∈𝐴

∑
𝑏( ̸=𝑎)∈𝐴

𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑗
⋅ 𝜎𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏) ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖.

(28)

The path travel time covariance is

cov [Ξ𝑖𝑗, Ξ𝑖𝑘]
= cov[∑

𝑎∈A
𝛿𝑎𝑗 ⋅ 𝑡𝑎 (𝑉𝑎) , ∑

𝑏∈A
𝛿𝑏𝑗 ⋅ 𝑡𝑏 (𝑉𝑏)]

= ∑
𝑎∈A

∑
𝑏∈A

𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑘 ⋅ 𝜎𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏)
∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖, ∀𝑘 ∈ 𝐽𝑖.

(29)

For calculation methods of the mean travel time and travel
time variance when each link flow in the network follows
a lognormal distribution, the reader is referred to Tani and
Uchida [37] in which each link capacity in the network is also
assumed to follow a lognormal distribution.

4. Network Equilibrium Model under
Stochastic Flows

4.1. DUE Principle. A risk-averse driver may take into
account both a mean travel time and travel time variability
in his/her path choice decision. Travel time variance is
employed as a measure of the travel time variability in this
study.The generalized travel time of path 𝑗which serves O-D
pair 𝑖 (Ξ𝑖𝑗) is defined as

𝑐𝑖𝑗 = 𝐸 [Ξ𝑖𝑗] + 𝜔 ⋅ var [Ξ𝑖𝑗] , (30)

where 𝜔 ≥ 0 is a relative weight assigned to var[Ξ𝑖𝑗]. The
risk-averse driver assumed in this study chooses the path
with lower path travel time variance if the mean path travel
times of all the alternative paths are the same. Such risk-averse
driver’s path choice problem based on the DUE principle can
be formulated as follows:𝑐∗𝑖𝑗 = 𝜋𝑖 if 𝑓∗𝑖𝑗 > 0,𝑐∗𝑖𝑗 ≥ 𝜋𝑖 if 𝑓∗𝑖𝑗 = 0∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖,

(31)

subject to (10), (13), and (23), where 𝜋𝑖 is the minimum
generalized travel time of O-D pair 𝑖. The superscript ∗ is
used to denote the variables that are obtained at equilibrium.
It is known that this problem is equivalent to the following
nonlinear complementary problem (NCP):𝑓∗𝑖𝑗 ⋅ (𝑐∗𝑖𝑗 − 𝜋𝑖) = 0,𝑐∗𝑖𝑗 − 𝜋𝑖 ≥ 0,𝑓∗𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖,

(32)

subject to (10), (13), and (23). The equilibrium path flows can
be obtained by solving the following variational inequality
(VI) problem [38].
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Find f∗ ∈ Ω𝑓 such that∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

(𝑓𝑖𝑗 − 𝑓∗𝑖𝑗 ) ⋅ 𝑐∗𝑖𝑗 ≥ 0, ∀f ∈ Ω𝑓, (33)

where Ω𝑓 = {f | ∑𝑗∈𝐽𝑖 𝑓𝑖𝑗 = 𝑞𝑖 ∀𝑖 ∈ 𝐼, 𝑓𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈𝐽𝑖} and f = (𝑓𝑖𝑗)𝑖∈𝐼,𝑗∈𝐽𝑖 .
There are efficient solution algorithms for solving the

DUE traffic assignment problem. However, most of such
algorithms cannot be applied to solve the VI problem shown
above in which the path travel time variance is nonadditive
due to the link travel time covariance between two links in
the network. Therefore, path-based solution algorithms [39]
which, in general, require enumeration of a path set need to
be applied in order to solve the VI problem. However, the
enumeration of all possible paths is almost impossible for
the case of a large network. Therefore, in the next section,
we will propose a simplified network model in which only
the covariance terms between two adjacent links in the
network are taken into account in calculating the path travel
variance by considering practicality. Thus, an efficient link-
based algorithm for DUE traffic assignment problem can be
applied to the simplified network model.

4.2. Simplification. Paths enumeration may be required for
solving the VI problem presented in the previous section.
Enumeration of all noncyclic paths in a large road network is
impossible. From a practical standpoint, it may be reasonable
to enumerate several paths for each O-D pair (e.g., two or
three paths for each O-D pair). However, different solutions
can be obtained depending on paths enumerated, and that
may be a troublesome issue in estimating the benefit of a
project.

If we assume that the link travel time follows an indepen-
dent distribution, then path travel time variance is the sum of
the link travel time variance related to that path. In this case,
the path choice problem can be formulated as the following
convex programming problem:

min 𝑧 = ∑
𝑎∈𝐴

∫V𝑎

0
𝑔𝑎 (𝑤) 𝑑𝑤, (34)

subject to (10), (13), and (23), where 𝑔𝑎(V𝑎) = 𝑡̂𝑎(V𝑎) + 𝜔 ⋅𝜎2𝑎(V𝑎). This problem has the same mathematical structure
as the standard DUE traffic assignment model and thus can
be solved easily by applying standard link-based algorithms
(MSA (Method of Successive Averages), the Frank-Wolfe
algorithm, etc.) [40].However, ignoring all travel time covari-
ance in (28) may bring about unrealistic solutions.

Rakha et al. [36] presented extensive evidence of a
significant correlation between travel times of two adjacent
links in the network. Although they analyzed travel time
variability over vehicles, this evidence may support travel
time variability over days. By utilizing this evidence, we now
take into account all travel time covariance between two
adjacent links in the network when calculating the path travel
time variance. The corresponding path choice problem can
be then formulated as the following link-based VI problem:
simplified network model (SNM).

Find k∗ ∈ ΩV and k̂∗ ∈ ΩV̂ such that

∑
𝑎∈A

((V𝑎 − V∗𝑎 ) ⋅ 𝑔𝑎 (V∗𝑎 ) + ∑
𝑏∈𝜃(𝑎)

(V𝑎𝑏 − V∗𝑎𝑏)
⋅ 𝑔𝑎𝑏 (V∗𝑎𝑏, V∗𝑎 , V∗𝑏 )) ≥ 0, ∀k ∈ ΩV, ∀k̂ ∈ ΩV̂, (35)

where𝑔𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏) = 2 ⋅ 𝜔 ⋅ 𝜎𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏)
ΩV = {{{k | V𝑎 = ∑

𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝛿𝑎𝑗 ⋅ 𝑓𝑖𝑗 ∀f ∈ Ω𝑓, ∀𝑎 ∈ 𝐴}}} ,
ΩV̂ = {{{k̂ | V𝑎𝑏 = ∑

𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝛿𝑎𝑗 ⋅ 𝛿𝑎𝑗 ⋅ 𝑓𝑖𝑗 ∀f ∈ Ω𝑓, ∀𝑎
∈ 𝐴, ∀𝑏 ∈ 𝜃 (𝑎)}}} ,

k = (V𝑎)𝑎∈𝐴 ,
k̂ = (V𝑎𝑏)𝑎∈𝐴,𝑏∈𝜃(𝑎) .

(36)

𝜃(𝑎) is the set of linkswhich are adjacent to link 𝑎 in front of it.
SNM includes no stochastic variable, although SNM analyzes
travel time reliability in the network.

To solve SNM, one can apply a network representation
which may be used when addressing intersection delays, in
which dummy links connecting between all adjacent links
in the network are added to the original network. Consider
an original network that consists of a set of links and a set
of nodes. It is assumed that each node in the network also
has an identical number. Consider then a directed link in
the original network. We can find each link of which origin
node number is the same as the destination node of the link.
By using this relationship, we can construct the augmented
network (e.g., right-hand side of Figure 2), that corresponds
to the original network (e.g., left-hand side of Figure 2), by
inserting a directed dummy link between these two links.
In the augmented network, the generalized travel time of
link 𝑎 ∀𝑎 ∈ 𝐴 is 𝑔𝑎(V𝑎) and that of dummy link 𝑎𝑏 ∀𝑎 ∈𝐴, ∀𝑏 ∈ 𝜃(𝑎) is 𝑔𝑎𝑏(V𝑎𝑏, V𝑎, V𝑏). Once the augmented network
is constructed, V𝑎𝑏 is easily calculated as the flow of link 𝑎𝑏. By
applying this network representation, SNMcan be solved by a
diagonalization method in which V𝑎 and V𝑏 in 𝑔𝑎𝑏(V𝑎𝑏, V𝑎, V𝑏)
are regarded as constant terms [41–45]. Also, MSA can be
applied for solving SNM. Due to the mathematical structure
of 𝑔𝑎𝑏(V𝑎𝑏, V𝑎, V𝑏), however, SNM has the same mathematical
property as an asymmetric DUE traffic assignment problem
which can have multiple solutions.Therefore, SNMmay have
multiple solutions. Next, we will examine the uniqueness of
the solution of SNM.

If both generalized link travel time functions,𝑔𝑎(V𝑎) ∀𝑎 ∈𝐴 and 𝑔𝑎𝑏(V𝑎𝑏, V𝑎, V𝑏) ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝜃(𝑎), in the aug-
mented network are monotone functions, SNM has a unique
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Figure 2: Network representation for addressing intersection delays.

solution. Or equivalently, if the Jacobian matrix ∇g(k, k̂),
where g = ((𝑔𝑎)𝑎∈𝐴, (𝑔𝑎𝑏)𝑎∈𝐴,𝑏∈𝜃(𝑎)), is positive-definite, SNM has a unique solution. The Jacobian matrix ∇g(k, k̂) is given

by the following lower triangle matrix:

∇g (k, k̂) =
(((((((((((((
(

𝑑𝑔1𝑑V1
0 d 00 0 𝑑𝑔|𝐴|𝑑V|𝐴|𝜕𝑔1,𝜃(1)𝜕V1 ⋅ ⋅ ⋅ 𝜕𝑔1,𝜃(1)𝜕V𝜃(1) ⋅ ⋅ ⋅ 0 𝜕𝑔1,𝜃(1)𝜕V1,𝜃(1)... ... ... ... d0 ⋅ ⋅ ⋅ 𝜕𝑔|𝐴|,𝜃(|𝐴|)𝜕V𝜃(|𝐴|) ⋅ ⋅ ⋅ 𝜕𝑔|𝐴|,𝜃(|𝐴|)𝜕V|𝐴| 0 ⋅ ⋅ ⋅ 𝜕𝑔|𝐴|,𝜃(|𝐴|)𝜕V|𝐴|,𝜃(|𝐴|)

)))))))))))))
)

. (37)

If every eigenvalue of a Jacobian matrix is positive, the
Jacobian matrix is positive-definite. The eigenvalues of a
lower triangle matrix are equal to the values of diagonal
elements of thematrix. In SNM, the following two conditions
hold for each link in the augmented network (see Appendix E
for the proofs):𝜕𝑔𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏)𝜕V𝑎𝑏 > 0 ∀𝑎, 𝑏 ∈ 𝐴,𝜕𝑔𝑎 (V𝑎)𝜕V𝑎 > 0 ∀𝑎 ∈ 𝐴. (38)

Therefore, ∇g(k, k̂) is positive-definite and thus SNM has a
unique solution. If the link travel time covariance for any two
links in the network is taken into consideration in calculating
path travel time variance, the uniqueness of the solution is not
obtained.

Since SNM calculates the stochastic variables at the
equilibrium, the stability as well as the uniqueness of the
solution is guaranteed in SNM. Even in a problem in a static
context, the stability and uniqueness of the solution can be
analyzed by applying theory in a dynamic context.This is true
for our static problem.

5. Numerical Experiments

5.1. Settings. In this section, we carry out numerical exper-
iments for illustrating the application and validity of SNM.
We adopt the network of Nguyen and Dupuis [46] with 4 O-
D pairs, 25 paths, and 19 directed links (Figure 3). The link
sequences of the paths are shown in Table 1.

We employed the mean link travel time and travel time
covariance shown in (24) and (25) that are calculated by
assuming 𝑚 = 4, respectively. Parameters for the BPR
function, 𝜅 and 𝜆, are 2.62 and 5, respectively. The coefficient
of variation of total O-D flow, 𝑐V, is 0.1. The other parameters
used in (24) and (25) are shown in Table 2.

In this study, we prepared four experimental cases by
changing the effect of the path travel time variance on the
driver’s path choice behavior in the network. In the first case,
we assume a risk-neutral driver who chooses a path based
only on mean path travel time in the network. Therefore,
the relative weight assigned to path travel time variance,𝜔, in (30) is 0 in this case. The other three cases assume
three types of risk-averse drivers.The relative weight assigned
to var[Ξ𝑖𝑗] is assumed as 0.3 in these three cases. In the
second case, we assume that there is no travel time correlation
between two different links in the network. In the third case,
SNM is employed (i.e., all travel time covariance between
two adjacent links in the network is introduced to calculate
the path travel time variance). In the fourth case, all travel
time covariance between two different links in the network is
introduced to calculate the path travel time variance. In the
latter three cases, the path travel time variance is calculated
as

var [Ξ𝑖𝑗] = ∑
𝑎∈𝐴

∑
𝑏∈𝐵

cov [𝑡𝑎 (𝑉𝑎) , 𝑡𝑏 (𝑉𝑏)] ⋅ 𝛿𝑎𝑗 ⋅ 𝛿𝑏𝑗
∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑖 (39)

by using both the relative weight assigned to path travel time
variance, 𝜔, and the set of link(s), 𝐵, shown in Table 3.
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Figure 3: The Nguyen and Dupuis network.

Table 1: Paths and link sequences.

O-D O-D pair Path Link seq.

(1) 1-2

(1) 2-18-11(2) 1-5-7-9-11(3) 1-5-7-10-15(4) 1-5-8-14-15(5) 1-6-12-14-15(6) 2-17-7-9-11(7) 2-17-7-10-15(8) 2-17-8-14-15

(2) 4-2

(9) 4-12-14-15(10) 3-5-7-9-11(11) 3-5-7-10-15(12) 3-5-8-14-15(13) 3-6-12-14-15

(3) 1-3

(14) 1-6-13-19(15) 1-5-7-10-16(16) 1-5-8-14-16(17) 1-6-12-14-16(18) 2-17-7-10-16(19) 2-17-8-14-16

(4) 4-3

(20) 4-13-19(21) 4-12-14-16(22) 3-6-13-19(23) 3-5-7-10-16(24) 3-5-8-14-16(25) 3-6-12-14-16

Table 2: Link travel time parameters.

Link Free-flow travel time Capacity𝑡0𝑎 𝑐𝑎(1) 10 1500(2) 10 1500(3) 10 1500(4) 20 1500(5) 10 1500(6) 10 1500(7) 10 1500(8) 10 1500(9) 10 1500(10) 10 1500(11) 10 1500(12) 10 1500(13) 20 1500(14) 10 1500(15) 10 1500(16) 10 1500(17) 10 1500(18) 40 1500(19) 10 1500

For solving the first three cases, we employed MSA as a
link-based solution algorithm.The final case can be solved by
minimizing the gap function for NCP [17, 47, 48]. In fact, the
paths set shown in Table 1 is prepared only for the final case.
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Table 3: Assumptions of each case.

Case Relative weight (𝜔) Set of link(s) (𝐵)
2 0.3 𝑎
3 0.3 𝜃 (𝑎)
4 0.3 𝐴

Table 4: Mean path flows.

O-D Path Case 1 Case 2 Case 3 Case 4

(1)
(1) 499 658 643 641(2) 81 58 0 75(3) 88 64 165 117(4) 45 47 0 0(5) 112 59 61 0(6) 22 76 88 0(7) 127 38 42 168(8) 25 0 0 0

(2)
(9) 265 276 491 321(10) 411 229 294 313(11) 157 236 173 88(12) 16 126 0 127(13) 151 133 41 152

(3)
(14) 317 413 304 268(15) 79 107 45 100(16) 36 58 296 210(17) 145 108 24 122(18) 248 255 330 296(19) 174 59 0 5

(4)
(20) 591 491 441 481(21) 121 197 28 155(22) 149 120 273 268(23) 0 87 18 0(24) 96 4 30 0(25) 43 100 210 97

Only case 4 cannot be solved byMSAwhich does not require
paths enumeration and thus is applicable to a large network.
On the other hand, it is difficult to solve the problem of a
large network using the method based on the gap function
that requires paths enumeration.

5.2. Results. Table 4 shows the mean path flows for each
case. For the first three cases, since we applied MSA to solve
corresponding path choice problems, the path flows for each
case were not uniquely determined. Even so, presenting path
flows for the first three cases may be useful to understand
roughly how path flows change according to different expres-
sions of path travel time variance. Also, by presenting the
path flows for cases 1–3 to which MSA was applied, it is easy
to understand that the generalized travel times for the paths
between each O-D pair that are used by the drivers are the
same although both the mean travel time and travel time
variance of a path between theO-D pair can be different from

Table 5: Generalized path travel time.

O-D Path Case 1 Case 2 Case 3 Case 4

(1)
(1) 70.5 75.9 77.5 80.0(2) 70.5 75.9 77.5 80.0(3) 70.5 75.9 77.5 80.0(4) 70.5 75.9 77.5 80.1(5) 70.5 75.9 77.5 80.2(6) 70.5 75.9 77.5 81.1(7) 70.5 75.9 77.5 80.0(8) 70.5 75.9 78.5 80.1

(2)
(9) 72.5 79.1 81.3 85.1(10) 72.5 79.1 81.3 85.1(11) 72.5 79.1 81.3 85.1(12) 72.5 79.1 81.3 85.1(13) 72.5 79.1 81.3 85.1

(3)
(14) 69.8 75.8 77.7 80.6(15) 69.8 75.8 77.7 80.6(16) 69.8 75.8 77.7 80.6(17) 69.8 75.8 77.7 80.6(18) 69.8 75.8 77.7 80.6(19) 69.8 75.8 78.7 80.6

(4)
(20) 71.8 79.0 81.5 85.1(21) 71.8 79.0 81.5 85.1(22) 71.8 79.0 81.5 85.1(23) 71.8 79.0 81.5 85.2(24) 71.8 79.0 81.5 85.1(25) 71.8 79.0 81.5 85.1

the others. In contrast, the path flows for case 4were uniquely
determined, since we applied a path-based algorithm when
solving its path choice problem. In all cases, if a path flow is
zero, such path flow is denoted by bold figures in Table 4 so
that we can know that the corresponding path is not chosen
by the drivers in the network. Table 5 shows generalized path
travel times for all cases which are calculated by using both
the mean path travel times shown in Table 6 and the path
travel time variance shown in Table 7. It is observed that the
paths chosen by the drivers have the minimum generalized
travel time and that the paths which are not chosen by
the drivers have generalized travel times which are equal to
or greater than the minimum generalized travel time. The
generalized path travel times for unused paths are denoted
by bold figures in Table 5. It is shown in Tables 4, 6, and 8
that although the mean path flows of each case are different
from the other cases, mean link flows are similar among all
cases. Since mean travel time of a path is calculated by using
mean link flows, therefore similar mean path travel times are
obtained among the four cases.

For O-D pair 1, the flows of paths 4, 5, and 8 in cases 2–4
are smaller than those in case 1 whereas the flows of path 1
in cases 2–4 are larger than that in case 1. These differences
can be explained as follows. The travel time variances of path
1 in cases 2–4, which are denoted by bold figures in Table 7,
are much smaller than those of paths 2–8, although the mean
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Table 6: Mean path travel time.

O-D Path Case 1 Case 2 Case 3 Case 4

(1)
(1) 70.5 71.8 72.2 72.4(2) 70.5 68.5 68.6 68.7(3) 70.5 68.8 68.7 68.6(4) 70.5 68.2 68.5 68.8(5) 70.5 68.7 68.4 68.4(6) 70.5 67.7 68.5 68.7(7) 70.5 68.0 68.6 68.6(8) 70.5 67.5 68.4 68.8

(2)
(9) 72.5 69.9 70.0 70.0(10) 72.5 70.6 71.1 71.3(11) 72.5 70.9 71.1 71.2(12) 72.5 70.3 70.9 71.4(13) 72.5 70.8 70.8 71.0

(3)
(14) 69.8 68.0 67.2 66.8(15) 69.8 68.7 68.8 68.8(16) 69.8 68.2 68.6 69.0(17) 69.8 68.6 68.5 68.6(18) 69.8 68.0 68.7 68.8(19) 69.8 67.4 68.5 69.0

(4)
(20) 71.8 69.2 68.8 68.4(21) 71.8 69.8 70.1 70.2(22) 71.8 70.1 69.6 69.4(23) 71.8 70.9 71.2 71.4(24) 71.8 70.3 71.0 71.6(25) 71.8 70.7 71.0 71.2

travel time of path 1 is longer than those of paths 2–8, which
are denoted by bold figures in Table 6. However, path 1 has
longer mean travel time than paths 2–8, and that path is more
reliable in terms of travel time variance than paths 2–8 in
cases 2–4. In total, the path choice probabilities of path 1 in
cases 2–4 are larger than that in case 1. In contrast, since the
drivers in case 1 choose their paths based only onmean travel
times, the flow of path 1 is larger than those in cases 2–4.This
path choice switch can be observed in the other O-D pairs
(e.g., from path 10 to path 9 for O-D pair 2, from paths 17 and
19 to paths 16 and 18 for O-D pair 3, and from paths 20 and
24 to path 25 for O-D pair 4.

We can find from Table 6 a tendency of the mean path
travel time in case 1 to be greater than those in cases 2–4.
Surprisingly, this tendency holds for all paths in the network
except for path 1. Obviously, this tendency was derived from
the introduction of travel time variance to the drivers’ path
choice behavior. We will then check how total mean travel
time in the network is shortened by the introduction of travel
time variance. An index for the total mean travel time for
cases 𝑛 ∈ {1, . . . , 4}, TTT𝑛, can be given by

TTT𝑛 = ∑
𝑎∈𝐴

𝑡̂𝑎 (V𝑎) ⋅ V𝑎. (40)

By using both the mean link flows shown in Table 8 and
the mean link travel time shown in Table 9, TTT𝑛 ∀𝑛 ∈{1, . . . , 4} are calculated as 2.847×105, 2.789×105, 2.797×105,

Table 7: Path travel time variance.

O-D Path Case 1 Case 2 Case 3 Case 4

(1)
(1) 0.0 13.5 17.6 25.5(2) 0.0 24.8 29.6 37.8(3) 0.0 23.6 29.5 38.0(4) 0.0 25.6 30.1 37.8(5) 0.0 24.0 30.4 39.3(6) 0.0 27.3 30.0 41.3(7) 0.0 26.2 29.8 38.1(8) 0.0 28.1 33.6 37.8

(2)
(9) 0.0 30.7 37.8 50.4(10) 0.0 28.5 34.3 46.0(11) 0.0 27.3 34.2 46.3(12) 0.0 29.2 34.8 45.8(13) 0.0 27.7 35.0 47.2

(3)
(14) 0.0 26.1 35.1 46.2(15) 0.0 23.5 29.7 39.3(16) 0.0 25.5 30.3 38.8(17) 0.0 23.9 30.6 40.2(18) 0.0 26.1 30.0 39.4(19) 0.0 28.0 33.9 38.9

(4)
(20) 0.0 32.8 42.6 55.7(21) 0.0 30.6 38.0 49.7(22) 0.0 29.8 39.8 52.5(23) 0.0 27.2 34.4 46.0(24) 0.0 29.1 35.0 45.2(25) 0.0 27.6 35.2 46.5

Table 8: Mean link flows.

Link Case 1 Case 2 Case 3 Case 4(1) 904 914 896 890(2) 1,096 1,086 1,104 1,110(3) 1,024 1,036 1,040 1,044(4) 976 964 960 956(5) 1,010 1,017 1,021 1,028(6) 918 933 914 906(7) 1,215 1,151 1,157 1,155(8) 392 295 325 342(9) 514 363 383 387(10) 701 788 774 768(11) 1,013 1,021 1,026 1,028(12) 837 873 855 846(13) 1,057 1,024 1,019 1,016(14) 1,229 1,167 1,181 1,188(15) 987 979 974 972(16) 943 976 981 984(17) 597 428 461 469(18) 499 658 643 641(19) 1,057 1,024 1,019 1,016

and 2.794 × 105, respectively. An introduction of travel time
variance to the path choice behavior model may bring about
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Table 9: Mean link travel time.

Link Case 1 Case 2 Case 3 Case 4(1) 12.3 12.4 12.2 12.1(2) 16.0 15.7 16.2 16.4(3) 14.3 14.5 14.6 14.7(4) 26.7 26.3 26.2 26.1(5) 14.0 14.1 14.2 14.4(6) 12.5 12.7 12.4 12.3(7) 20.0 17.7 17.9 17.8(8) 10.0 10.0 10.0 10.0(9) 10.1 10.0 10.0 10.0(10) 10.6 11.2 11.1 11.0(11) 14.1 14.2 14.3 14.4(12) 11.6 11.9 11.7 11.6(13) 30.0 28.6 28.4 28.2(14) 20.7 18.2 18.7 19.0(15) 13.6 13.4 13.3 13.3(16) 12.8 13.4 13.4 13.5(17) 10.3 10.1 10.1 10.1(18) 40.5 41.9 41.7 41.6(19) 15.0 14.3 14.2 14.1

an efficient use of the road network in terms of the mean
travel time. This effect is similar to the one obtained by
applying the system optimal principle (i.e., Wardrop’s second
principle). From the mean link flows shown in Table 8, it is
observed that the mean flows of links 5, 9, 11, 12, 16, and 18
in cases 2–4 are larger than those in case 1, whereas those of
links 4, 7, 8, 13, 14, 15, and 17 in cases 2–4 are smaller than those
in case 1. These changes happened by the path flow changes
in cases 1–4 which we have discussed.

As discussed in the previous section, if we do not
consider the effect of travel time reliability on the driver’s
path choice behavior in the network, unrealistic results may
be obtained. However, the introduction of all travel time
covariance between two different links in the network to
the calculation of the path travel time variance is difficult
to implement. Therefore, we proposed SNM, in which all
travel time covariance between two adjacent links in the
network is considered in calculating the path travel time
variance. Our concern is now how far the results obtained
in cases 1–3 are from the results obtained in case 4. The
results obtained in case 4 can be regarded as the exact
solution, since it is obtained by adopting the path travel time
variance denoted by (28). Table 10 shows the coefficients
of correlation of mean link flows among four cases. The
bold figures in the table show the coefficients of correlation
between case 4 and the other three cases. One can see that
SNM (case 3) reproduces almost the same mean link flows
as case 4, since the coefficient of correlation between case 4
and case 3 is 1 whereas the other coefficients of correlation are
less than 1. Note that the coefficient of correlation between
case 4 and case 1 is the smallest. Almost the same results
were obtained by calculating the coefficients of correlation
of mean link travel times. These results may bring about two

Table 10: Coefficients of correlation of mean link flows.

Case 1 Case 2 Case 3 Case 4
Case 1 1.000
Case 2 0.957 1.000
Case 3 0.973 0.995 1.000
Case 4 0.969 0.997 1.000 1.000

practical implications that all travel time covariance between
two different links in the network may not be required in
calculatingmean link flows. Instead, all travel time covariance
between two adjacent links in the network is required in
calculating mean link flows, and that calculation of all travel
time covariance between two adjacent links in the network is
easy even in a large network.

6. Conclusions

In this study, we proposed a simplified network model, that
is, SNM, for travel time reliability analysis. The uncertainty
addressed in this model is that of O-D flows. In this model,
the generalized path travel time is a linear combination of
mean path travel time and path travel time variance. In cal-
culating the path travel time variance, we consider all travel
time covariance between two adjacent links in the network
in SNM. A risk-averse driver in the network is assumed.
By applying a network representation used for addressing
intersection delays, SNMcanbe solved by applying a standard
link-based algorithm. The other property of SNM which
needs to be emphasized here is that its formulation requires
onlymean network flows.This propertymay be important for
practitioners, since once the coefficient of variation of total
O-D flow is determined, one can apply SNM to real road
network analysis for which network data sets for a conven-
tional network model (e.g., a deterministic/stochastic user
equilibrium traffic assignment model) are already prepared.

Numerical experiments are carried out for illustrating the
applications and validity of SNM. The experiments assumed
four types of drivers in the network. The first type of driver
is a risk-neutral driver who chooses a path based only on
mean path travel time. The other three types of drivers are
risk-averse drivers who choose their paths based on both
mean path travel time and path travel time variance. The
second type of driver’s path travel time variance is calculated
by assuming statistically independent link travel time. The
third type of driver’s path travel time variance is calculated by
considering all travel time covariance between two adjacent
links in the network. The fourth type of driver’s path travel
time variances is calculated by considering all travel time
covariance between two different links in the network. The
path travel time variance of the fourth type of driver is the
exact one in the network. It is shown thatmean network flows
obtained by assuming the risk-neutral driver differ as a whole
from those obtained by assuming the risk-averse drivers.
These differences in mean network flows are generated by
the effects of travel time reliability on path choice behavior
by the driver. It is also shown that mean link flows obtained
by assuming the third type of driver, that is, mean link flows
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calculated by SNM, are almost the same as the mean link
flows calculated by assuming the fourth type of driver. In a
practical sense, it may be difficult to calculate network flows
in a large road network by assuming the fourth type of driver.
In contrast, SNMcan be easily applied to a large road network
in calculating network flows.

In this study, we recognize that the introduction of path
travel time variance considering all travel time covariance
between two links in a road network to the generalized path
travel time is more important in expressing the driver’s route
choice behavior than the introduction of the skewness of link
travel time to the generalized path travel time. Therefore,
SNM introduces the path travel time variance considering
all travel time covariance between two adjacent links in the
network to the generalized path travel time. It is interesting
to see how the path choice probabilities which are calculated
by assuming both the statistically independent link travel
time and the skewness of link travel time differ from the
probabilities calculated by SNM. In light of this, there is
a need for a network equilibrium model that introduces a
driver’s path choice preference based on (2). A deterministic
path choice model based on Wardrop’s first principle is
employed in this study in order to express the driver’s
path choice behavior in the network. The introduction of
stochastic models, for example, logit-basedmodels or probit-
based models, to SNM is needed, in order to express the
driver’s perception error on the generalized travel time.These
two challenges are our future tasks.

Appendix

A. The Conservation of
the Path Flow Variance in Relation to
the O-D Flow Variance

O-D flow variance is calculated as the sum of corresponding
path flow variance as follows:

var[[∑
𝑗∈𝐽𝑖

𝐹𝑖𝑗]] = ∑
𝑗∈𝐽𝑖

var [𝐹𝑖𝑗]
+ 2 ∑
𝑗1∈𝐽𝑖

∑
𝑗2( ̸=𝑗1)∈𝐽𝑖

cov [𝐹𝑖𝑗1 , 𝐹𝑖𝑗2]
= (𝑝𝑖𝑗)2 ⋅ var [𝑄𝑖] + 2 ∑

𝑗1∈𝐽𝑖

∑
𝑗2( ̸=𝑗1)∈𝐽𝑖

𝑝𝑖𝑗1⋅ 𝑝𝑖𝑗2 ⋅ var [𝑄𝑖]
= (𝑐V𝑖 ⋅ 𝑞𝑖)2 ⋅ (∑

𝑗∈𝐽𝑖

𝑝𝑖𝑗)2 = (𝑐V𝑖 ⋅ 𝑞𝑖)2= var [𝑄𝑖] ∀𝑖 ∈ 𝐼.

(A.1)

B. The Results of (19) and (20) for 𝑚 = 4
Mean and variance/covariance of link travel time obtained
by performing the fourth-order Taylor expansion to (16) are,
respectively, given by

𝐸 [𝑡𝑎 (𝑉𝑎)] = 𝑏0𝑎 + 𝑏2𝑎 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)2] + 𝑏4𝑎⋅ 𝐸 [(𝑉𝑎 − V𝑎)4] = 𝑏0𝑎 + 𝑏2𝑎 ⋅ var [𝑉𝑎] + 3 ⋅ 𝑏4𝑎⋅ (var [𝑉𝑎])2 ,
cov [𝑡𝑎 (𝑉𝑎) , 𝑡𝑏 (𝑉𝑏)] = 𝑏0𝑎 ⋅ 𝑏0𝑏 + 𝑏0𝑎 ⋅ 𝑏2𝑏⋅ 𝐸 [(𝑉𝑏 − V𝑏)2] + 𝑏0𝑎 ⋅ 𝑏4𝑏 ⋅ 𝐸 [(𝑉𝑏 − V𝑏)4] + 𝑏1𝑎⋅ 𝑏1𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎) ⋅ (𝑉𝑏 − V𝑏)] + 𝑏1𝑎 ⋅ 𝑏3𝑏⋅ 𝐸 [(𝑉𝑎 − V𝑎) ⋅ (𝑉𝑏 − V𝑏)3] + 𝑏2𝑎 ⋅ 𝑏0𝑏⋅ 𝐸 [(𝑉𝑎 − V𝑎)2] + 𝑏2𝑎 ⋅ 𝑏2𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)2⋅ (𝑉𝑏 − V𝑏)2] + 𝑏2𝑎 ⋅ 𝑏4𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)2⋅ (𝑉𝑏 − V𝑏)4] + 𝑏3𝑎 ⋅ 𝑏1𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)3 ⋅ (𝑉𝑏 − V𝑏)]+ 𝑏3𝑎 ⋅ 𝑏3𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)3 ⋅ (𝑉𝑏 − V𝑏)3] + 𝑏4𝑎 ⋅ 𝑏0𝑏⋅ 𝐸 [(𝑉𝑎 − V𝑎)4] + 𝑏4𝑎 ⋅ 𝑏2𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)4⋅ (𝑉𝑏 − V𝑏)2] + 𝑏4𝑎 ⋅ 𝑏4𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)4⋅ (𝑉𝑏 − V𝑏)4] − (𝑏0𝑎 + 𝑏2𝑎 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)2] + 𝑏4𝑎⋅ 𝐸 [(𝑉𝑎 − V𝑎)4]) ⋅ (𝑏0𝑏 + 𝑏2𝑏 ⋅ 𝐸 [(𝑉𝑏 − V𝑏)2] + 𝑏4𝑏⋅ 𝐸 [(𝑉𝑏 − V𝑏)4]) = 𝑏1𝑎 ⋅ 𝑏1𝑏 ⋅ cov [𝑉𝑎, 𝑉𝑏] + 3 ⋅ 𝑏1𝑎⋅ 𝑏3𝑏 ⋅ var [𝑉𝑏] ⋅ cov [𝑉𝑎, 𝑉𝑏] + 2 ⋅ 𝑏2𝑎 ⋅ 𝑏2𝑏⋅ (cov [𝑉𝑎, 𝑉𝑏])2 + 12 ⋅ 𝑏2𝑎 ⋅ 𝑏4𝑏 ⋅ var [𝑉𝑏]⋅ (cov [𝑉𝑎, 𝑉𝑏])2 + 3 ⋅ 𝑏3𝑎 ⋅ 𝑏1𝑏 ⋅ var [𝑉𝑎]⋅ cov [𝑉𝑎, 𝑉𝑏] + 𝑏3𝑎 ⋅ 𝑏3𝑏 ⋅ (9 ⋅ var [𝑉𝑎] ⋅ var [𝑉𝑏]⋅ cov [𝑉𝑎, 𝑉𝑏] + 6 ⋅ (cov [𝑉𝑎, 𝑉𝑏])3) + 12 ⋅ 𝑏4𝑎 ⋅ 𝑏2𝑏⋅ var [𝑉𝑎] ⋅ (cov [𝑉𝑎, 𝑉𝑏])2 + 𝑏4𝑎 ⋅ 𝑏4𝑏 ⋅ (3 ⋅ 8⋅ (cov [𝑉𝑎, 𝑉𝑏])4 + 3 ⋅ 24 ⋅ var [𝑉𝑎] ⋅ var [𝑉𝑏]⋅ (cov [𝑉𝑎, 𝑉𝑏])2) .

(B.1)

In the above calculations, we applied the following moment
calculations [35]:𝐸 [(𝑉𝑎 − V𝑎) ⋅ (𝑉𝑏 − V𝑏)3] = 3 ⋅ var [𝑉𝑏] ⋅ cov [𝑉𝑎, 𝑉𝑏] ,𝐸 [(𝑉𝑎 − V𝑎)2 ⋅ (𝑉𝑏 − V𝑏)2] = var [𝑉𝑎] ⋅ var [𝑉𝑏] + 2⋅ (cov [𝑉𝑎, 𝑉𝑏])2 ,𝐸 [(𝑉𝑎 − V𝑎)2 ⋅ (𝑉𝑏 − V𝑏)4] = 3 ⋅ (var [𝑉𝑏])2⋅ var [𝑉𝑎] + 12 ⋅ var [𝑉𝑏] ⋅ (cov [𝑉𝑎, 𝑉𝑏])2 ,
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𝐸 [(𝑉𝑎 − V𝑎)3 ⋅ (𝑉𝑏 − V𝑏)3] = 9 ⋅ var [𝑉𝑎] ⋅ var [𝑉𝑏]⋅ cov [𝑉𝑎, 𝑉𝑏] + 6 ⋅ (cov [𝑉𝑎, 𝑉𝑏])3 ,𝐸 [(𝑉𝑎 − V𝑎)4] = 3 ⋅ (var [𝑉𝑎])2 ,𝐸 [(𝑉𝑎 − V𝑎)4 ⋅ (𝑉𝑏 − V𝑏)4] = 3 ⋅ (8 ⋅ (cov [𝑉𝑎, 𝑉𝑏])4+ 24 ⋅ var [𝑉𝑎] ⋅ var [𝑉𝑏] ⋅ (cov [𝑉𝑎, 𝑉𝑏])2 + 3⋅ (var [𝑉𝑎])2 ⋅ (var [𝑉𝑏])2) .
(B.2)

A case of 𝑎 = 𝑏 in cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] yields
var [𝑡𝑎 (𝑉𝑎)]= (𝑏1𝑎)2 ⋅ var [𝑉𝑎] + (2 ⋅ 3 ⋅ 𝑏1𝑎 ⋅ 𝑏3𝑎 + 2 ⋅ (𝑏2𝑎)2)⋅ (var [𝑉𝑎])2+ (2 ⋅ 12 ⋅ 𝑏2𝑎 ⋅ 𝑏4𝑎 + 9 ⋅ (𝑏3𝑎)2 + 6 ⋅ (𝑏3𝑎)2)⋅ (var [𝑉𝑎])3 + (3 ⋅ 8 + 3 ⋅ 24) ⋅ (𝑏4𝑎)2⋅ (var [𝑉𝑎])4 .

(B.3)

C. The Conservation of the O-D Flow Variance
in Relation to the Total O-D Flow Variance
under the Stochastic Total O-D Flow

Total O-D flow variance is calculated as the sum of O-D flow
variance as follows:

var[∑
𝑖∈𝐼

𝑄𝑖] = ∑
𝑖∈𝐼

var [𝑄𝑖]
+ 2 ∑
𝑖1∈𝐼

∑
𝑖2( ̸=𝑖1)∈𝐼

cov [𝑄𝑖1 , 𝑄𝑖2] = ∑
𝑖∈𝐼

var[[∑
𝑗∈𝐽𝑖

𝐹𝑖𝑗]]
+ 2 ∑
𝑖1∈𝐼

∑
𝑖2( ̸=𝑖1)∈𝐼

cov[[ ∑
𝑗1∈𝐽𝑖1

𝐹𝑖1𝑗1 , ∑
𝑗2∈𝐽𝑖2

𝐹𝑖2𝑗2]]
= ∑
𝑖∈𝐼

(𝑐V ⋅ 𝑝𝑖 ⋅ 𝑞)2 ⋅ (∑
𝑗∈𝐽𝑖

𝑝𝑖𝑗)2
+ 2 ∑
𝑖1∈𝐼

∑
𝑖2( ̸=𝑖1)∈𝐼

(𝑝𝑖1 ∑
𝑗1∈𝐽𝑖1

𝑝𝑖1𝑗1)
⋅ (𝑝𝑖2 ∑

𝑗2∈𝐽𝑖2

𝑝𝑖2𝑗2) var [𝑄] = ∑
𝑖∈𝐼

(𝑐V ⋅ 𝑝𝑖 ⋅ 𝑞)2
+ 2 ∑
𝑖1∈𝐼

∑
𝑖2( ̸=𝑖1)∈𝐼

𝑝𝑖1 ⋅ 𝑝𝑖2 ⋅ (𝑐V ⋅ 𝑞)2 = (𝑐V ⋅ 𝑞)2

⋅ (∑
𝑖∈𝐼

(𝑝𝑖)2 + 2 ∑
𝑖1∈𝐼

∑
𝑖2( ̸=𝑖1)∈𝐼

𝑝𝑖1 ⋅ 𝑝𝑖2) = (𝑐V ⋅ 𝑞)2
= var [𝑄] .

(C.1)

D. The Results of (24) and (25) for 𝑚 = 4
By using (23), the mean link travel time and link travel time
covariance can be, respectively, calculated as𝐸 [𝑡𝑎 (𝑉𝑎)] = 𝑏0𝑎 + 𝑏2𝑎 ⋅ var [𝑉𝑎] + 3 ⋅ 𝑏4𝑎⋅ (var [𝑉𝑎])2 = 𝑏0𝑎 + 𝑏2𝑎 ⋅ (𝑐V ⋅ V𝑎)2 + 3 ⋅ 𝑏4𝑎 ⋅ (𝑐V⋅ V𝑎)4 = 𝑏0𝑎 + 𝑏̂2𝑎 ⋅ (V𝑎)𝜆 + 3 ⋅ 𝑏̂4𝑎 ⋅ (V𝑎)𝜆 ,

cov [𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] = 𝑏1𝑎 ⋅ 𝑏1𝑏 ⋅ cov [𝑉𝑎, 𝑉𝑏] + 3 ⋅ 𝑏1𝑎⋅ 𝑏3𝑏 ⋅ var [𝑉𝑏] ⋅ cov [𝑉𝑎, 𝑉𝑏] + 2 ⋅ 𝑏2𝑎 ⋅ 𝑏2𝑏⋅ (cov [𝑉𝑎, 𝑉𝑏])2 + 12 ⋅ 𝑏2𝑎 ⋅ 𝑏4𝑏 ⋅ var [𝑉𝑏]⋅ (cov [𝑉𝑎, 𝑉𝑏])2 + 3 ⋅ 𝑏3𝑎 ⋅ 𝑏1𝑏 ⋅ var [𝑉𝑎]⋅ cov [𝑉𝑎, 𝑉𝑏] + 𝑏3𝑎 ⋅ 𝑏3𝑏 ⋅ (9 ⋅ var [𝑉𝑎] ⋅ var [𝑉𝑏]⋅ cov [𝑉𝑎, 𝑉𝑏] + 6 ⋅ (cov [𝑉𝑎, 𝑉𝑏])3) + 12 ⋅ 𝑏4𝑎 ⋅ 𝑏2𝑏⋅ var [𝑉𝑏] ⋅ (cov [𝑉𝑎, 𝑉𝑏])2 + 𝑏4𝑎 ⋅ 𝑏4𝑏 ⋅ (3 ⋅ 8⋅ (cov [𝑉𝑎, 𝑉𝑏])4 + 3 ⋅ 24 ⋅ var [𝑉𝑎] ⋅ var [𝑉𝑏]⋅ (cov [𝑉𝑎, 𝑉𝑏])2) = 𝑏̂1𝑎 ⋅ 𝑏̂1𝑏 ⋅ (𝑐V ⋅ V𝑎𝑏)2 + 3 ⋅ 𝑏̂1𝑎⋅ 𝑏̂3𝑏 ⋅ (𝑐V ⋅ V𝑏)2 ⋅ (𝑐V ⋅ V𝑎𝑏)2 + 2 ⋅ 𝑏̂2𝑎 ⋅ 𝑏̂2𝑏 ⋅ (𝑐V⋅ V𝑎𝑏)4 + 12 ⋅ 𝑏̂2𝑎 ⋅ 𝑏̂4𝑏 ⋅ (𝑐V ⋅ V𝑏)2 ⋅ (𝑐V ⋅ V𝑎𝑏)4 + 3⋅ 𝑏̂3𝑎 ⋅ 𝑏̂1𝑏 ⋅ (𝑐V ⋅ V𝑎)2 ⋅ (𝑐V ⋅ V𝑎𝑏)2 + 𝑏̂3𝑎 ⋅ 𝑏̂3𝑏 ⋅ (9⋅ (𝑐V ⋅ V𝑎)2 ⋅ (𝑐V ⋅ V𝑏)2 ⋅ (𝑐V ⋅ V𝑎𝑏)2 + 6 ⋅ (𝑐V ⋅ V𝑎𝑏)6)+ 12 ⋅ 𝑏̂4𝑎 ⋅ 𝑏̂2𝑏 ⋅ (𝑐V ⋅ V𝑎)2 ⋅ (𝑐V ⋅ V𝑎𝑏)4 + 𝑏̂4𝑎 ⋅ 𝑏̂4𝑏⋅ (3 ⋅ 8 ⋅ (𝑐V ⋅ V𝑎𝑏)8 + 3 ⋅ 24 ⋅ (𝑐V ⋅ V𝑎)2 ⋅ (𝑐V ⋅ V𝑏)2⋅ (𝑐V ⋅ V𝑎𝑏)4) = 𝑏̂1𝑎 ⋅ 𝑏̂1𝑏 ⋅ (V𝑎)𝜆−1 ⋅ (V𝑎)𝜆−1 ⋅ (V𝑎𝑏)2+ 3 ⋅ 𝑏̂1𝑎 ⋅ 𝑏̂3𝑏 ⋅ (V𝑎)𝜆−1 ⋅ (V𝑎)𝜆−1 ⋅ (V𝑎𝑏)2 + 2 ⋅ 𝑏̂2𝑎⋅ 𝑏̂2𝑏 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑎𝑏)4 + 12 ⋅ 𝑏̂2𝑎 ⋅ 𝑏̂4𝑏⋅ (V𝑎)𝜆−2 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑎𝑏)4 + 3 ⋅ 𝑏̂3𝑎 ⋅ 𝑏̂1𝑏 ⋅ (V𝑎)𝜆−1⋅ (V𝑎)𝜆−1 ⋅ (V𝑎𝑏)2 + 9 ⋅ 𝑏̂3𝑎 ⋅ 𝑏̂3𝑏 ⋅ (V𝑎)𝜆−1 ⋅ (V𝑎)𝜆−1⋅ (V𝑎𝑏)2 + 6 ⋅ 𝑏̂3𝑎 ⋅ 𝑏̂3𝑏 ⋅ (V𝑎)𝜆−3 ⋅ (V𝑎)𝜆−3 ⋅ (V𝑎𝑏)6
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+ 12 ⋅ 𝑏̂4𝑎 ⋅ 𝑏̂2𝑏 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑎𝑏)4 + 3 ⋅ 8⋅ 𝑏̂4𝑎 ⋅ 𝑏̂4𝑏 ⋅ (V𝑎)𝜆−4 ⋅ (V𝑎)𝜆−4 ⋅ (V𝑎𝑏)8 + 3 ⋅ 24 ⋅ 𝑏̂4𝑎⋅ 𝑏̂4𝑏 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑎𝑏)4 = 𝑐41 ⋅ (V𝑎)𝜆−1⋅ (V𝑏)𝜆−1 ⋅ (V𝑎𝑏)2 + 𝑐42 ⋅ (V𝑎)𝜆−2 ⋅ (V𝑏)𝜆−2 ⋅ (V𝑎𝑏)4+ 𝑐43 ⋅ (V𝑎)𝜆−3 ⋅ (V𝑏)𝜆−3 ⋅ (V𝑎𝑏)6 + 𝑐44 ⋅ (V𝑎)𝜆−4⋅ (V𝑏)𝜆−4 ⋅ (V𝑎𝑏)8 ,
(D.1)

where𝑐41 = 𝑏̂1𝑎 ⋅ 𝑏̂1𝑏 + 3 ⋅ 𝑏̂1𝑎 ⋅ 𝑏̂3𝑏 + 3 ⋅ 𝑏̂3𝑎 ⋅ 𝑏̂1𝑏 + 9 ⋅ 𝑏̂3𝑎 ⋅ 𝑏̂3𝑏,𝑐42 = 2 ⋅ 𝑏̂2𝑎 ⋅ 𝑏̂2𝑏 + 12 ⋅ 𝑏̂2𝑎 ⋅ 𝑏̂4𝑏 + 12 ⋅ 𝑏̂4𝑎 ⋅ 𝑏̂2𝑏 + 3 ⋅ 24⋅ 𝑏̂4𝑎 ⋅ 𝑏̂4𝑏,𝑐43 = 6 ⋅ 𝑏̂3𝑎 ⋅ 𝑏̂3𝑏,𝑐44 = 3 ⋅ 8 ⋅ 𝑏̂4𝑎 ⋅ 𝑏̂4𝑏.
(D.2)

A condition of 𝑎 = 𝑏 in cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] yields
var [𝑡𝑎 (𝑉𝑎)] = (𝑐41 + 𝑐42 + 𝑐43 + 𝑐44 ) ⋅ (V𝑎)2𝜆 ∀𝑎 ∈ 𝐴, (D.3)

where 𝑐41 = (𝑏̂1𝑎 + 3𝑏̂3𝑎)2 ,𝑐42 = 2 ⋅ (𝑏̂2𝑎 + 6 ⋅ 𝑏̂4𝑎)2 ,𝑐43 = 6 ⋅ (𝑏̂3𝑎)2 ,𝑐44 = 3 ⋅ 8 ⋅ (𝑏̂4𝑎)2 .
(D.4)

E. The Proofs for (38)

Firstly, we will prove 𝜕𝑡̂𝑎(V𝑎)/𝜕V𝑎 > 0. By differentiating both
sides of (19) with respect to V𝑎, we obtain𝜕𝐸 [𝑡𝑎 (𝑉𝑎)]𝜕V𝑎 = 𝑚∑

𝑘=0

𝜕𝑏𝑘𝑎𝜕V𝑎 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘]󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎
+ 𝑚∑
𝑘=0

𝑏𝑘𝑎 ⋅ 𝜕𝐸 [(𝑉𝑎 − V𝑎)𝑘]𝜕𝑉𝑎
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎= 𝜕𝑏0𝑎𝜕V𝑎

+ 𝑚∑
𝑘=1

𝑏𝑘𝑎 ⋅ 𝑘 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘−1]󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎
= 𝜕𝑏0𝑎𝜕V𝑎 + 𝑏1𝑎 > 0 ∀𝑎 ∈ 𝐴,

(E.1)

where 𝜕𝑏0𝑎𝜕V𝑎 = 𝜕𝑡𝑎 (V𝑎)𝜕V𝑎 ,
𝑏1𝑎 = 𝜅𝑎. (E.2)

Therefore, 𝜕𝑡̂𝑎 (V𝑎)𝜕V𝑎 = 𝜕𝐸 [𝑡𝑎 (𝑉𝑎)]𝜕V𝑎 > 0. (E.3)

Next, we will prove 𝜕𝜎2𝑎(V𝑎)/𝜕V𝑎 > 0. By assuming 𝑉𝑎 = 𝑉𝑏 in
(20) and by differentiating both sides of (20) with respect to
V𝑎, we obtain𝜕 var [𝑡𝑎 (𝑉𝑎)]𝜕V𝑎

= 𝜕∑𝑚𝑘=0∑𝑚𝑙=0 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑎 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘+𝑙] − (𝐸 [𝑡𝑎 (𝑉𝑎)])2𝜕V𝑎
= 𝑚∑
𝑘=0

𝑚∑
𝑙=0

𝜕𝑏𝑘𝑎𝜕V𝑎 ⋅ 𝑏𝑙𝑎 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘+𝑙]󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎 + 𝑚∑𝑘=0 𝑚∑𝑙=0 𝑏𝑘𝑎
⋅ 𝑏𝑙𝑎𝜕V𝑎 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘+𝑙]󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎 + 𝑚∑𝑘=0 𝑚∑𝑙=0 (𝑘 + 𝑙) ⋅ 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑎
⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘+𝑙−1]󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎 − 2 ⋅ 𝐸 [𝑡𝑎 (𝑉𝑎)]
⋅ 𝜕𝐸 [𝑡𝑎 (𝑉𝑎)]𝜕𝑉𝑎 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎 = 𝜕𝑏0𝑎𝜕V𝑎 ⋅ 𝑏0𝑎 + 𝑏0𝑎 ⋅ 𝜕𝑏0𝑎𝜕V𝑎 + 2 ⋅ 𝑏0𝑎
⋅ 𝑏1𝑎 − 2𝑏0𝑎 ⋅ 𝑏1𝑎 = 2 ⋅ 𝜕𝑏0𝑎𝜕V𝑎 ⋅ 𝑏0𝑎 > 0 ∀𝑎 ∈ 𝐴.

(E.4)

Therefore, 𝜕𝜎2𝑎 (V𝑎)𝜕V𝑎 = 𝜕 var [𝑡𝑎 (𝑉𝑎)]𝜕V𝑎 > 0. (E.5)

Finally, we will prove 𝜕𝜎𝑎𝑏(V𝑎𝑏, V𝑎, V𝑏)/𝜕V𝑎𝑏 > 0. By differenti-
ating both sides of (20) with respect to V𝑎𝑏, we obtain

𝜕 cov [𝑡𝑎 (𝑉𝑎) , 𝑡𝑏 (𝑉𝑏)]𝜕V𝑎𝑏 = 𝜕∑𝑚𝑘=0∑𝑚𝑙=0 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙] − 𝐸 [𝑡𝑎 (𝑉𝑎)] ⋅ 𝐸 [𝑡𝑏 (𝑉𝑏)]𝜕V𝑎𝑏
= 𝜕∑𝑚𝑘=0∑𝑚𝑙=0 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙]𝜕V𝑎𝑏
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= 𝜕∑𝑚𝑘=0∑𝑚𝑙=0 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙]𝜕V𝑎 ⋅ 𝜕V𝑎𝜕V𝑎𝑏
+ 𝜕∑𝑚𝑘=0∑𝑚𝑙=0 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙]𝜕V𝑏 ⋅ 𝜕V𝑏𝜕V𝑎𝑏 .

(E.6)

It is shown that cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] > 0 if V𝑎𝑏 > 0 and
cov[𝑡𝑎(𝑉𝑎), 𝑡𝑏(𝑉𝑏)] = 0 otherwise.Thus, we will consider only
the condition of V𝑎𝑏 > 0 that is equivalent to 𝜕V𝑎/𝜕V𝑎𝑏 =𝜕V𝑏/𝜕V𝑎𝑏 = 1 in the following discussion. The first term of
the right-hand side of the equation above can be calculated
as follows:𝜕∑𝑚𝑘=0∑𝑚𝑙=0 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙]𝜕V𝑎

= 𝑚∑
𝑘=0

𝑚∑
𝑙=0

𝜕𝑏𝑘𝑎𝜕V𝑎 ⋅ 𝑏𝑙𝑏⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙]󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎 ,𝑉𝑏=V𝑏
+ 𝑚∑
𝑘=1

𝑚∑
𝑙=0

𝑘 ⋅ 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏
⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘−1 ⋅ (𝑉𝑏 − V𝑏)𝑙]󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑎=V𝑎 ,𝑉𝑏=V𝑏= 𝜕𝑏0𝑎𝜕V𝑎 ⋅ 𝑏0𝑏 + 𝑏1𝑎 ⋅ 𝑏0𝑏 > 0.

(E.7)

In the same manner, the following relationship is also
obtained:𝜕∑𝑚𝑘=0∑𝑚𝑙=0 𝑏𝑘𝑎 ⋅ 𝑏𝑙𝑏 ⋅ 𝐸 [(𝑉𝑎 − V𝑎)𝑘 ⋅ (𝑉𝑏 − V𝑏)𝑙]𝜕V𝑏 > 0. (E.8)

Therefore,𝜕𝜎𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏)𝜕V𝑎𝑏 = 𝜕cov [𝑡𝑎 (𝑉𝑎) , 𝑡𝑏 (𝑉𝑏)]𝜕V𝑎𝑏 > 0. (E.9)

By using the results shown above, the following two condi-
tions are obtained:𝜕𝑔𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏)𝜕V𝑎𝑏 = 2 ⋅ 𝜔 ⋅ 𝜕𝜎𝑎𝑏 (V𝑎𝑏, V𝑎, V𝑏)𝜕V𝑎𝑏 > 0

∀𝑎, 𝑏 ∈ 𝐴,𝜕𝑔𝑎 (V𝑎)𝜕V𝑎 = 𝜕𝑡̂𝑎 (V𝑎)𝜕V𝑎 + 𝜔 ⋅ 𝜕𝜎2𝑎 (V𝑎)𝜕V𝑎 > 0
∀𝑎 ∈ 𝐴.

(E.10)
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