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Due to the increasing popularity of alternative-fuel (AF) vehicles in the last two decades, several models and solution techniques
have been recently published in the literature to solve AF refueling station location problems. These problems can be classified
depending on the set of candidate sites: when a (finite) set of candidate sites is predetermined, the problem is called discrete; when
stations can be located anywhere along the network, the problem is called continuous.Most researchers have focused on the discrete
version of the problem, but solutions to the discrete version are suboptimal to its continuous counterpart. This study addresses the
continuous version of the problem for an AF refueling station on a tree-type transportation network when a portion of drivers are
willing to deviate from their preplanned simple paths to receive refueling service. A polynomial time solution approach is proposed
to solve the problem. We first present a new algorithm that identifies all possible deviation options for each travel path. Then, an
efficient algorithm is used to determine the set of optimal locations for the refueling station that maximizes the total traffic flow
covered. A numerical example is solved to illustrate the proposed solution approach.

1. Introduction

The US national highway system significantly contributes to
the country’s economic development. In particular, it plays
a major role in providing mobility for goods and services.
Using highways, trucks carry the largest shares by value, tons,
and ton-miles for shipments moving 750 or fewer miles in
the US [1]. As concerns over climate change are increasingly
becoming a global issue, logistics companies are interested in
replacing their diesel trucks by alternative-fuel (AF) trucks
[2]. However, to introduce AF trucks to logistics companies
successfully, a well-designed refueling infrastructure in the
highway system is a prerequisite. The rest of this section
highlights the relevance of tree networks in transportation,
the significance of the single station location problem for a
new AF refueling infrastructure, and the continuous version
of the problem and summarizes the main contributions of
this research work.

1.1. Tree Structure in Transportation Networks. While the US
national highway system consists of a set of circuit networks,
if it is partitioned into local highway systems by operating
authority, thenmany of them form trees or tree-like networks.
Table 1 displays the local highway systems in the US along
with their operating authorities that have tree or tree-like
network structures. As shown in this table, 10 turnpikes
and 8 portions of interstate highways within certain states
constitute tree structures [3]. Furthermore, if we consolidate
beltways and cycles within metro areas into single vertices,
then 11 more portions of interstate highways within certain
states can also be considered as tree-like structures [4, 5]. In
addition, we can observe that toll roads and highways in other
countries, such as Chile, Croatia (southern and northeast
regions), Indonesia, Ireland (excluding the Dublin region),
Malaysia, Norway (northern region), Philippines, Slovakia,
Spain (excluding the Catalan region), and Serbia, to name a
few, have tree or tree-like network structures. Note also that
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Table 1: Tree network structures in the US highways.

State Road type∗ Type of network structure Component highways Operating authority

AL I Tree-like, including Birmingham
beltway I-20, I-22, I-59, I-65, I-85 AL Department of

Transportation (DOT)
AK S Tree in Southcentral area AK-1, AK-3 AK DOT and Public Facilities

AZ I Tree-like, including Phoenix
beltway I-8, I-10, I-15 I-17, I-19, I-40 AZ DOT

AR I Tree-like, including Little Rock
beltway I-30, I-40, I-49, I-55, I-530, I-555 AR Highway and Transportation

Department

CO I Tree-like, including Denver
beltway I-25, I-70, I-76 CO DOT

GA I
Tree-like, including beltways in
Atlanta, Augusta, Columbus, and
Macon

I-16, I-20, I-59, I-75, I-85, I-185, I-285,
I-675, I-985 GA DOT

ID I Tree I-15, I-84, I-86, I-90 ID Transportation Department

IN T Tree I-80, I-90 IN Finance Authority/ ITR
Concession Company LLC

KS T Tree I-35, I-70, I-335, I-470 KS Turnpike Authority
ME T Tree I-95 ME Turnpike Authority
MA T Tree I-90 MA DOT

MN I Tree-like, including Minneapolis
beltway I-35, I-90, I-94 MN DOT

MS I Tree I-20, I-22, I-55, I-59 MS DOT
MT I Tree I-15, I-90, I-94 MT DOT

NE I Tree-like, including Omaha
beltway I-76, I-80 NE Department of Roads

NV I Tree-like, including Las Vegas
beltway I-15, I-80, I-515 NV DOT

NH T Tree I-93, I-95, NH-3, NH-16 NH DOT
NM I Tree I-10, I-25, I-40 NM DOT
NY T Tree I-87, I-90 NY State Thruway Authority
ND I Tree I-29, I-94 ND DOT
OH T Tree I-76, I-80, I-90 OH Turnpike Commission

OK T Tree I-35, I-40, I-44, US-66, US-165, US-177,
US-412, OK-1, OK-51, OK-66, OK-165 OK Turnpike Authority

OR I Tree-like, including Portland
beltway I-5, I-84 OR DOT

PA T Tree I-70, I-76, I-276, I-376, I-476, PA-43,
PA-60, PA-66, PA-576 PA Turnpike Commission

SD I Tree I-29, I-90 SD DOT

UT I Tree-like, including Salt Lake
City beltway I-15, I-70, I-80, I-84 UT DOT

VT I Tree I-89, I-91, I-93 VT Agency of Transportation
WV T Tree I-64, I-77 WV Parkways Authority
WY I Tree I-25, I-80, I-90 WY DOT
∗I: interstate highway, S: state highway, and T: turnpike.

road networks in sparsely settled areas are generally trees,
since tree road networks are the cheapest to construct.

Trees are central to the structural understanding of net-
works and graphs and often occur with additional attributes
such as roots and vertex-ordering. They have a wide range of
applications, including data storage, searching, information
processing, and facility location [6]. Because it is easier to
get insights into tree network problems, numerous articles

in classical facility location problems on transportation net-
works without cycles are available in the literature ([7–9] and
others).

1.2. SettingUp anAFRefueling Station onToll Roads. Building
an AF refueling station usually requires a substantial invest-
ment. For example, it takes $1.8 million to $4.7 million to
construct a natural gas refueling station on the Pennsylvania
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Turnpike without including the land value [10]. Due to the
financial risk, it is unusual to build multiple AF refueling
stations on the same road network simultaneously. Instead,
an operating authority may be more inclined in setting up
a single station first in a high traffic area and planning the
gradual future construction of additional stations with the
goal of maximizing the coverage of traffic flow. For example,
the Pennsylvania Turnpike Commission opened the first
refueling station at New Stanton Service Plaza in 2014 to
serve compressed natural gas (CNG) vehicles and it currently
remains as the only CNG station on the turnpike [11]. As a
second example, the Oklahoma Turnpike Authority opened
the first CNG station at Stroud Travel Plaza on the turnpike
in 1991, which was renovated in 2014, and then 23 years later,
the authority opened the second CNG station at McAlester
Travel Plaza on the turnpike in 2014 [12–14]. Note that both
of these turnpikes form tree networks.

Several articles have been published regarding the classi-
cal single facility location problem on tree networks ([7, 15–
17] and others). Three versions of the problem exist depend-
ing on the main objective: the objective of the 1-median
problem is to minimize the total travel distance from the
new facility to existing facilities; in the 1-center problem,
the objective is to minimize the maximum travel distance;
and the covering problem finds the location of a facility that
can reach (cover) the maximum number of existing facilities
within a given travel distance. Francis et al. ([5], Chapter
7) describe motivating applications of location problems
on trees, as well as properties and solution algorithms for
the three versions of the problem. None of the algorithms
developed to solve classical single facility location problems
on tree networks, however, is suitable for locating an AF
refueling station on tree-like road networks because of the
differences in the objective function. In the location of an
AF station, the objective of maximizing the total traffic
flow covered by the station is more desirable by operating
authorities. Furthermore, locating an AF refueling station
requires a different strategy to deal with demand. Note that
the classical single facility location problem regards demand
as a weight at vertices. Instead, drivers (demand) on toll
roads and highways usually stop by the refueling station
on the way to their final destination. Considering that this
refueling activity for a driver is a unit of demand, a path-
based demand model, in which the demand on the travel
path can be covered by a facility located on the path, is more
appropriate for solving theAF refueling station location prob-
lem.

1.3. Continuous Refueling Station Location Problem. We can
classify refueling station location problems into two types
depending on the set of candidate sites: when a preliminary
(finite) set of candidate sites is given, this problem is called
discrete; when the station can be located anywhere along the
network, the problem is called continuous. Ventura et al. [18]
introduced the continuous version of the refueling station
location problem. Since an optimal solution to the discrete
version of the problem is always a feasible solution to the
continuous version, an optimal solution to the continuous
refueling station location problem can achieve a considerable

improvement in terms of demand coverage. The continuous
version of the problem is, however, more challenging than its
discrete counterpart due to the size of the search space.

1.4. Contribution. In this study, we consider the continuous
version of an AF refueling station location problem on a
tree network, where a portion of drivers have the option of
selecting a deviation path if the refueling station is not located
along their preplanned routes. We believe that this is the
first research work on the continuous version of the problem
where the deviation option is considered. This option is
expected to be very common for drivers with AF vehicles
during the introductory period of these vehicles to themarket
since AF refueling infrastructures are usually nonexistent
or underdeveloped. The deviation option is also available
to drivers of conventional fossil-fuel vehicles (powered by
gasoline anddiesel engines)when they cannot find a refueling
station on their routes.Thus, considering deviation will make
the problemmore practical in deciding the potential location
for the refueling station.

Compared with the original continuous refueling station
location problem [18], the theoretical contribution of this
study is twofold. First, we derive a number of properties
to identify the deviation options for each origin/destination
(O/D) pair considering the length of the simple path, the
minimum fuel tank levels at the origin and destination, and
the vehicle driving range.Then, we develop a novel algorithm
that finds all deviation paths for each O/D pair in polynomial
time. Using the original path in the tree network and the
corresponding deviation options, we construct the subtree
that contains all the potential station locations that cover
the traffic flow of the corresponding O/D pair. Second, we
derive a mathematical property that characterizes the set of
optimal station locations that donot requireVentura et al. [18]
assumption that the intersection vertices in all used simple
paths must have positive traffic flow in at least one short trip.
This property is essential in the development of the algorithm
that finds the complete set of optimal station locations for the
entire network.

By allowing vehicle deviation in the continuous refueling
station location problem, the solution approach proposed
in this article is capable of finding all possible alternative
paths for any O/D pair and improving suboptimal solutions
obtained by the existing models in the literature. To best
of our knowledge, all the existing models that consider
vehicle deviation solve discrete versions of the problem, and
therefore, they choose locations from a predetermined set of
candidate sites (vertices) and enable deviation only if such
vertices can be reached within the vehicle driving range.
Therefore, their solutions may not be optimal [19]. On the
other hand, this study considers all possible deviation paths in
the network regardless of the location of vertices on detours
and the station can be located anywhere along any detour
edge. Thus, the proposed solution approach can improve any
possible suboptimality produced by the existing models and
generate the entire set of optimal points.

To verify the performance of our proposed solution
approach, a numerical example is used in Section 7.3 to com-
pare the solution obtained by our method with those from
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Table 2: Comparison among three methodologies for solving an AF refueling station location problem.

Kim and Kuby [20] Ventura et al. [18] Proposed solution
approach

Objective function Maximizing the total traffic
flow covered by the station

Maximizing the total traffic
flow covered by the station

Maximizing the total traffic
flow covered by the station

Set of candidate sites (i) Predetermined
(ii) Finite (vertices only)

(i) Transportation network
(ii) Infinite (anywhere in
the network)

(i) Transportation network
(ii) Infinite (anywhere in
the network)

Deviation Yes No Yes

Deviation paths Endpoints of deviation
paths must be vertices N/A

One endpoint of a deviation
path must be a vertex and
the other can be any point
along the network

Main constraints

(i) Number of refueling
stations
(ii) Vehicle driving range
(iii) Distance decay
functions for traffic flow
rate on deviation paths

(i) Setting up an initial
refueling station
(ii) Vehicle driving range
(iii) Positive traffic flow rate
for some short trips

(i) Setting up an initial
refueling station
(ii) Vehicle driving range
(iii) Portion of drivers who
select the deviation option

Global optimum No Yes Yes
Computational
complexity NP-hard Polynomial (𝑂(𝑛4))∗ Polynomial (𝑂(𝑛5))∗
∗𝑛 = number of vertices.

the Kim and Kuby [20] model and the Ventura et al. [18]
algorithm. Table 2 provides a detailed comparison of these
three methodologies. Note that these three methodologies
have the same objective function, that is, maximizing the
total traffic flow covered by the station, but different settings.
Section 7.3 uses a numerical example to compare the quality
of the solutions obtained by these three methods.

The rest of this article is organized as follows. Section 2
briefly reviews literature related to refueling station location
problems. Section 3 includes the problem statement and
derives a property related to the deviation option. Section 4
identifies a set of candidate points for potential locations
of the refueling station. Section 5 determines optimal points
from the set of candidate points for the refueling station that
covers the maximum traffic flow when a portion of drivers
select the deviation option. Section 6 builds the complete
set of optimal solutions by identifying additional optimal
points located in the interior of pathswhose endpoints belong
to the preliminary set of optimal points. Section 7 provides
a numerical example to illustrate the proposed solution
approach, examine the coupled effects of deviation portion
and vehicle driving range on the set of optimal locations and
the maximum traffic flow covered, and analyze its perfor-
mance. Lastly, Section 8 presents a summary of this study and
a list of topics for future research.

2. Literature Review

While classical facility location problems regard demand as
a weight at vertices representing number of customers that
need to receive service at the new facilities or number of
trips to these facilities, refueling station location problems
require a different strategy to deal with demand. Drivers

(demand) on toll roads and highways are able to refuel their
vehicles if they pass by a refueling station on their preplanned
paths. Considering that this refueling activity for a driver
is a unit of demand, Hodgson [21] and Berman et al. [22]
introduced the flow-capturing location model (FCLM) to
find the facility locationswith the objective ofmaximizing the
traffic flow covered. Kuby and Lim [23] extended the FCLM
and suggested the flow refueling location model (FRLM) that
incorporates a driving range. Since the concept of this model
is well suited for identifying optimal refueling station sites for
AF vehicles, many subsequent studies have been published
using the idea of the FRLM. In particular, Kim and Kuby
[20] proposed the deviation-flow refueling location model
(DFRLM), which is an extension of the FRLM considering
driver deviation behavior when searching for potential sites
for the refueling stations. Later, Kim and Kuby [24] suggested
two heuristics to solve the DFRLM efficiently.

Recently, refueling station location models have been
extended to more general forms considering specific applica-
tions, including a multiperiod planning formulation for the
allocation of electric charging stations over time [25]; a two-
stage stochastic station location model, where the first stage
locates permanent stations and the second locates portable
stations [26]; a new model that considers multiple deviation
paths between each of the O/D pairs when searching for
station locations [27]; novel station location formulations
for symmetric transportation networks that consider both
single- and dual-access candidate sites [28, 29]; a biobjective
model to estimate the greenhouse gases emissions reduction
as a function of the refueling infrastructure budget [10]; and
models that consider capacitated stations and traffic devia-
tions over multiple time periods [30], and traffic deviation
considering route choice and demand uncertainty [31], under
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the assumption that vehicles only require one refueling stop
for intracity trips.

While most refueling station location problems and
extensions assume that the station can be located only either
on the vertices of the network or within a finite set of
candidate sites, Ventura et al. [18] considered the continuous
version of the problem for a single station, where the station
can be located anywhere along a tree-type transportation
network, and developed a polynomial time algorithm to find
the set of optimal location points.

3. Problem Statement

Now, we address the continuous deviation-flow location
problem on a tree network. Considering that a portion of
drivers are willing to deviate from their paths, the objective
of this problem is to determine the set of locations for an AF
refueling station that maximizes the total traffic flow covered
(in round trips per time unit) by the station. To simplify
but accurately formulate and solve the problem, we consider
the following assumptions. First, an uncapacitated refueling
station can provide service to all vehicles driving through
both directions of the road segment where it is located. It
assures that all vehicles passing through the refueling station
in either direction of the road segment can be refueled at the
station. Second, all vehicles have the same fuel tank size, and
fuel consumption is a linear function of the driving distance.
This means that all vehicles have the same driving range
per refueling, denoted as 𝑅, regardless of road conditions,
climate, congestion, or any other variables. Third, vehicles
perform a complete round trip between their origin and
destination points on the network. A complete round trip
in this assumption ensures that every vehicle goes back to
its origin after arriving at its intended destination. A trip
from origin to destination is called an original trip, and a trip
from destination to origin is called a return trip. A round
trip consists of an original trip and a return trip. Fourth,
each vehicle enters and exits the network with a fuel tank
that is at least half-full. This assumption was first suggested
by Kuby and Lim [23] and since then has been followed by
most of the researchers on this type of problems, considering
that information about the actual fuel tank level of vehicles
at origins and destinations is difficult to obtain or likely to
be inaccurately estimated. The purpose of this assumption
is to make sure that the same round trip can be repeated
many times without running out of fuel along the path.
This assumption assures that if a vehicle can access the last
refueling station on the original trip and reach the destination
along the path with at least a half-full tank, then this vehicle
can also make the return trip from the destination starting
with a half-full tank and reaching the same refueling station
without running out of fuel. Similarly, if a vehicle at the last
station on the return trip can reach the origin along the path
with at least a half-full tank, then this vehicle can also make
the original trip from the origin with a half-full tank and
safely arrive at the same station. Fifth, the deviation option
from a simple path is available to all drivers for their refueling
service. However, only a certain portion 𝛼 of the drivers
selects this option, where 0 ≤ 𝛼 ≤ 1. This implies that

𝛼 × 100% of traffic flow deviates from their simple paths for
refueling service. We call this flow the deviation-flow.

Let 𝑇(𝑉, 𝐸) be an undirected tree network consisting of
a set 𝑉 with 𝑛 vertices and a set 𝐸 with 𝑛 − 1 edges, where𝑛 ≥ 2; otherwise, the network is trivial. An edge (V𝑖, V𝑗) ∈ 𝐸
is defined if V𝑖 ∈ 𝑉 and V𝑗 ∈ 𝑉 are directly connected. We
also denote 𝑃(V𝑖, V𝑗) as the unique simple path between V𝑖
and V𝑗 for 𝑖 < 𝑗, for all V𝑖, V𝑗 ∈ 𝑉. Set 𝐿 is defined as the
set of all possible paths in 𝑇; that is, 𝐿 = {𝑃(V𝑖, V𝑗) | 𝑖 <𝑗, for all V𝑖, V𝑗 ∈ 𝑉}. The average traffic flow along 𝑃(V𝑖, V𝑗)
is denoted as 𝑓(V𝑖, V𝑗). We note that 𝑓(V𝑖, V𝑗) refers to the
average of traffic flow of the original trip from V𝑖 to V𝑗 and the
return trip from V𝑗 to V𝑖 and is defined only for 𝑖 < 𝑗. We use𝑓(V𝑖, V𝑗) to represent the round trips per time unit between
V𝑖 and V𝑗. The length of 𝑃(V𝑖, V𝑗) is denoted as 𝑑(V𝑖, V𝑗), and𝑑(V𝑖, V𝑗) = 𝑑(V𝑗, V𝑖). Similarly, 𝑃(V𝑖, 𝑥) denotes the unique
simple path between V𝑖 ∈ 𝑉 and any point 𝑥 ∈ 𝑇, and the
length of this path is denoted as 𝑑(V𝑖, 𝑥) = 𝑑(𝑥, V𝑖).

To address the continuous deviation-flow location prob-
lem, we distinguish between the traffic flow and the
deviation-flow on a path. The traffic flow between V𝑖 and V𝑗
is “covered” by a refueling station if the station is located at
some point 𝑥 along𝑃(V𝑖, V𝑗)within a distance𝑅/2 from V𝑖 and
V𝑗. Then, the set of paths with positive traffic flow covered by
a point 𝑥 ∈ 𝑇, denoted as 𝑆(𝑥), is defined as follows:

𝑆 (𝑥) = {𝑃 (V𝑖, V𝑗) | 𝑥 ∈ 𝑃 (V𝑖, V𝑗) , 𝑓 (V𝑖, V𝑗)
> 0, 𝑑 (V𝑖, 𝑥) ≤ 𝑅2 , 𝑑 (𝑥, V𝑗) ≤ 𝑅2 , 𝑖 < 𝑗, ∀V𝑖, V𝑗
∈ 𝑉} .

(1)

Alternatively, the deviation-flow originating in path 𝑃(V𝑖, V𝑗)
is covered by the station if it is placed at a point 𝑥 somewhere
in the network within a distance 𝑅/2 from V𝑖 and V𝑗, but
not along path 𝑃(V𝑖, V𝑗). Then, the set of paths with positive
deviation-flow covered by a point 𝑥 ∈ 𝑇, denoted as 𝑆𝐷(𝑥), is
defined as follows:

𝑆𝐷 (𝑥) = {𝑃 (V𝑖, V𝑗) | 𝑥 ∈ 𝑇\𝑃 (V𝑖, V𝑗) , 𝛼 × 𝑓 (V𝑖, V𝑗)
> 0, 𝑑 (V𝑖, 𝑥) ≤ 𝑅2 , 𝑑 (𝑥, V𝑗) ≤ 𝑅2 , 𝑖 < 𝑗, ∀V𝑖, V𝑗
∈ 𝑉} .

(2)

Now, the total traffic flow (in round trips per time unit),
including 𝑓(V𝑖, V𝑗) and 𝛼 ×𝑓(V𝑖, V𝑗), for all V𝑖, V𝑗 ∈ 𝑉, covered
by a refueling station at 𝑥 ∈ 𝑇, denoted as 𝐹(𝑥), is calculated
as follows:

𝐹 (𝑥) = ∑
𝑃(V𝑖 ,V𝑗)∈𝑆(𝑥)

𝑓 (V𝑖, V𝑗) + ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷(𝑥)

𝛼 × 𝑓 (V𝑖, V𝑗) . (3)

Thus, an optimal point 𝑥∗ that covers the maximum traffic
flow (in round trips per time unit) in tree 𝑇 can be obtained
by comparing the values of 𝐹(𝑥) for all 𝑥 ∈ 𝑇; that is, 𝑥∗ ∈
argmax{𝐹(𝑥) | 𝑥 ∈ 𝑇}.
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Figure 1: Simple deviation path.

When a refueling station is not located in a simple path,
vehicles traveling along this path can deviate to a separate
subpath for their refueling service. In a deviation path, this
separate subpath is called a symmetric cycle, because the
subpath begins at a vertex in the simple path, reaches the
station location, and returns to the same vertex using the
same subpath in the opposite direction. This closed walk
includes at least one repeating vertex. Since we consider a
refueling station to be located on the tree network, vehicles
can take a symmetric cycle originating at a vertex located
on their simple path and the entire path is called a simple
deviation path. That is, each simple deviation path consists
of a simple path and a symmetric cycle.

Figure 1 shows an example of an undirected tree network
to help understand the concept of simple deviation path, as
well as sets 𝑆(𝑥) and 𝑆𝐷(𝑥). The numerical value next to each
edge of the network indicates the distance between the two
vertices or between a vertex and a point. In this example, let
us assume 𝑅 = 80 and 𝛼 = 0.20. If drivers make a round
trip between V1 and V3 with 𝑓(V1, V3) = 100, the simple path
is 𝑃(V1, V3), the vertex visitation sequence between V1 and V3
is {V1, V2, V3}, and 100 round trips (per time unit) use that
vertex visitation sequence. However, if a refueling station is
located at point 𝑟 in the middle of edge (V4, V6), 20 round
trips from 𝑓(V1, V3) deviate to a symmetric cycle with vertex
visitation sequence {V2, V4, 𝑟, V4, V2}. Thus, the entire vertex
visitation sequence for the simple deviation path between V1
and V3 is {V1, V2, V4, 𝑟, V4, V2, V3}. If there exists another traffic
flow 𝑓(V4, V6) = 400, then 𝑆(𝑟) = {𝑃(V4, V6)} and 𝑆𝐷(𝑟) ={𝑃(V1, V3)}. Thus, the total traffic flow covered by a refueling
station located at 𝑟 is calculated as 𝐹(𝑟) =∑𝑃(V𝑖 ,V𝑗)∈𝑆(𝑟) 𝑓(V𝑖, V𝑗)
+∑𝑃(V𝑖 ,V𝑗)∈𝑆𝐷(𝑟) 𝛼×𝑓(V𝑖, V𝑗) = 𝑓(V4, V6)+0.20×𝑓(V1, V3) = 420
round trips (per time unit).

If there exists an edge in the network whose length is
greater than 𝑅, no traffic flow going through the edge can
be covered by a single refueling station due to the half-full
tank assumption of vehicles at the origin and destination
vertices in their round trips. Furthermore, no deviation-flow
going through this edge can be covered by a station located in
any symmetric cycle. Thus, we need to split the tree network
into subtrees by removing all edges whose distance is greater
than 𝑅 and solve the station location problem in each subtree
separately. Let 𝐸 = {(V𝑖, V𝑗) | 𝑑(V𝑖, V𝑗) > 𝑅, for (V𝑖, V𝑗) ∈ 𝐸}.
Then, we eliminate all edges in𝐸 from𝑇(𝑉, 𝐸) to form a forest

𝐹(𝑉𝐹, 𝐸𝐹) with 𝑉𝐹 = 𝑉 and 𝐸𝐹 = 𝐸\𝐸, such that 𝐹(𝑉𝐹, 𝐸𝐹) =⋃𝑡𝑞=1 𝑇𝑞(𝑉𝑞, 𝐸𝑞), where 𝑇𝑞 is the 𝑞th subtree that consists of a
set of vertices 𝑉𝑞 and a set of edges 𝐸𝑞, and 𝑡 = |𝐸| + 1 is the
total number of subtrees 𝑇𝑞 in forest 𝐹(𝑉𝐹, 𝐸𝐹).

Now, for subtree 𝑇𝑞, 𝑞 = 1, . . . , 𝑡, if there exists a
symmetric cycle originating at a vertex located on a simple
path in𝑇𝑞 that can reach some segments in the removed edges
in 𝐸, the corresponding deviation-flow can be covered by a
point located on one of the segments in these edges. In this
case, we need to construct an expanded subtree 𝑇̂𝑞 from𝑇𝑞 by
adding these reachable edges into 𝑇𝑞. Thus, for each subtree𝑇𝑞, we first need to identify all vertices in𝑉𝑞 that are endpoints
of the edges in 𝐸. Let V𝑘 be one of the vertices in 𝑉𝑞 that is
adjacent to V𝑙 ∈ 𝑉\𝑉𝑞 by (V𝑘, V𝑙) ∈ 𝐸. Then, the set of vertices
V𝑘 in𝑉𝑞 is defined as𝑉󸀠𝑞 = 𝑉(𝐸) ∩𝑉𝑞, where𝑉(𝐸) is the set of
vertices in 𝐸. After identifying 𝑉󸀠𝑞 , the set of edges in 𝐸 that
are connected to V𝑘 in 𝑉󸀠𝑞 is defined as 𝐸(V𝑘) = {(V𝑘, V𝑙) ∈ 𝐸 |
V𝑙 ∈ 𝑉\𝑉𝑞}. In addition, the set of vertices V𝑙 ∈ 𝑉\𝑉𝑞 that
are adjacent to V𝑘 in 𝑉󸀠𝑞 is defined as 𝑉(V𝑘) = 𝑉(𝐸(V𝑘))\{V𝑘},
where 𝑉(𝐸(V𝑘)) is the set of vertices in 𝐸(V𝑘). For V𝑘 ∈ 𝑉󸀠𝑞 , if
any positive deviation-flow 𝛼 × 𝑓(V𝑖, V𝑗) from path 𝑃(V𝑖, V𝑗)
in 𝑇𝑞 can be covered by some point 𝑥 located on one of the
edges in 𝐸(V𝑘), then we add the edge in 𝐸(V𝑘) into 𝐸𝑞 and the
corresponding end point (vertex) in 𝑉(V𝑘) into 𝑉𝑞. That is,
for subtree 𝑇𝑞(𝑉𝑞, 𝐸𝑞), 𝑞 = 1, . . . , 𝑡, we first initialize set 𝑉𝑞
as an empty set, where 𝑉𝑞 is used to collect all V𝑘 ∈ 𝑉󸀠𝑞 such
that 𝛼 × 𝑓(V𝑖, V𝑗), V𝑖, V𝑗 ∈ 𝑉𝑞, can be covered by some point𝑥 located on one of the edges in 𝐸(V𝑘). Next, for V𝑘 ∈ 𝑉󸀠𝑞 , if
we find at least one 𝛼 × 𝑓(V𝑖, V𝑗) > 0, for 𝑃(V𝑖, V𝑗) ∈ 𝐿 in 𝑇𝑞,
such that max{𝑑(V𝑖, V𝑘), 𝑑(V𝑗, V𝑘)} < 𝑅/2, then we add V𝑘 into𝑉𝑞. Finally, we construct expanded subtree 𝑇̂𝑞(𝑉̂𝑞, 𝐸𝑞), such
that 𝑉̂𝑞 = 𝑉𝑞 ∪ {⋃V𝑘∈𝑉𝑞

𝑉(V𝑘)} and 𝐸𝑞 = 𝐸𝑞 ∪ {⋃V𝑘∈𝑉𝑞
𝐸(V𝑘)}.

Based on the expanded subtree 𝑇̂𝑞 constructed above for each
subtree 𝑇𝑞, we can derive the following property.

Property 1 (expanded subtree property). Let 𝑥∗ denote an
optimal point to the continuous deviation-flow location
problem for an AF refueling station on 𝑇. Regarding the
number of expanded subtrees from 𝑇 and the location of 𝑥∗
as well as the value of 𝐹(𝑥∗), we consider the following two
cases:

(a) If 𝑓(V𝑖, V𝑗) = 0, for all 𝑃(V𝑖, V𝑗) ∈ 𝐿 such that 𝑑(V𝑖,
V𝑗) ≤ 𝑅, then the number of expanded subtrees 𝑡 ≤𝑛, 𝑥∗ can be located anywhere in 𝑇, and 𝐹(𝑥∗) = 0.

(b) Otherwise, the number of expanded subtrees 𝑡 < 𝑛,
and 𝑥∗ has to be placed on an expanded subtree𝑇̂𝑞 that contains some path 𝑃(V𝑖, V𝑗) ∈ 𝐿 such that𝑓(V𝑖, V𝑗) > 0 and 𝑑(V𝑖, V𝑗) ≤ 𝑅. In this case, 𝐹(𝑥∗) > 0.

Proof. In case (a), if 𝑑(V𝑖, V𝑗) > 𝑅, for all (V𝑖, V𝑗) ∈ 𝐸, then 𝐸 =𝐸.This implies that 𝑛 expanded subtrees 𝑇̂𝑞 are created, where
each 𝑇̂𝑞 is composed of an isolated vertex. Otherwise, at least
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an edge (V𝑖, V𝑗) ∈ 𝐸 such that 𝑑(V𝑖, V𝑗) ≤ 𝑅 exists. Thus, there
exists an expanded subtree 𝑇̂𝑞 that contains edge (V𝑖, V𝑗) ∈ 𝐸𝑞.
This implies that 𝑇̂𝑞 includes at least two vertices; that is,
V𝑖, V𝑗 ∈ 𝑉̂𝑞; thus, the number of expanded subtrees 𝑡 < 𝑛.
Besides, since 𝑓(V𝑖, V𝑗) = 0, for all 𝑃(V𝑖, V𝑗) ∈ 𝐿 such that𝑑(V𝑖, V𝑗) ≤ 𝑅, 𝑆(𝑥) = 𝑆𝐷(𝑥) = 0, and 𝐹(𝑥) = 0, for all 𝑥 ∈ 𝑇.
Thus, for any point 𝑥 ∈ 𝑇, 𝐹(𝑥) = 0, which means that 𝑥∗ can
be located anywhere in 𝑇 and 𝐹(𝑥∗) = 0.

In case (b), there exists at least one path 𝑃(V𝑖, V𝑗) ∈ 𝐿,
such that 𝑓(V𝑖, V𝑗) > 0 and 𝑑(V𝑖, V𝑗) ≤ 𝑅. Thus, there exists an
expanded subtree 𝑇̂𝑞 that contains 𝑃(V𝑖, V𝑗) and at least two
vertices V𝑖, V𝑗 ∈ 𝑉̂𝑞. This means that the number of expanded
subtrees 𝑡 < 𝑛. If the refueling station is located at a point 𝑥 at
an isolated vertex in 𝑇̂𝑞, then 𝑆(𝑥) = 𝑆𝐷(𝑥) = 0, and 𝐹(𝑥) = 0.
If the station is located at a point 𝑥 along a symmetric cycle
of 𝑃(V𝑖, V𝑗), then 𝑃(V𝑖, V𝑗) ∈ 𝑆𝐷(𝑥); that is, 𝑆𝐷(𝑥) ̸= 0, and𝐹(𝑥) ≥ 𝛼×𝑓(V𝑖, V𝑗) ≥ 0. If the station is in the middle point 𝑥
of 𝑃(V𝑖, V𝑗), then 𝑃(V𝑖, V𝑗) ∈ 𝑆(𝑥), which indicates that 𝑆(𝑥) ̸=0, and therefore, 𝐹(𝑥) ≥ 𝑓(V𝑖, V𝑗) > 0. Since 𝑥∗ is an optimal
point, 𝐹(𝑥∗) ≥ 𝐹(𝑥) ≥ 𝑓(V𝑖, V𝑗) ≥ 𝛼 × 𝑓(V𝑖, V𝑗) ≥ 0. Hence,𝑥∗ has to be placed on an expanded subtree 𝑇̂𝑞 that contains
a path 𝑃(V𝑖, V𝑗) ∈ 𝐿 such that 𝑓(V𝑖, V𝑗) > 0 and 𝑑(V𝑖, V𝑗) ≤ 𝑅.
Then, 𝐹(𝑥∗) > 0.

Note that, for any expanded subtree 𝑇̂𝑞(𝑉̂𝑞, 𝐸𝑞), 𝑞 =1, . . . , 𝑡, a path 𝑃(V𝑖, V𝑗) ∈ 𝑇̂𝑞 such that 𝑑(V𝑖, V𝑗) > 𝑅 cannot
be covered by a single station; in addition, a path 𝑃(V𝑖, V𝑗) ∈𝑇̂𝑞 without flow, that is, 𝑓(V𝑖, V𝑗) = 0, does not need to be
considered to maximize traffic flow coverage. Thus, the set
of paths that need to be considered for coverage in 𝑇̂𝑞 is
defined as 𝐿̂𝑞 = {𝑃(V𝑖, V𝑗) ∈ 𝑇̂𝑞 | 𝑑(V𝑖, V𝑗) ≤ 𝑅, 𝑓(V𝑖, V𝑗) >0, and 𝑖 < 𝑗, for all V𝑖, V𝑗 ∈ 𝑉̂𝑞}. Then, by definition of 𝑆(𝑥),
for𝑥 ∈ 𝑇̂𝑞, 𝑥 covers any path𝑃(V𝑖, V𝑗), for V𝑖, V𝑗 ∈ 𝑉̂𝑞, such that𝑑(V𝑖, V𝑗) ≤ 𝑅 and 𝑓(V𝑖, V𝑗) > 0. Thus, 𝑆(𝑥) ⊆ 𝐿̂𝑞. Similarly,
by definition of 𝑆𝐷(𝑥), for 𝑥 ∈ 𝑇̂𝑞\𝑃(V𝑖, V𝑗), 𝑥 covers every
path 𝑃(V𝑖, V𝑗), for V𝑖, V𝑗 ∈ 𝑉̂𝑞, such that 𝑑(V𝑖, V𝑗) ≤ 𝑅 and𝛼 × 𝑓(V𝑖, V𝑗) > 0. Therefore, 𝑆𝐷(𝑥) ⊆ 𝐿̂𝑞 as well.
4. Set of Candidate Points

In this section, we establish a set of candidate points for each
expanded subtree 𝑇̂𝑞 to locate an AF refueling station on a
tree network when a portion of drivers are willing to deviate
to be able to refuel their vehicles. Then, we prove that this
set includes at least one optimal location for the continuous
deviation-flow location problem for an AF refueling station.
In addition, if multiple optimal locations exist, these candi-
date points can be used to generate the entire set of optimal
locations.

The rest of this section is organized as follows. For path𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞, 𝑞 = 1, . . . , 𝑡, Section 4.1 defines a segment
that includes all potential locations for an AF refueling
station to cover the traffic flow in the path. Based on each
segment identified in Section 4.1, Section 4.2 searches for

points where a symmetric cycle can start. Given any point
found in Section 4.2, Section 4.3 introduces an algorithm
that identifies the farthest point for each symmetric cycle.
By integrating the theoretical background regarding the
deviation option suggested in Sections 4.1 to 4.3, Section 4.4
determines the set of candidate points when 𝛼 × 100% of
drivers select the deviation option. Lastly, Section 4.5 proves
that this set contains at least one optimal location.

4.1. Refueling Segment. In order to obtain the set of candidate
points, the first step we need to do is to identify the segment
for each simple path 𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞 that contains all station
locations that cover the round trips in the path when the
deviation option is not considered. This segment is called
the refueling segment of path 𝑃(V𝑖, V𝑗) and is denoted as
RS(V𝑖, V𝑗). Since vehicles have a driving range 𝑅, based on
Assumption (ii), drivers have to refuel the vehicles within
a distance of 𝑅/2 from the origin and destination vertices
during their round trips by Assumption (iv). Thus, RS(V𝑖, V𝑗)
must contain all the points that are within𝑅/2 from V𝑖 and V𝑗.
That is,

RS (V𝑖, V𝑗)
= {𝑥 ∈ 𝑃 (V𝑖, V𝑗) | 𝑑 (V𝑖, 𝑥) ≤ 𝑅2 , 𝑑 (𝑥, V𝑗) ≤ 𝑅2 } .

(4)

Depending on the value of 𝑑(V𝑖, V𝑗), RS(V𝑖, V𝑗) includes one or
two endpoints, denoted as 𝑤𝑘𝑖,𝑗, for 𝑘 = 1, 2. If 𝑑(V𝑖, V𝑗) < 𝑅,
RS(V𝑖, V𝑗) has two different endpoints,𝑤1𝑖,𝑗 and𝑤2𝑖,𝑗; otherwise,𝑤1𝑖,𝑗 = 𝑤2𝑖,𝑗.Then, the set of endpoints of RS(V𝑖, V𝑗), denoted as
EP(V𝑖, V𝑗), is defined as follows:

EP (V𝑖, V𝑗) = {𝑤𝑘𝑖,𝑗 | 𝑤𝑘𝑖,𝑗, for 𝑘
= 1, 2, are endpoints of RS (V𝑖, V𝑗)} . (5)

In the example of the round trip between V1 and V3 in
Figure 1, RS(V1, V3) is identical to 𝑃(V1, V3) since 𝑑(V1, V3) <𝑅/2. Thus, the two endpoints of RS(V1, V3), 𝑤11,3 and 𝑤21,3, are
located exactly at V1 and V3; that is, EP(V1, V3) = {V1, V3}.
Since RS(V1, V3) = 𝑃(V1, V3), a station located at any point𝑥 ∈ 𝑃(V1, V3) can cover round trips between V1 and V3.

4.2. Cycle Starting Vertex. As a next step to build the set of
candidate points for 𝑇̂𝑞, 𝑞 = 1, . . . , 𝑡, considering the devia-
tion option, in this subsection, we determine a vertex atwhich
a symmetric cycle begins its deviation from a simple path.
This vertex is called a cycle starting vertex and denoted as
V𝑠. A cycle starting vertex is the only common point (vertex)
between the simple path and the symmetric cycle.

In order to identify a cycle starting vertex of a path𝑃(V𝑖, V𝑗), we examine theminimum remaining travel distance
of vehicles at a vertex within 𝑃(V𝑖, V𝑗), as well as the degree of
this vertex. First, the minimum remaining travel distance of
vehicles at a cycle starting vertex V𝑠 is denoted as 𝛿(V𝑖, V𝑗; V𝑠)
and computed as follows:

𝛿 (V𝑖, V𝑗; V𝑠) = 𝑅2 −max {𝑑 (V𝑖, V𝑠) , 𝑑 (V𝑗, V𝑠)} . (6)
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Intuitively, 𝛿(V𝑖, V𝑗; V𝑠) measures the minimum remaining
travel distance at V𝑠 that vehicles can drive up when they
enter the network either at V𝑖 in the original trip or at V𝑗 in
the return trip. 𝛿(V𝑖, V𝑗; V𝑠) is calculated by subtracting the
maximum distance between 𝑑(V𝑖, V𝑠) and 𝑑(V𝑗, V𝑠) from 𝑅/2
because any pointwithin a symmetric cyclemust be reachable
from both V𝑖 and V𝑗 in order for vehicles to make a complete
round trip between V𝑖 and V𝑗 in the network. In order for
vehicles in path 𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞 to start a symmetric cycle
originating at V𝑠, the value of 𝛿(V𝑖, V𝑗; V𝑠) must be positive;
otherwise, the deviation option is not available at V𝑠.The value
of 𝛿(V𝑖, V𝑗; V𝑠) depends on the location of V𝑠 and the value of𝑑(V𝑖, V𝑗). In case of V𝑠 ∈ 𝑃(V𝑖, V𝑗)\RS(V𝑖, V𝑗), 𝛿(V𝑖, V𝑗; V𝑠) < 0,
for any value of𝑑(V𝑖, V𝑗); thus, no deviation is available. In case
of V𝑠 ∈ RS(V𝑖, V𝑗), if 𝑅/2 ≤ 𝑑(V𝑖, V𝑗) ≤ 𝑅, then 𝛿(V𝑖, V𝑗; V𝑠) >0 for V𝑠 in the interior of RS(V𝑖, V𝑗), and 𝛿(V𝑖, V𝑗; V𝑠) = 0
for V𝑠 at the endpoint of RS(V𝑖, V𝑗). If 𝑑(V𝑖, V𝑗) < 𝑅/2, then𝛿(V𝑖, V𝑗; V𝑠) > 0 for V𝑠 ∈ 𝑉(RS(V𝑖, V𝑗)), where 𝑉(RS(V𝑖, V𝑗)) is
the set of vertices in RS(V𝑖, V𝑗).

Next, the degree of a cycle starting vertex V𝑠 is denoted
as deg(V𝑠). If V𝑠 of a path 𝑃(V𝑖, V𝑗) is placed at either origin
V𝑖 or destination V𝑗, that is, V𝑠 ∈ {V𝑖, V𝑗}, then V𝑠 can be a
cycle starting vertex if and only if deg(V𝑠) ≥ 2. This implies
that V𝑠 has at least one adjacent edge that does not belong to
path 𝑃(V𝑖, V𝑗) and a portion of this edge or the entire edge can
form a subpath for a symmetric cycle. If V𝑠 is placed at neither
origin V𝑖 nor destination V𝑗, that is, V𝑠 ∉ {V𝑖, V𝑗}, then V𝑠 can
only be a cycle starting vertex if deg(V𝑠) ≥ 3. That is, besides
the two subpaths from V𝑠 to V𝑗 in the original trip and from
V𝑠 to V𝑖 in the return trip, at least one more separate subpath
connected to V𝑠 exists to initiate a symmetric cycle.

Since there can exist multiple cycle starting vertices for a
path 𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞, we define CSV(V𝑖, V𝑗) as the set of cycle
starting vertices in path 𝑃(V𝑖, V𝑗). Based on the observations
of a cycle starting vertex discussed above, CSV(V𝑖, V𝑗) is
determined as follows:

CSV (V𝑖, V𝑗) = {V𝑠 ∈ 𝑉 (RS (V𝑖, V𝑗)) | 𝛿 (V𝑖, V𝑗; V𝑠)
> 0; deg (V𝑠) ≥ 2 if V𝑠 ∈ {V𝑖, V𝑗} , or deg (V𝑠)
≥ 3 if V𝑠 ∉ {V𝑖, V𝑗}} .

(7)

Now, let us recall that RS(V1, V3) = 𝑃(V1, V3) in the
example of the round trip between V1 and V3 in Figure 1.
Thus, 𝑉(RS(V1, V3)) = {V1, V2, V3}, and by using Expression
(6), 𝛿(V1, V3; V1) = 2, 𝛿(V1, V3; V2) = 20, and 𝛿(V1, V3; V3) =2. However, V1 and V3 cannot be cycle starting vertices of𝑃(V1, V3) because deg(V1) = deg(V3) = 1. In contrast, V2 is
a cycle starting vertex of 𝑃(V1, V3) because deg(V2) = 3. Thus,
CSV(V1, V3) = {V2}.
4.3. Cycle Returning Point. In this subsection, for each sym-
metric cycle originating at V𝑠 ∈ CSV(V𝑖, V𝑗), we identify the
farthest point vehicles can reach before returning to V𝑠. This
point is called a cycle returning point and denoted as 𝑟. Given
that the purpose of deviation from a simple path is to refuel
vehicles, the cycle returning point is regarded as the farthest
feasible site for the refueling station; that is, drivers that are

willing to deviate can travel up to the cycle returning point,
refuel their vehicles at the refueling station, return to their
simple path, and continue to their destination.

The cycle returning point has distinct characteristics
compared to the cycle starting vertex. First, the cycle return-
ing point is defined for 0 < 𝛼 ≤ 1, while the cycle starting
vertex is defined for 0 ≤ 𝛼 ≤ 1. Next, the cycle returning
point belongs to the symmetric cycle but does not belong to
the simple path, while the cycle starting vertex is the only
common point between the simple path and the symmetric
cycle. In addition, the cycle returning point can be a vertex
or any point on an edge, whereas the cycle starting vertex is
always a vertex literally.

Multiple symmetric cycles can begin at the same cycle
starting vertex according to the network structure. This
implies that one cycle starting vertex may lead to multiple
cycle returning points. Let CRP(V𝑖, V𝑗; V𝑠) be the set of all cycle
returning points 𝑟 arising from a given V𝑠 ∈ CSV(V𝑖, V𝑗).
Then, |CRP(V𝑖, V𝑗; V𝑠)| is the number of cycle returning points
corresponding to a given V𝑠 ∈ CSV(V𝑖, V𝑗), or equivalently,
the number of symmetric cycles originating at a given
V𝑠 ∈ CSV(V𝑖, V𝑗). In addition, the number of all cycle
returning points of path 𝑃(V𝑖, V𝑗) can be computed as∑V𝑠∈CSV(V𝑖 ,V𝑗) |CRP(V𝑖, V𝑗; V𝑠)|.

The location of a cycle returning point 𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠)
is determined by comparing the value of 𝛿(V𝑖, V𝑗; V𝑠) to the
length of the separate subpath originating at V𝑠. If the value of𝛿(V𝑖, V𝑗; V𝑠) is less than the length of the separate subpath, then
the cycle returning point 𝑟 is located at a distance 𝛿(V𝑖, V𝑗; V𝑠)
from V𝑠 since drivers at cycle starting vertex V𝑠 can travel
up to this distance from V𝑠 before refueling their vehicles;
otherwise, the cycle returning point 𝑟 is located at the leaf
(end vertex) of the separate subpath because that vertex is the
farthest point from V𝑠 in the symmetric cycle originating at
V𝑠.

From the observation above regarding the location of a
cycle returning point, we propose a novel algorithm, called
theCycle ReturningPointAlgorithm, to identify the locations
of all cycle returning points 𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠) for a
given cycle starting vertex V𝑠 ∈ CSV(V𝑖, V𝑗). This algorithm
systematically explores the edges along separate subpaths
originating at V𝑠 and computes the minimum remaining
travel distance at each reachable vertex.

When exploring an edge (V𝑢, V𝑟) along a separate subpath
such that 𝑑(V𝑖, V𝑢) < 𝑑(V𝑖, V𝑟) or 𝑑(V𝑗, V𝑢) < 𝑑(V𝑗, V𝑟), we
call V𝑢 the parent of V𝑟 and V𝑟 the child of V𝑢. To establish a
parent and child relationship between vertices in the course of
scanning the edges, we let PARENT(V𝑟) be the set of parents
of V𝑟 and CHILDREN(V𝑢) the set of children of V𝑢. In a
tree network, every child V𝑟 has a single parent V𝑢, that is,
PARENT(V𝑟) = {V𝑢}. In contrast, every parent V𝑢 can have
several children V𝑟 according to the tree network structure.
Thus, set CHILDREN(V𝑢) is determined as follows:

CHILDREN (V𝑢)
= {{{

𝑁(V𝑢) \𝑉 (𝑃 (V𝑖, V𝑗)) , if V𝑢 = V𝑠,𝑁 (V𝑢) \PARENT (V𝑢) , otherwise,
(8)
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where 𝑁(V𝑢) is the set of vertices adjacent to V𝑢, or equiv-
alently, the neighborhood of V𝑢, and 𝑉(𝑃(V𝑖, V𝑗)) is the
set of vertices within 𝑃(V𝑖, V𝑗). In Expression (8), if V𝑢 =
V𝑠, CHILDREN(V𝑢) is obtained by removing the vertices
within 𝑃(V𝑖, V𝑗) from the vertices adjacent to V𝑢; otherwise,
CHILDREN(V𝑢) is generated by eliminating the parent of V𝑢
from the vertices adjacent to V𝑢.

The algorithm iterates to explore each edge (V𝑢, V𝑟)
along separate subpaths originating at a given vertex V𝑠 ∈
CSV(V𝑖, V𝑗) until all cycle returning points 𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠)
are identified. At a particular iteration exploring an edge(V𝑢, V𝑟), the minimum remaining travel distance of vehicles
at V𝑢, denoted as 𝛿(V𝑖, V𝑗; V𝑢), is known. That is, if V𝑢 = V𝑠,
the value of 𝛿(V𝑖, V𝑗; V𝑢) is given by Expression (6); otherwise,
this value is given from the previous iteration. Then, we can
compute the minimum remaining travel distance of vehicles
at V𝑟 as 𝛿(V𝑖, V𝑗; V𝑟) = 𝛿(V𝑖, V𝑗; V𝑢) − 𝑑(V𝑢, V𝑟). If 𝛿(V𝑖, V𝑗; V𝑟) <0, a cycle returning point 𝑟 is located along edge (V𝑢, V𝑟)
such that 𝑑(V𝑢, 𝑟) = 𝛿(V𝑖, V𝑗; V𝑢). If 𝛿(V𝑖, V𝑗; V𝑟) = 0 or if𝛿(V𝑖, V𝑗; V𝑟) > 0 and deg(V𝑟) = 1, then 𝑟 is placed exactly at
V𝑟. If 𝛿(V𝑖, V𝑗; V𝑟) > 0 and deg(V𝑟) ≥ 2, then the drivers that
are willing to deviate can travel further along the separate
subpath; in this case, the algorithm assigns a child V𝑟 of the
current iteration to a new parent V𝑢 at the next iteration and
determines a new child V𝑟 using Expression (8) to proceed the
next iteration.

In order to keep track of a child V𝑟 from a prior iteration
that may become a parent in a subsequent iteration on
the search for cycle returning points, this algorithm uses a
(infinite) first-in, first-out queue 𝑄 consisting of V𝑟 such that𝛿(V𝑖, V𝑗; V𝑟) > 0 and deg(V𝑟) ≥ 2. Two functions are used to
manage𝑄. The first function named enqueue(𝑄; V𝑟) places V𝑟
at the tail of queue𝑄. Conversely, the second function named
dequeue(𝑄) selects the vertex at the head of queue 𝑄 and
eliminates it from𝑄. The details of the Cycle Returning Point
Algorithm are provided below.

Algorithm 2 (Cycle Returning Point Algorithm).

Step 1. For a given V𝑠 ∈ CSV(V𝑖, V𝑗), initialize CRP(V𝑖, V𝑗; V𝑠) =0. If 𝛼 = 0, terminate the algorithm; otherwise, compute𝛿(V𝑖, V𝑗; V𝑠) using Expression (6).

Step 2. Initialize 𝑄 = 0.
Step 3. Enqueue(𝑄; V𝑠).
Step 4. Repeat the following substeps as long as there remain
vertices in 𝑄:
Sub-Step 4.1. V𝑢 = dequeue(𝑄).
Sub-Step 4.2. Determine CHILDREN(V𝑢) using Expression
(8).

Sub-Step 4.3. For each V𝑟 ∈ CHILDREN(V𝑢), perform the
following steps:

Sub-Step 4.3.1. Compute 𝛿(V𝑖, V𝑗; V𝑟) = 𝛿(V𝑖, V𝑗; V𝑢) −𝑑(V𝑢, V𝑟).

Sub-Step 4.3.2. According to the sign of 𝛿(V𝑖, V𝑗; V𝑟), perform
one of the following procedures:

(a) If 𝛿(V𝑖, V𝑗; V𝑟) < 0: 𝑟 is located along edge (V𝑢, V𝑟),
such that 𝑑(V𝑢, 𝑟) = 𝛿(V𝑖, V𝑗; V𝑢). Also, add 𝑟 into
CRP(V𝑖, V𝑗; V𝑠).

(b) If 𝛿(V𝑖, V𝑗; V𝑟) = 0 or if 𝛿(V𝑖, V𝑗; V𝑟) > 0 and
deg(V𝑟) = 1: 𝑟 is located exactly at V𝑟. Also, add 𝑟 into
CRP(V𝑖, V𝑗; V𝑠).

(c) If 𝛿(V𝑖, V𝑗; V𝑟) > 0 and deg(V𝑟) ≥ 2: enqueue(𝑄; V𝑟) and
set PARENT(V𝑟) = {V𝑢}.

Theorem 3 (complexity of the Cycle Returning Point Algo-
rithm). The complexity of the Cycle Returning Point Algorithm
is 𝑂(𝑛), where 𝑛 = |𝑉|.
Proof. Step 1 includes initialization of CRP(V𝑖, V𝑗; V𝑠), check-
ing the value of 𝛼, and computation of 𝛿(V𝑖, V𝑗; V𝑠), which
takes 𝑂(1). Initialization of 𝑄 in Step 2 and enqueuing V𝑠
to 𝑄 in Step 3 also take 𝑂(1). Step 4 consists of three
substeps to identify all 𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠) for a given
V𝑠 ∈ CSV(V𝑖, V𝑗). Sub-Steps 4.1 and 4.2 dequeue V𝑢 from 𝑄
and generate set CHILDREN(V𝑢). Sub-Step 4.3 computes𝛿(V𝑖, V𝑗; V𝑟) for V𝑟 ∈ CHILDREN(V𝑢), and then according
to the sign of 𝛿(V𝑖, V𝑗; V𝑟), it locates a cycle returning point
within edge (V𝑢, V𝑟) or enqueues V𝑟 to𝑄 for the next iteration.
Step 4 iterates until queue 𝑄 is empty. Since every vertex
can be enqueued and dequeued at most once for a given
V𝑠 ∈ CSV(V𝑖, V𝑗), the operations in Step 4 can be applied
to every vertex at most once; thus, the total time devoted
to the operations in Step 4 is 𝑂(𝑛). Therefore, the computa-
tional complexity of the Cycle Returning Point Algorithm is𝑂(𝑛).

Now, we apply the Cycle Returning Point Algorithm to
the example in Figure 1 to determine all cycle returning points
of 𝑃(V1, V3); that is, we need to identify CRP(V1, V3; V𝑠), for
all V𝑠 ∈ CSV(V1, V3). Recall that 𝑅 = 80, 𝛼 = 0.20, and
V𝑠 ∈ CSV(V1, V3) = {V2}. In Step 1 of the algorithm, for
a given cycle starting vertex V2, we set CRP(V1, V3; V2) =0 and, by Expression (6), compute 𝛿(V1, V3; V2) = 40 −
max{𝑑(V1, V2), 𝑑(V3, V2)} = 20. In Step 2, we set 𝑄 = 0. In
Step 3, we place V2 at the tail of queue 𝑄; that is, 𝑄 = {V2}.
Now, we repeat Step 4 until finding all cycle returning points𝑟 ∈ CRP(V1, V3; V2). In Sub-Step 4.1, we set V𝑢 = V2 and
eliminate V2 from 𝑄. In Sub-Step 4.2, since V𝑢 = V2 = V𝑠,
by Expression (8), CHILDREN(V2) = 𝑁(V2)\𝑉(𝑃(V1, V3)) ={V1, V3, V4}\{V1, V2, V3} = {V4}. For V𝑟 = V4, we perform
Sub-Step 4.3. In Sub-Step 4.3.1, 𝛿(V1, V3; V4) = 𝛿(V1, V3; V2) −𝑑(V2, V4) = 5. Since 𝛿(V1, V3; V4) > 0 and deg(V4) = 3, we
select Procedure (c) in Sub-Step 4.3.2; that is, 𝑄 = {V4} and
PARENT(V4) = {V2}. Since 𝑄 ̸= 0, we repeat Step 4. Now,
in Sub-Step 4.1, V𝑢 = V4 and V4 is removed from 𝑄.
In Sub-Step 4.2, by Expression (8), CHILDREN(V4) =𝑁(V4)\PARENT(V4) = {V2, V5, V6}\{V2} = {V5, V6}. For
V𝑟 ∈ {V5, V6}, we implement Sub-Step 4.3. For V𝑟 = V5,
in Sub-Step 4.3.1, 𝛿(V1, V3; V5) = 𝛿(V1, V3; V4) − 𝑑(V4, V5) =−5. As 𝛿(V1, V3; V5) < 0, we select Procedure (a) in Sub-
Step 4.3.2; that is, we locate 𝑟1 along edge (V4, V5), such that
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𝑑(V4, 𝑟1) = 𝛿(V1, V3; V4) = 5, and add 𝑟1 to CRP(V1, V3; V2),
where 𝑟1 indicates the first cycle returning point 𝑟 ∈
CRP(V1, V3; V2). By repeating the same process for V𝑟 = V6,
we locate 𝑟2 along edge (V4, V6), such that 𝑑(V4, 𝑟2) = 5, and
add 𝑟2 to CRP(V1, V3; V2), where 𝑟2 refers to the second 𝑟 ∈
CRP(V1, V3; V2). Now, 𝑄 = 0, so we end the algorithm with
CRP(V1, V3; V2) = {𝑟1, 𝑟2}.
4.4. Refueling Subtree. In this subsection, we determine the
refueling subtree for each path 𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞 that includes all
possible locations for an AF refueling station when a portion
of drivers select the deviation option. Then, we identify
candidate points in this subtree.

First, let us define symmetric cycle SC(V𝑖, V𝑗; V𝑠, 𝑟) as the
segment consisting of all station locations that cover the
deviation-flow of path 𝑃(V𝑖, V𝑗) originating at cycle starting
vertex V𝑠 ∈ CSV(V𝑖, V𝑗) and ending at cycle returning point𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠); that is, SC(V𝑖, V𝑗; V𝑠, 𝑟) = 𝑃(V𝑠, 𝑟). Note
that any point 𝑥 in SC(V𝑖, V𝑗; V𝑠, 𝑟)\{V𝑠} covers deviation-flow𝛼 × 𝑓(V𝑖, V𝑗), while cycle starting vertex V𝑠 covers traffic flow𝑓(V𝑖, V𝑗) since V𝑠 ∈ SC(V𝑖, V𝑗; V𝑠, 𝑟) ∩ RS(V𝑖, V𝑗).

Now, for any path 𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞, we can construct
the refueling subtree, denoted as RST(V𝑖, V𝑗), which consists
of refueling segment RS(V𝑖, V𝑗) and all symmetric cycles
SC(V𝑖, V𝑗; V𝑠, 𝑟) of 𝑃(V𝑖, V𝑗). This refueling subtree contains all
potential locations for an AF refueling station when a portion
of drivers are willing to deviate from the preplanned route𝑃(V𝑖, V𝑗) to be able to refuel their vehicles. That is,

RST (V𝑖, V𝑗)
= {{{ ⋃

V𝑠∈CSV(V𝑖 ,V𝑗)

{{{ ⋃
𝑟∈CRP(V𝑖 ,V𝑗;V𝑠)

SC (V𝑖, V𝑗; V𝑠, 𝑟)}}}
}}}

∪ RS (V𝑖, V𝑗) .
(9)

In RST(V𝑖, V𝑗), the cardinality of RS(V𝑖, V𝑗) is one, but the
cardinality of SC(V𝑖, V𝑗; V𝑠, 𝑟) is ∑V𝑠∈CSV(V𝑖 ,V𝑗) |CRP(V𝑖, V𝑗; V𝑠)|,
because the number of symmetric cycles in RST(V𝑖, V𝑗)
is equal to the number of cycle returning points 𝑟 ∈
CRP(V𝑖, V𝑗; V𝑠), for V𝑠 ∈ CSV(V𝑖, V𝑗).

The amount of traffic flow in 𝑃(V𝑖, V𝑗) covered by 𝑥 ∈
RST(V𝑖, V𝑗) depends on the value of 𝛼. If 𝛼 = 1, any point𝑥 in RST(V𝑖, V𝑗) covers 𝑓(V𝑖, V𝑗). If 0 < 𝛼 < 1, any point 𝑥 in
RST(V𝑖, V𝑗)\RS(V𝑖, V𝑗) covers 𝛼 × 𝑓(V𝑖, V𝑗), while any point 𝑥
in RS(V𝑖, V𝑗) covers 𝑓(V𝑖, V𝑗). If 𝛼 = 0, then CRP(V𝑖, V𝑗; V𝑠) = 0
by the Cycle Returning Point Algorithm; thus, RST(V𝑖, V𝑗) =
RS(V𝑖, V𝑗), and any point 𝑥 in RST(V𝑖, V𝑗) covers 𝑓(V𝑖, V𝑗).

The endpoints of RS(V𝑖, V𝑗) indicate the boundary points
defining the segment containing all station locations that can
cover the positive traffic flow in path 𝑃(V𝑖, V𝑗). Similarly, the
endpoints of SC(V𝑖, V𝑗; V𝑠, 𝑟), which are V𝑠 and 𝑟, represent the
boundary points for the segment encompassing all station
locations that can cover the positive deviation-flow in path𝑃(V𝑖, V𝑗) originating at cycle starting vertex V𝑠 ∈ CSV(V𝑖, V𝑗)
and ending at cycle returning point 𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠). In
RST(V𝑖, V𝑗), the endpoints of RS(V𝑖, V𝑗) and all the endpoints

of SC(V𝑖, V𝑗; V𝑠, 𝑟) are called the candidate points because these
points indicate the boundaries for potential station locations
that cover path𝑃(V𝑖, V𝑗)with positive traffic flowor deviation-
flow. The set of candidate points of RST(V𝑖, V𝑗), denoted as
CP(RST(V𝑖, V𝑗)), is defined as follows:

CP (RST (V𝑖, V𝑗)) = {{{ ⋃
V𝑠∈CSV(V𝑖 ,V𝑗)

CRP (V𝑖, V𝑗; V𝑠)}}}
∪ CSV (V𝑖, V𝑗) ∪ EP (V𝑖, V𝑗) ,

(10)

where CSV(V𝑖, V𝑗) ∪ {⋃V𝑠∈CSV(V𝑖 ,V𝑗) CRP(V𝑖, V𝑗; V𝑠)} is the set of
endpoints of all symmetric cycles and EP(V𝑖, V𝑗) is the set
of endpoints of the refueling segment of 𝑃(V𝑖, V𝑗). The 𝑘th
candidate point of RST(V𝑖, V𝑗) is denoted as 𝑐𝑘𝑖,𝑗, 𝑘 = 1, . . .,∑V𝑠∈CSV(V𝑖 ,V𝑗) |CRP(V𝑖, V𝑗; V𝑠)| + |CSV(V𝑖, V𝑗)| + |EP(V𝑖, V𝑗)|.

In Expression (10), note that CRP(V𝑖, V𝑗; V𝑠) = 0 when
there is no deviation option (𝛼 = 0), while CSV(V𝑖, V𝑗) and
EP(V𝑖, V𝑗) are defined for 0 ≤ 𝛼 ≤ 1. Note that the vertices in
CSV(V𝑖, V𝑗) still need to be considered although the deviation
option is not available, that is, for 𝛼 = 0, because some of
these points are intersection vertices that may cover traffic
flows from multiple paths [32]. Since an intersection vertex
within a refueling segment has the same characteristics of a
cycle starting vertex, we construct set CSV(V𝑖, V𝑗) for 𝛼 = 0
to identify this type of intersection vertices even though the
deviation option is not available.

By using Expression (10), the set of candidate points in
expanded subtree 𝑇̂𝑞, 𝑞 = 1, . . . , 𝑡, denoted as CP𝑞, can be
defined as follows:

CP𝑞 = ⋃
𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞

CP (RST (V𝑖, V𝑗)) . (11)

Now, we determine the refueling subtree for path𝑃(V1, V3) in Figure 1. Recall that CSV(V1, V3) = {V2} and
CRP(V1, V3; V2) = {𝑟1, 𝑟2}. Then, symmetric cycles of 𝑃(V1, V3)
are SC(V1, V3; V2, 𝑟1) and SC(V1, V3; V2, 𝑟2). Thus, RST(V1, V3) =
SC(V1, V3; V2, 𝑟1) ∪ SC(V1, V3; V2, 𝑟2) ∪ RS(V1, V3). If we assume𝐿̂𝑞 = {𝑃(V1, V3)}, since 𝛼 = 0.20, then any point 𝑥 ∈
RST(V1, V3)\RS(V1, V3) covers 20% of 𝑓(V1, V3), and any point𝑥 ∈ RS(V1, V3) covers 𝑓(V1, V3). In addition, by Expression
(11), CP𝑞 = CRP(V1, V3; V2) ∪ CSV(V1, V3) ∪ EP(V1, V3) ={𝑟1, 𝑟2} ∪ {V2} ∪ {V1, V3}.
4.5. Candidate Point Optimality Theorem. In this subsection,
we prove that the set of candidate points, CP = ⋃𝑡𝑞=1 CP𝑞,
contains at least one optimal location to the problem.

Lemma 4. Consider a point 𝑥 ∈ 𝑇̂𝑞, for some 𝑞 = 1, . . . , 𝑡,
such that 𝑥 ∉ 𝐶𝑃𝑞. Then,

(a) if 𝑥 ∉ ⋃𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞 RST(V𝑖, V𝑗), then 𝑆(𝑥) = 𝑆𝐷(𝑥) = 0
and 𝐹(𝑥) = 0;

(b) if 𝑥 ∈ ⋃𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞 RST(V𝑖, V𝑗), then there exists a can-
didate point 𝑐 ∈ 𝐶𝑃𝑞 such that 𝑆(𝑥) ⊆ 𝑆(𝑐), 𝑆𝐷(𝑥) ⊆𝑆𝐷(𝑐) ∪ 𝑆(𝑐), and 𝐹(𝑥) ≤ 𝐹(𝑐).
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Proof. In case (a), by definition of refueling subtree, 𝑥 does
not cover any path in 𝐿̂𝑞. Thus, the result holds. In case (b),𝑥 is in the interior of all the refueling subtrees determined by
all paths in 𝑆(𝑥) and 𝑆𝐷(𝑥). Thus, 𝑥 has at least one candidate
point on each side. Let 𝑐1 and 𝑐2 be the two closest candidate
points on each side of𝑥. Because no candidate point is located
between 𝑥 and 𝑐𝑖, 𝑖 = 1, 2, the paths with positive traffic
flow covered by 𝑥 are the same paths with positive traffic
flow covered by both 𝑐1 and 𝑐2; that is, 𝑆(𝑥) = 𝑆(𝑐1) ∩ 𝑆(𝑐2),
and thus, 𝑆(𝑥) ⊆ 𝑆(𝑐𝑖), 𝑖 = 1, 2. On the other hand, any
path with positive deviation-flow covered by 𝑥 must either
be a path with positive deviation-flow covered by both 𝑐1
and 𝑐2 or be a path with positive traffic flow covered by one
of the two candidate points (𝑐1 and 𝑐2) and with positive
deviation-flow covered by the other candidate point; that
is, 𝑆𝐷(𝑥) = {𝑆𝐷(𝑐1) ∩ 𝑆𝐷(𝑐2)} ∪ {𝑆(𝑐1) ∩ 𝑆𝐷(𝑐2)} ∪ {𝑆𝐷(𝑐1) ∩𝑆(𝑐2)}. This implies 𝑆𝐷(𝑥) ⊆ 𝑆𝐷(𝑐𝑖) ∪ 𝑆(𝑐𝑖), 𝑖 = 1, 2. Thus,
for 0 ≤ 𝛼 ≤ 1, ∑𝑃(V𝑖 ,V𝑗)∈𝑆(𝑥) 𝑓(V𝑖, V𝑗) + ∑𝑃(V𝑖 ,V𝑗)∈𝑆𝐷(𝑥) 𝛼 ×𝑓(V𝑖, V𝑗) ≤ ∑𝑃(V𝑖 ,V𝑗)∈𝑆(𝑐𝑖) 𝑓(V𝑖, V𝑗) + ∑𝑃(V𝑖 ,V𝑗)∈𝑆𝐷(𝑐𝑖) 𝛼 × 𝑓(V𝑖, V𝑗),
or equivalently, 𝐹(𝑥) ≤ 𝐹(𝑐𝑖), 𝑖 = 1, 2.
Theorem 5 (Candidate Point Optimality Theorem). For the
continuous deviation-flow location problem for an AF refueling
station on tree 𝑇, there exists at least one optimal location 𝑥∗ ∈𝐶𝑃.
Proof (by contradiction). Suppose that none of the candidate
points inCP is an optimal solution. Let𝑥∗ be an optimal point
that covers 𝐹(𝑥∗) round trips per time unit. Since 𝑥∗ is an
optimal location, by case (a) of Lemma 4, 𝑥∗ must belong
to ⋃𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞 RST(V𝑖, V𝑗), for some 𝑞 = 1, . . . , 𝑡. If 𝑥∗ ∈⋃𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞 RST(V𝑖, V𝑗), then by case (b) of Lemma 4, there
exists a candidate point 𝑐 ∈ CP𝑞 such that 𝐹(𝑥∗) ≤ 𝐹(𝑐). This
contradicts the initial hypothesis that none of the candidate
points in CP is an optimal solution. Thus, there exists at least
one candidate point in CP that is an optimal location to the
problem.

5. Deviation-Flow Optimal Candidate
Point Algorithm

Based on the Candidate Point Optimality Theorem, in this
section the Deviation-Flow Optimal Candidate Point Algo-
rithm is proposed to find the optimal set of candidate points
for an AF refueling station that covers the maximum traffic
flow (in round trips per time unit) when a portion of drivers
select the deviation option.The central idea of this algorithm
can be summarized in three steps. Step 1 constructs expanded
subtrees 𝑇̂𝑞, for 𝑞 = 1, . . . , 𝑡, from the original tree network𝑇, as discussed in Section 3. Step 2 determines the set of
local maximum candidate points for each 𝑇̂𝑞. As shown in
Theorem 5, at least one local optimal candidate point is global
optimal. Step 3 finds the set of global maximum candidate
points of 𝑇 by comparing the local maximum candidate
points.

This algorithm is a generalization of the Single Refueling
Point Algorithm that finds the set of optimal locations for

a refueling station when vehicle deviation is not available
[18]. A distinct feature of the proposed algorithm is that it
generates the deviation options for all O/D pairs with positive
flows when 0 < 𝛼 ≤ 1, which usually produces a larger set of
candidate points and consequently a different set of optimal
locations. In addition, by changing the value of 𝛼 between 0
and 1 in the algorithm,we can analyze the effect of the portion
of drivers choosing the deviation option on the optimal set
of station locations and traffic flow covered. The steps of the
algorithm are specified below.

Algorithm 6 (Deviation-Flow Optimal Candidate
Point Algorithm).

Step 1. Construct expanded subtrees 𝑇̂𝑞(𝑉̂𝑞, 𝐸𝑞), for 𝑞 =1, . . . , 𝑡, from original tree network 𝑇(𝑉, 𝐸).
Sub-Step 1.1. Establish set 𝐸 = {(V𝑘, V𝑙) ∈ 𝐸 | 𝑑(V𝑘, V𝑙) > 𝑅}
and eliminate (V𝑘, V𝑙) ∈ 𝐸 from 𝐸.
Sub-Step 1.2. Determine forest 𝐹(𝑉𝐹, 𝐸𝐹) that consists of
subtrees 𝑇𝑞(𝑉𝑞, 𝐸𝑞), for 𝑞 = 1, . . . , 𝑡, such that𝑉𝐹 = ⋃𝑡𝑞=1 𝑉𝑞 =𝑉 and 𝐸𝐹 = ⋃𝑡𝑞=1 𝐸𝑞 = 𝐸\𝐸, where 𝑡 = |𝐸| + 1.
Sub-Step 1.3. For subtree 𝑇𝑞(𝑉𝑞, 𝐸𝑞), 𝑞 = 1, . . . , 𝑡, determine
expanded subtree 𝑇̂𝑞(𝑉̂𝑞, 𝐸𝑞).
Sub-Step 1.3.1. Initialize𝑉𝑞 = 0 and generate 𝑉󸀠𝑞 = 𝑉(𝐸) ∩𝑉𝑞.
Sub-Step 1.3.2. For V𝑘 ∈ 𝑉󸀠𝑞 , if there exists at least one 𝛼 ×𝑓(V𝑖, V𝑗) > 0, for 𝑃(V𝑖, V𝑗) ∈ 𝐿 in 𝑇𝑞, such that max{𝑑(V𝑖, V𝑘),𝑑(V𝑗, V𝑘)} < 𝑅/2, then add V𝑘 into 𝑉𝑞.
Sub-Step 1.3.3. Construct expanded subtree 𝑇̂𝑞(𝑉̂𝑞, 𝐸𝑞) such
that 𝑉̂𝑞 = 𝑉𝑞 ∪ {⋃V𝑘∈𝑉𝑞

𝑉(V𝑘)} and 𝐸𝑞 = 𝐸𝑞 ∪ {⋃V𝑘∈𝑉𝑞
𝐸(V𝑘)},

where 𝐸(V𝑘) = {(V𝑘, V𝑙) ∈ 𝐸 | V𝑙 ∈ 𝑉\𝑉𝑞}, 𝑉(V𝑘) =𝑉(𝐸(V𝑘))\{V𝑘}, and 𝑉(𝐸(V𝑘)) is the set of vertices in 𝐸(V𝑘).
Step 2. For each expanded subtree 𝑇̂𝑞, 𝑞 = 1, . . . , 𝑡, with|𝑉̂𝑞|>1, identify the set of local optimal candidate points,
denoted as CP∗𝑞 , in CP𝑞 (note that, for 𝑇̂𝑞 with |𝑉̂𝑞|=1, set
CP∗𝑞 = {𝑥∗𝑞 } and 𝐹(𝑥∗𝑞 ) = 0, where 𝑥∗𝑞 is located at the only
vertex in 𝑇̂𝑞):
Sub-Step 2.1. Construct 𝐿̂𝑞 = {𝑃(V𝑖, V𝑗) | 𝑑(V𝑖, V𝑗) ≤ 𝑅,𝑓(V𝑖, V𝑗) > 0, and 𝑖 < 𝑗, for all V𝑖, V𝑗 ∈ 𝑉̂𝑞}.
Sub-Step 2.2. Determine the set of candidate points, CP𝑞,
using Expression (11).

Sub-Step 2.3. For all 𝑐 ∈ CP𝑞, construct 𝑆(𝑐) = {𝑃(V𝑖, V𝑗) ∈𝐿̂𝑞 | 𝑐 ∈ 𝑃(V𝑖, V𝑗), 𝑓(V𝑖, V𝑗) > 0, 𝑑(V𝑖, 𝑐) ≤ 𝑅/2, and 𝑑(𝑐,
V𝑗) ≤ 𝑅/2} and 𝑆𝐷(𝑐) = {𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞 | 𝑐 ∈ 𝑇𝑞\𝑃(V𝑖, V𝑗), 𝛼 ×𝑓(V𝑖, V𝑗) > 0, 𝑑(V𝑖, 𝑐) ≤ 𝑅/2, and 𝑑(𝑐, V𝑗) ≤ 𝑅/2}.
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Sub-Step 2.4. Calculate 𝐹(𝑐) = ∑𝑃(V𝑖 ,V𝑗)∈𝑆(𝑐) 𝑓(V𝑖, V𝑗) +∑𝑃(V𝑖 ,V𝑗)∈𝑆𝐷(𝑐) 𝛼 × 𝑓(V𝑖, V𝑗), for all 𝑐 ∈ CP𝑞, then determine the
local optimal set of candidate points, CP∗𝑞 , in CP𝑞:

CP∗𝑞 = argmax {𝐹 (𝑐) | 𝑐 ∈ CP𝑞} . (12)

Step 3. Find the global optimal set of candidate points,
denoted as CP∗, for the original tree𝑇 and the corresponding
maximum total traffic flow in round trips per time unit (𝐹∗):

CP∗ = argmax {𝐹 (𝑥∗𝑞 ) | 𝑥∗𝑞 ∈ CP∗𝑞 , 𝑞 = 1, . . . , 𝑡} ,
𝐹∗ = 𝐹 (𝑥∗) , for 𝑥∗ ∈ CP∗. (13)

Theorem 7 (complexity of the Deviation-Flow Optimal
Candidate Point Algorithm). The Deviation-Flow Optimal
Candidate Point Algorithm runs in𝑂(𝑛5) time, where 𝑛 = |𝑉|.
Proof. Step 1 of the algorithm contains three substeps to
generate expanded subtrees 𝑇̂𝑞(𝑉̂𝑞, 𝐸𝑞), for 𝑞 = 1, . . . , 𝑡,
from original tree 𝑇(𝑉, 𝐸). Sub-Step 1.1 takes 𝑂(𝑛) to find
and remove edges (V𝑘, V𝑙) ∈ 𝐸 from 𝐸. To construct forest𝐹(𝑉𝐹, 𝐸𝐹) containing subtrees 𝑇𝑞(𝑉𝑞, 𝐸𝑞), for 𝑞 = 1, . . . , 𝑡, in
Sub-Step 1.2, we start with a forest where each vertex forms
its own tree. Then, for each edge (V𝑖, V𝑘) ∈ 𝐸\𝐸, two trees
connected by an edge (V𝑖, V𝑘) are merged into a single tree.
We repeat this iteration for all edges in 𝐸\𝐸, thus we obtain
the final set of subtrees in 𝑂(𝑛) time. To build expanded
subtree 𝑇̂𝑞 from 𝑇𝑞, 𝑞 = 1, . . . , 𝑡, Sub-Step 1.3 takes 𝑂(𝑛3) to
identify 𝑉󸀠𝑞 and compute max{𝑑(V𝑖, V𝑘), 𝑑(V𝑗, V𝑘)} for V𝑘 ∈ 𝑉󸀠𝑞
and 𝑃(V𝑖, V𝑗) ∈ 𝐿 in 𝑇𝑞. Step 2 consists of four substeps
to find the set of local optimal candidate points CP∗𝑞 for
each 𝑇̂𝑞. Sub-Step 2.1 takes 𝑂(𝑛2) to measure 𝑑(V𝑖, V𝑗), for all
V𝑖, V𝑗 ∈ 𝑉̂𝑞, and build set 𝐿̂𝑞, 𝑞 = 1, . . . , 𝑡. To determine
CP𝑞, 𝑞 = 1, . . . , 𝑡, Sub-Step 2.2 first builds RS(V𝑖, V𝑗) and
EP(V𝑖, V𝑗) for 𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞, which takes𝑂(𝑛2). Next, for each
RS(V𝑖, V𝑗), Sub-Step 2.2 identifies CSV(V𝑖, V𝑗), which takes𝑂(𝑛). Lastly, for each V𝑠 ∈ CSV(V𝑖, V𝑗), Sub-Step 2.2 finds
CRP(V𝑖, V𝑗; V𝑠), which takes 𝑂(𝑛) by Theorem 3. Thus, the
total time devoted to Sub-Step 2.2 is 𝑂(𝑛4). Since we can
find 𝑂(𝑛) candidate points for each path 𝑃(V𝑖, V𝑗) ∈ 𝐿̂𝑞, and
furthermore, there exist 𝑂(𝑛2) paths in each 𝐿̂𝑞, the number
of candidate points in CP𝑞 is 𝑂(𝑛3). Therefore, Sub-Step 2.3
takes 𝑂(𝑛5) to generate the sets of paths with positive traffic
flow and deviation-flow covered by all candidate points 𝑐 ∈
CP𝑞, 𝑞 = 1, . . . , 𝑡. Similarly, Sub-Step 2.4 takes 𝑂(𝑛5) to
compute the total traffic flow covered by all candidate points,
compare the total traffic flows covered by candidate points
in 𝑇̂𝑞, 𝑞 = 1, . . . , 𝑡, and determine the local optimal set of
candidate points for each 𝑇̂𝑞. Step 3 takes 𝑂(𝑛2) to compare
the local optimal solutions and determine the global optimal
set of candidate points in 𝑇. The algorithm performs each
step once. Thus, the total time devoted to operations in the
algorithm is 𝑂(𝑛5).

6. Convex Combination Property

This section consists of two subsections to identify additional
optimal points that can be generated as convex combinations
of certain pairs of optimal candidate points. First, a condition
is identified in Section 6.1 under which any point on the line
segment between two consecutive optimal candidate points
is also optimal. Then, based on this condition, the complete
set of optimal solutions for the problem is determined in
Section 6.2.

6.1. Optimality Conditions for a Convex Combination of Con-
secutive Optimal Candidate Points. In this subsection, given
any pair of consecutive optimal candidate points, 𝑐∗1 , 𝑐∗2 ∈
CP∗, we identify conditions under which any point that can
be written as a convex combination of 𝑐∗1 and 𝑐∗2 is also
optimal.

To simplify the proof process to derive the conditions,
we first partition 𝑆(𝑐∗1 ), 𝑆𝐷(𝑐∗1 ), 𝑆(𝑐∗2 ), and 𝑆𝐷(𝑐∗2 ) into newly
defined subsets as shown below. Since there exists no candi-
date point between 𝑐∗1 and 𝑐∗2 , 𝑆(𝑐∗1 ) is partitioned into 𝑆1(𝑐∗1 )
and 𝑆1,2(𝑐∗1 ), where 𝑆1(𝑐∗1 ) denotes the subset of paths with
positive traffic flow covered by 𝑐∗1 but not covered by 𝑐∗2 ,
and 𝑆1,2(𝑐∗1 ) denotes the subset of paths with positive traffic
flow covered by both 𝑐∗1 and 𝑐∗2 . We also partition 𝑆𝐷(𝑐∗1 )
into 𝑆𝐷1(𝑐∗1 ) and 𝑆𝐷1,2(𝑐∗1 ), where 𝑆𝐷1(𝑐∗1 ) denotes the subset
of paths with positive deviation-flow covered by 𝑐∗1 but not
covered by 𝑐∗2 , and 𝑆𝐷1,2(𝑐∗1 ) denotes the subset of paths with
positive deviation-flow covered by both 𝑐∗1 and 𝑐∗2 . 𝑆𝐷1(𝑐∗1 )
can also be partitioned into 𝑆𝐷1\2(𝑐∗1 ) and 𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 ),
where 𝑆𝐷1\2(𝑐∗1 ) denotes the subset of paths with positive
deviation-flow covered by 𝑐∗1 and positive traffic flow not
covered by 𝑐∗2 , and 𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 ) denotes the subset of
paths with positive traffic flow covered by 𝑐∗2 and positive
deviation-flow covered by 𝑐∗1 . Similarly, we can partition𝑆(𝑐∗2 ) and 𝑆𝐷(𝑐∗2 ), such that 𝑆(𝑐∗2 ) = 𝑆2(𝑐∗2 ) ∪ 𝑆1,2(𝑐∗2 ),𝑆𝐷(𝑐∗2 ) = 𝑆𝐷2(𝑐∗2 ) ∪ 𝑆𝐷1,2(𝑐∗2 ), and 𝑆𝐷2(𝑐∗2 ) = 𝑆𝐷2\1(𝑐∗2 ) ∪{𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )}. Then, by using these terms, 𝐹(𝑐∗1 ) and𝐹(𝑐∗2 ) can be written as follows:

𝐹 (𝑐∗1 ) = ∑
𝑃(V𝑖 ,V𝑗)∈𝑆1(𝑐∗1 )

𝑓 (V𝑖, V𝑗) + ∑
𝑃(V𝑖 ,V𝑗)∈𝑆1,2(𝑐∗1 )

𝑓 (V𝑖, V𝑗)

+ 𝛼( ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1\2(𝑐

∗
1 )

𝑓 (V𝑖, V𝑗)
+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1 (𝑐

∗
1 )\𝑆𝐷1\2(𝑐

∗
1 )

𝑓 (V𝑖, V𝑗)

+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1,2 (𝑐

∗
1 )

𝑓 (V𝑖, V𝑗)) ,
𝐹 (𝑐∗2 ) = ∑

𝑃(V𝑖 ,V𝑗)∈𝑆2(𝑐∗2 )
𝑓 (V𝑖, V𝑗) + ∑

𝑃(V𝑖 ,V𝑗)∈𝑆1,2(𝑐∗2 )
𝑓 (V𝑖, V𝑗)
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+ 𝛼( ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷2\1(𝑐

∗
2 )

𝑓 (V𝑖, V𝑗)
+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷2 (𝑐

∗
2 )\𝑆𝐷2\1(𝑐

∗
2 )

𝑓 (V𝑖, V𝑗)

+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1,2 (𝑐

∗
2 )

𝑓 (V𝑖, V𝑗)) .
(14)

Note also that, by definition, 𝑆1,2(𝑐∗1 ) = 𝑆1,2(𝑐∗2 ) and𝑆𝐷1,2(𝑐∗1 ) = 𝑆𝐷1,2(𝑐∗2 ). Similarly, {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} ⊆ 𝑆1(𝑐∗1 )
and {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} ⊆ 𝑆2(𝑐∗2 ).

The following theorem establishes optimality conditions
for points that can be written as convex combinations of
consecutive optimal candidate points.

Theorem 8 (optimality conditions for the line segment join-
ing consecutive optimal candidate points). Given a pair of
consecutive optimal candidate points, 𝑐∗1 , 𝑐∗2 ∈ 𝐶𝑃∗, letℓ(𝑐∗1 , 𝑐∗2 ) denote the line segment joining 𝑐∗1 and 𝑐∗2 ; that is,ℓ(𝑐∗1 , 𝑐∗2 ) = {𝑥 | 𝑥 = 𝛽𝑐∗1 + (1 − 𝛽)𝑐∗2 , 0 ≤ 𝛽 ≤ 1}. Then,
any point 𝑥 ∈ ℓ(𝑐∗1 , 𝑐∗2 ) is also optimal if and only if one of the
following conditions is satisfied:

(a) 𝑆(𝑐∗1 ) = 𝑆(𝑐∗2 ), for 𝛼 = 0.
(b) 𝑆(𝑐∗1 ) = 𝑆(𝑐∗2 ) and 𝑆𝐷(𝑐∗1 ) = 𝑆𝐷(𝑐∗2 ), for 0 < 𝛼 < 1.
(c) 𝑆(𝑐∗1 ) ∪ 𝑆𝐷(𝑐∗1 ) = 𝑆(𝑐∗2 ) ∪ 𝑆𝐷(𝑐∗2 ), for 𝛼 = 1.

Proof. (⇒) Assume that any point 𝑥 ∈ ℓ(𝑐∗1 , 𝑐∗2 ) is also
optimal. This implies 𝐹(𝑐∗1 ) = 𝐹(𝑥) = 𝐹(𝑐∗2 ), or equivalently,𝐹(𝑐∗1 ) − 𝐹(𝑥) = 𝐹(𝑐∗2 ) − 𝐹(𝑥) = 0. Since 𝑐∗1 and 𝑐∗2 are the two
closest candidate points on each side of 𝑥, 𝑆(𝑥) = 𝑆1,2(𝑐∗1 ) and𝑆𝐷(𝑥) = 𝑆𝐷1,2(𝑐∗1 ) ∪ {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} ∪ {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )}.
Thus, 𝐹(𝑥) can be written as follows:

𝐹 (𝑥) = ∑
𝑃(V𝑖 ,V𝑗)∈𝑆1,2(𝑐∗1 )

𝑓 (V𝑖, V𝑗)

+ 𝛼( ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1,2 (𝑐

∗
1 )

𝑓 (V𝑖, V𝑗)
+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1 (𝑐

∗
1 )\𝑆𝐷1\2(𝑐

∗
1 )

𝑓 (V𝑖, V𝑗)

+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷2 (𝑐

∗
2 )\𝑆𝐷2\1(𝑐

∗
2 )

𝑓 (V𝑖, V𝑗)) .

(15)

We recall that 𝑆1,2(𝑐∗1 ) = 𝑆1,2(𝑐∗2 ) and 𝑆𝐷1,2(𝑐∗1 ) = 𝑆𝐷1,2(𝑐∗2 ).
Thus, 𝐹(𝑐∗1 ) − 𝐹(𝑥) and 𝐹(𝑐∗2 ) − 𝐹(𝑥) can be expressed as
follows:

𝐹 (𝑐∗1 ) − 𝐹 (𝑥) = ∑
𝑃(V𝑖 ,V𝑗)∈𝑆1(𝑐∗1 )

𝑓 (V𝑖, V𝑗)
+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1\2(𝑐

∗
1 )

𝛼 × 𝑓 (V𝑖, V𝑗)
− ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷2 (𝑐

∗
2 )\𝑆𝐷2\1(𝑐

∗
2 )

𝛼
× 𝑓 (V𝑖, V𝑗) ,

𝐹 (𝑐∗2 ) − 𝐹 (𝑥) = ∑
𝑃(V𝑖 ,V𝑗)∈𝑆2(𝑐∗2 )

𝑓 (V𝑖, V𝑗)
+ ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷2\1(𝑐

∗
2 )

𝛼 × 𝑓 (V𝑖, V𝑗)
− ∑
𝑃(V𝑖 ,V𝑗)∈𝑆𝐷1 (𝑐

∗
1 )\𝑆𝐷1\2(𝑐

∗
1 )

𝛼
× 𝑓 (V𝑖, V𝑗) .

(16)

In case (a), since 𝛼 = 0, 𝑆𝐷(𝑐∗1 ) = 𝑆𝐷(𝑐∗2 ) = 0. Then, the
equalities𝐹(𝑐∗1 )−𝐹(𝑥)=𝐹(𝑐∗2 )−𝐹(𝑥)= 0 can only be satisfied if𝑆1(𝑐∗1 ) = 𝑆2(𝑐∗2 ) = 0. This means that 𝑆(𝑐∗1 ) = 𝑆1,2(𝑐∗1 ) = 𝑆(𝑐∗2 ).

In case (b), 0 < 𝛼 < 1. Recall that {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} ⊆𝑆1(𝑐∗1 ) and {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} ⊆ 𝑆2(𝑐∗2 ). This means that∑𝑃(V𝑖 ,V𝑗)∈𝑆1(𝑐∗1 ) 𝑓(V𝑖, V𝑗)−∑𝑃(V𝑖 ,V𝑗)∈{𝑆𝐷2 (𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} 𝛼×𝑓(V𝑖, V𝑗) >0 in 𝐹(𝑐∗1 ) − 𝐹(𝑥) and ∑𝑃(V𝑖 ,V𝑗)∈𝑆2(𝑐∗2 ) 𝑓(V𝑖, V𝑗) −∑𝑃(V𝑖 ,V𝑗)∈{𝑆𝐷1 (𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} 𝛼 × 𝑓(V𝑖, V𝑗) > 0 in 𝐹(𝑐∗2 ) − 𝐹(𝑥) if𝑆1(𝑐∗1 ) and 𝑆2(𝑐∗2 ) are not empty. Thus, to satisfy equalities𝐹(𝑐∗1 ) − 𝐹(𝑥) = 𝐹(𝑐∗2 ) − 𝐹(𝑥) = 0, it is necessary to have𝑆1(𝑐∗1 ) = 𝑆2(𝑐∗2 ) = 𝑆𝐷1\2(𝑐∗1 ) = 𝑆𝐷2\1(𝑐∗2 ) = 0. Note also
that if 𝑆1(𝑐∗1 ) = 𝑆2(𝑐∗2 ) = 0, then {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} ={𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} = 0 because {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} ⊆ 𝑆1(𝑐∗1 )
and {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} ⊆ 𝑆2(𝑐∗2 ). Therefore, 𝑆(𝑐∗1 ) =𝑆1,2(𝑐∗1 ) = 𝑆(𝑐∗2 ) and 𝑆𝐷(𝑐∗1 ) = 𝑆𝐷1,2(𝑐∗1 ) = 𝑆𝐷(𝑐∗2 ).

In case (c), since 𝛼 = 1 and {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} ⊆𝑆1(𝑐∗1 ), to satisfy 𝐹(𝑐∗1 ) − 𝐹(𝑥) = 0, it is necessary to have𝑆𝐷1\2(𝑐∗1 ) = 0 and {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} = 𝑆1(𝑐∗1 ). Similarly,𝐹(𝑐∗2 ) − 𝐹(𝑥) = 0 can only be satisfied if 𝑆𝐷2\1(𝑐∗2 ) = 0 and{𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} = 𝑆2(𝑐∗2 ). These results also imply that𝑆(𝑐∗1 ) ∪ 𝑆𝐷(𝑐∗1 ) = 𝑆1(𝑐∗1 ) ∪ 𝑆1,2(𝑐∗1 ) ∪ 𝑆𝐷1,2(𝑐∗1 ) ∪ 𝑆2(𝑐∗2 ) and𝑆(𝑐∗2 ) ∪ 𝑆𝐷(𝑐∗2 ) = 𝑆2(𝑐∗2 ) ∪ 𝑆1,2(𝑐∗2 ) ∪ 𝑆𝐷1,2(𝑐∗2 ) ∪ 𝑆1(𝑐∗1 ). Since𝑆1,2(𝑐∗1 ) = 𝑆1,2(𝑐∗2 ) and 𝑆𝐷1,2(𝑐∗1 ) = 𝑆𝐷1,2(𝑐∗2 ), we can finally
conclude that 𝑆(𝑐∗1 ) ∪ 𝑆𝐷(𝑐∗1 ) = 𝑆(𝑐∗2 ) ∪ 𝑆𝐷(𝑐∗2 ).(⇐) In case (a), we assume 𝑆(𝑐∗1 ) = 𝑆(𝑐∗2 ).This implies that𝑆1(𝑐∗1 ) = 𝑆2(𝑐∗2 ) = 0. Also, since 𝛼 = 0, 𝑆𝐷(𝑐∗1 ) = 𝑆𝐷(𝑐∗2 ) = 0.
Thus, 𝐹(𝑐∗1 ) − 𝐹(𝑥) = 𝐹(𝑐∗2 ) − 𝐹(𝑥) = 0.

In case (b), we assume that 𝑆(𝑐∗1 ) = 𝑆(𝑐∗2 ) and 𝑆𝐷(𝑐∗1 ) =𝑆𝐷(𝑐∗2 ). This implies that 𝑆1(𝑐∗1 ) = 𝑆2(𝑐∗2 ) = 0 and 𝑆𝐷1\2(𝑐∗1 ) =𝑆𝐷2\1(𝑐∗2 ) = 0. Note also that {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} = {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} = 0 because {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} ⊆ 𝑆1(𝑐∗1 ),
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{𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} ⊆ 𝑆2(𝑐∗2 ), and 𝑆1(𝑐∗1 ) = 𝑆2(𝑐∗2 ) = 0. Thus,𝐹(𝑐∗1 ) − 𝐹(𝑥) = 𝐹(𝑐∗2 ) − 𝐹(𝑥) = 0.
In case (c), we assume that 𝑆(𝑐∗1 )∪𝑆𝐷(𝑐∗1 ) = 𝑆(𝑐∗2 )∪𝑆𝐷(𝑐∗2 ).

This implies that 𝑆1(𝑐∗1 ) ∪ 𝑆𝐷1\2(𝑐∗1 ) ∪ {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} =𝑆2(𝑐∗2 ) ∪ 𝑆𝐷2\1(𝑐∗2 ) ∪ {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )}. Since {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )} ⊆ 𝑆1(𝑐∗1 ) and {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} ⊆ 𝑆2(𝑐∗2 ), to
satisfy 𝑆1(𝑐∗1 ) ∪ 𝑆𝐷1\2(𝑐∗1 ) ∪ {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )} = 𝑆2(𝑐∗2 ) ∪𝑆𝐷2\1(𝑐∗2 ) ∪ {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )}, it is necessary to have𝑆𝐷1\2(𝑐∗1 ) = 𝑆𝐷2\1(𝑐∗2 ) = 0, 𝑆1(𝑐∗1 ) = {𝑆𝐷2(𝑐∗2 )\𝑆𝐷2\1(𝑐∗2 )},
and 𝑆2(𝑐∗2 ) = {𝑆𝐷1(𝑐∗1 )\𝑆𝐷1\2(𝑐∗1 )}. As a result, 𝐹(𝑐∗1 ) − 𝐹(𝑥)
= 𝐹(𝑐∗2 ) − 𝐹(𝑥) = 0.

Since the conditions in cases (a), (b), and (c) lead to𝐹(𝑐∗1 ) = 𝐹(𝑥) = 𝐹(𝑐∗2 ), and furthermore 𝑐∗1 , 𝑐∗2 ∈ CP∗, any
point 𝑥 ∈ ℓ(𝑐∗1 , 𝑐∗2 ) is optimal.

6.2. Complete Set of Optimal Solutions. In this subsection, we
determine the complete set of optimal solutions, denoted as
CS∗, for the continuous deviation-flow location problem for
an AF refueling station.

As an intermediate step toward determining CS∗, we first
construct the set pairs of consecutive candidate points in CP∗
that satisfy the conditions stated in Theorem 8, denoted as
set CP∗. Then, by Theorem 8, the line segments defined by
these pairs of candidate points in CP∗ are also optimal.
Consequently, the complete set of optimal solutions, denoted
as CS∗, can be defined as follows:

CS∗ = {{{ ⋃
(𝑐∗1 ,𝑐
∗
2 )∈CP

∗

ℓ (𝑐∗1 , 𝑐∗2 )}}} ∪ {CP
∗\𝑉 (CP∗)} , (17)

where 𝑉(CP∗) is the set of optimal candidate points in CP∗.
The optimality of set CS∗ is proved in the following theo-
rem.

Theorem 9 (optimality of the complete set of optimal solu-
tions). SetCS∗, defined in Expression (17), contains all optimal
solutions for the problem.

Proof (by contradiction). Suppose that there exists an optimal
point 𝑥∗ that does not belong to CS∗. Because CS∗ includes
all optimal candidate points in CP∗ and 𝑥∗ ∉ CS∗, 𝑥∗
should be a point in 𝑇 that is not a candidate point. First,
suppose that 𝑥∗ ∉ ⋃𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞 RST(V𝑖, V𝑗). Then, by case (a)
of Lemma 4, 𝐹(𝑥∗) = 0. This contradicts the hypothesis that𝑥∗ is optimal.Thus, 𝑥∗must belong to⋃𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞 RST(V𝑖, V𝑗).
Since 𝑥∗ ∈ ⋃𝑃(V𝑖 ,V𝑗)∈𝐿̂𝑞 RST(V𝑖, V𝑗), by case (b) of Lemma 4,
there exist two closest candidate points, 𝑐1 and 𝑐2, on each side
of 𝑥∗, such that 𝑆(𝑥∗) ⊆ 𝑆(𝑐𝑖), 𝑆𝐷(𝑥∗) ⊆ 𝑆𝐷(𝑐𝑖) ∪ 𝑆(𝑐𝑖), and𝐹(𝑥∗) ≤ 𝐹(𝑐𝑖), 𝑖 = 1, 2. Because 𝑥∗ is optimal, 𝑐1 and 𝑐2 are
also optimal, and therefore, Theorem 8 holds for the convex
combination of 𝑐1 and 𝑐2. This means that 𝑥∗ ∈ ℓ(𝑐1, 𝑐2) ∈
CS∗. This contradicts the initial hypothesis that there exists
an optimal point 𝑥∗ that does not belong to CS∗. Thus, CS∗
contains all the optimal solutions.

60

50 30 60 60

15

15

90

60

50

6

4 5321

789

10 11

T

Figure 2: Structure of undirected tree 𝑇.
7. Numerical Example and Analysis of Results

In this section, a numerical example is provided to illustrate
the proposed solution approach and verify its performance.
Figure 2 shows the undirected tree 𝑇(𝑉, 𝐸) with 𝑛 = 11 ver-
tices, and Table 3 provides the average traffic flows 𝑓(V𝑖, V𝑗),
for all V𝑖, V𝑗 ∈ 𝑉 such that 𝑖 < 𝑗. Note that although we
use a small-size network to show the step-by-step application
of the proposed procedure to find the optimal set of station
locations, the procedure can also be applied for the large-scale
problems due to its polynomial time complexity. In addition,
since the actual portion of drivers who select the deviation
portion 𝛼 is difficult to find in practice, in this example, we
change 𝛼 from 0 to 1 to analyze its effect on the optimal set of
location sites.

The remainder of this section is organized as follows.
In Section 7.1, for a given value of the vehicle driving range𝑅, we apply the Deviation-Flow Optimal Candidate Point
Algorithm to solve the numerical example. In Section 7.2, we
further examine the coupled effects of deviation portion and
vehicle driving range on the set of optimal locations and the
maximum traffic flow covered. In Section 7.3, we compare the
results of the proposed solution approach with the existing
models to verify its performance.

7.1. Numerical Example for a Given Vehicle Driving Range. In
this subsection, we fix the driving range 𝑅 = 80 and solve the
numerical example to illustrate the Deviation-Flow Optimal
Candidate Point Algorithm in detail.

To construct the expanded subtrees from 𝑇 in Step 1,
Sub-Step 1.1 finds 𝑑(V7, V8) > 𝑅; thus, 𝐸 = {(V7, V8)}.
By removing (V7, V8) from 𝑇, Sub-Step 1.2 forms forest𝐹(𝑉𝐹, 𝐸𝐹) containing two subtrees 𝑇1(𝑉1, 𝐸1) and 𝑇2(𝑉2, 𝐸2),
where 𝑉1 = {V1, V2, V3, V4, V5, V6, V7}, 𝐸1 = {(V1, V2), (V2, V3),(V3, V4), (V4, V5), (V3, V6), (V4, V7)}, 𝑉2 = {V8, V9, V10, V11}, and𝐸2 = {(V8, V9), (V8, V10), (V10, V11)}. For 𝑇1, Sub-Step 1.3 sets𝑉1 = 0 and generates 𝑉󸀠1 = 𝑉(𝐸) ∩ 𝑉1 = {V7}. For V𝑘 ∈ 𝑉󸀠1 ,
even if 𝛼 > 0, there is no 𝛼 × 𝑓(V𝑖, V𝑗) > 0, for V𝑖, V𝑗 ∈ 𝑉1,
such that max{𝑑(V𝑖, V𝑘), 𝑑(V𝑗, V𝑘)} < 𝑅/2. Thus, 𝑉1 remains
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Table 3: Traffic flows 𝑓(V𝑖, V𝑗) (in round trips per time unit) corresponding to all simple paths 𝑃(V𝑖, V𝑗) in 𝑇.
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

V1 — 80 40 30 20 0 10 8 5 3 0
V2 — — 70 60 30 15 20 17 14 9 1
V3 — — — 90 60 50 10 9 6 5 0
V4 — — — — 100 30 155 100 80 50 15
V5 — — — — — 10 20 16 14 15 12
V6 — — — — — — 6 5 1 3 0
V7 — — — — — — — 90 85 82 80
V8 — — — — — — — — 140 0 0
V9 — — — — — — — — — 0 0
V10 — — — — — — — — — — 80
V11 — — — — — — — — — — —
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Figure 3: Refueling segments, symmetric cycles, and candidate points in 𝑇̂1 and 𝑇̂2.
empty, and expanded subtree 𝑇̂1(𝑉̂1, 𝐸1) = 𝑇1(𝑉1, 𝐸1). For 𝑇2,
Sub-Step 1.3 sets 𝑉2 = 0 and forms 𝑉󸀠2 = 𝑉(𝐸) ∩ 𝑉2 = {V8}.
For V𝑘 ∈ 𝑉󸀠2 , if 𝛼 > 0, there exists 𝛼 × 𝑓(V8, V9) > 0, such that
max{𝑑(V8, V𝑘), 𝑑(V9, V𝑘)} = 15 < 𝑅/2. Thus, V8 is added to 𝑉2,
and expanded subtree 𝑇̂2(𝑉̂2, 𝐸2) is such that 𝑉̂2 = 𝑉2 ∪𝑉(V8)
and 𝐸2 = 𝐸2 ∪ 𝐸(V8), where 𝐸(V8) = {(V7, V8)} and 𝑉(V8) =𝑉(𝐸(V8))\{V8} = {V7}.

Now, for expanded subtree 𝑇̂𝑞, 𝑞 = 1, 2, Step 2 determines
the set of local optimal candidate points. For 𝑇̂1, Sub-Step 2.1
builds set 𝐿̂1 that consists of 𝑃(V𝑖, V𝑗) in 𝑇̂1 such that𝑑(V𝑖, V𝑗) ≤ 80 and 𝑓(V𝑖, V𝑗) > 0; that is, 𝐿̂1 = {𝑃(V1, V2),𝑃(V1, V3), 𝑃(V2, V3), 𝑃(V3, V4), 𝑃(V3, V6), 𝑃(V4, V5), 𝑃(V4, V7)}. By
using Expression (11), Sub-Step 2.2 establishes CP1, which
refers to the set of candidate points of the refueling subtrees
corresponding to the paths in 𝐿̂1. For 𝑃(V2, V3), since
CSV(V2, V3) = {V2, V3}, 𝛼 × 100% of traffic flow in 𝑃(V2, V3)
can select the deviation option that starts from V2 or V3. By
applying the Cycle Returning Point Algorithm to V2 and
V3, three cycle returning points, 𝑟1, 𝑟2, and 𝑟3, are obtained
such that 𝑟1 ∈ CRP(V2, V3; V2) and 𝑟2, 𝑟3 ∈ CRP(V2, V3; V3).
Thus, RST(V2, V3), consisting of RS(V2, V3), SC(V2, V3; V2, 𝑟1),
SC(V2, V3; V3, 𝑟2), and SC(V2, V3; V3, 𝑟3), has seven candidate
points 𝑐𝑘2,3, for 𝑘 = 1, . . . , 7, such that 𝑐12,3, 𝑐22,3 ∈ EP(V2, V3),

𝑐32,3, 𝑐42,3 ∈ CSV(V2, V3), 𝑐52,3 ∈ CRP(V2, V3; V2), and 𝑐62,3,𝑐72,3 ∈ CRP(V2, V3; V3). Note that there are no cycle starting
vertices in any path 𝑃(V𝑖, V𝑗) ∈ 𝐿̂1\{𝑃(V2, V3)}; that is, the
deviation option is not available. Thus, RST(V𝑖, V𝑗) =
RS(V𝑖, V𝑗), and each RST(V𝑖, V𝑗) has one or two candidate
points depending on the value of 𝑑(V𝑖, V𝑗). Then, CP1 in-
cludes eighteen candidate points, that is, CP1 = {𝑐11,2, 𝑐21,2,𝑐11,3, 𝑐12,3, 𝑐22,3, 𝑐32,3, 𝑐42,3, 𝑐52,3, 𝑐62,3, 𝑐72,3, 𝑐13,4, 𝑐23,4, 𝑐13,6, 𝑐23,6, 𝑐14,5, 𝑐24,5, 𝑐14,7,𝑐24,7}. Figure 3(a) illustrates the locations of RS(V𝑖, V𝑗),
SC(V𝑖, V𝑗; V𝑠, 𝑟), and the corresponding 𝑐 ∈ CP1 in 𝑇̂1, for𝑃(V𝑖, V𝑗) ∈ 𝐿̂1, V𝑠 ∈ CSV(V𝑖, V𝑗), 𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠). For𝑐 ∈ CP1, Sub-Step 2.3 constructs 𝑆(𝑐) and 𝑆𝐷(𝑐) to identify
all positive traffic flows covered by 𝑐. The left and middle
sides of Table 4 summarize the results. Based on the paths
covered by each candidate point 𝑐 ∈ CP1, Sub-Step 2.4 first
calculates 𝐹(𝑐), for 𝑐 ∈ CP1. The right side of this table
shows the calculation processes. Sub-Step 2.4 next compares𝐹(𝑐), for 𝑐 ∈ CP1, and determines the local optimal set of
candidate points CP∗1 in 𝑇̂1, for 0 ≤ 𝛼 ≤ 1, as follows:
CP∗1 = argmax {𝐹 (𝑐11,2) , F (c21,2) , F (c11,3) , 𝐹 (𝑐12,3) ,
𝐹 (𝑐22,3) , 𝐹 (𝑐32,3) , 𝐹 (𝑐42,3) , F (c52,3) , (𝑐62,3) , 𝐹 (𝑐72,3) ,
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Table 4: Sets of paths and the traffic flows (in round trips per time unit) covered by 𝑐 ∈ CP1 in 𝑇̂1.
𝑐 𝑆(𝑐) 𝑆𝐷 (𝑐) 𝐹 (𝑐)𝑐11,2 𝑆 (𝑐11,2) = {𝑃 (V1, V2)} 𝑆𝐷 (𝑐11,2) = 0 𝐹 (𝑐11,2) = 𝑓 (V1, V2) = 80𝑐21,2 𝑆 (𝑐21,2) = {𝑃 (V1, V2) , 𝑃 (V1, V3)} 𝑆𝐷 (𝑐21,2) = {𝑃 (V2, V3)} 𝐹 (𝑐21,2) = 𝑓 (V1, V2) + 𝑓 (V1, V3) + 𝛼 {𝑓 (V2, V3)} = 120 + 70𝛼𝑐11,3 𝑆 (𝑐11,3) = {𝑃 (V1, V2) , 𝑃 (V1, V3)} 𝑆𝐷 (𝑐11,3) = {𝑃 (V2, V3)} 𝐹 (𝑐11,3) = 𝑓 (V1, V2) + 𝑓 (V1, V3) + 𝛼 {𝑓 (V2, V3)} = 120 + 70𝛼𝑐12,3 𝑆 (𝑐12,3) = {𝑃 (V2, V3)} 𝑆𝐷 (𝑐12,3) = 0 𝐹 (𝑐12,3) = 𝑓 (V2, V3) = 70𝑐22,3 𝑆 (𝑐22,3) = {𝑃 (V2, V3)} 𝑆𝐷 (𝑐22,3) = 0 𝐹 (𝑐22,3) = 𝑓 (V2, V3) = 70𝑐32,3 𝑆 (𝑐32,3) = {𝑃 (V2, V3)} 𝑆𝐷 (𝑐32,3) = 0 𝐹 (𝑐32,3) = 𝑓 (V2, V3) = 70𝑐42,3 𝑆 (𝑐42,3) = {𝑃 (V2, V3)} 𝑆𝐷 (𝑐42,3) = 0 𝐹 (𝑐42,3) = 𝑓 (V2, V3) = 70𝑐52,3 𝑆 (𝑐52,3) = {𝑃 (V1, V2) , 𝑃 (V1, V3)} 𝑆𝐷 (𝑐52,3) = {𝑃 (V2, V3)} 𝐹 (𝑐52,3) = 𝑓 (V1, V2) + 𝑓 (V1, V3) + 𝛼 {𝑓 (V2, V3)} = 120 + 70𝛼𝑐62,3 𝑆 (𝑐62,3) = 0 𝑆𝐷 (𝑐62,3) = {𝑃 (V2, V3)} 𝐹 (𝑐62,3) = 𝛼 × 𝑓 (V2, V3) = 70𝛼𝑐72,3 𝑆 (𝑐72,3) = 0 𝑆𝐷 (𝑐72,3) = {𝑃 (V2, V3)} 𝐹 (𝑐72,3) = 𝛼 × 𝑓 (V2, V3) = 70𝛼𝑐13,4 𝑆 (𝑐13,4) = {𝑃 (V3, V4)} 𝑆𝐷 (𝑐13,4) = 0 𝐹 (𝑐13,4) = 𝑓 (V3, V4) = 90𝑐23,4 𝑆 (𝑐23,4) = {𝑃 (V3, V4)} 𝑆𝐷 (𝑐23,4) = 0 𝐹 (𝑐23,4) = 𝑓 (V3, V4) = 90𝑐13,6 𝑆 (𝑐13,6) = {𝑃 (V3, V6)} 𝑆𝐷 (𝑐13,6) = 0 𝐹 (𝑐13,6) = 𝑓 (V3, V6) = 50𝑐23,6 𝑆 (𝑐23,6) = {𝑃 (V3, V6)} 𝑆𝐷 (𝑐23,6) = 0 𝐹 (𝑐23,6) = 𝑓 (V3, V6) = 50𝑐14,5 𝑆 (𝑐14,5) = {𝑃 (V4, V5)} 𝑆𝐷 (𝑐14,5) = 0 𝐹 (𝑐14,5) = 𝑓 (V4, V5) = 100𝑐24,5 𝑆 (𝑐24,5) = {𝑃 (V4, V5)} 𝑆𝐷 (𝑐24,5) = 0 𝐹 (𝑐24,5) = 𝑓 (V4, V5) = 100𝑐14,7 𝑆 (𝑐14,7) = {𝑃 (V4, V7)} 𝑆𝐷 (𝑐14,7) = 0 𝐹 (𝑐14,7) = 𝑓 (V4, V7) = 155𝑐24,7 𝑆 (𝑐24,7) = {𝑃 (V4, V7)} 𝑆𝐷 (𝑐24,7) = 0 𝐹 (𝑐24,7) = 𝑓 (V4, V7) = 155

Table 5: Sets of paths and the traffic flows (in round trips per time unit) covered by 𝑐 ∈ CP2 in 𝑇̂2.
𝑐 𝑆(𝑐) 𝑆𝐷 (𝑐) 𝐹 (𝑐)𝑐18,9 𝑆 (𝑐18,9) = {𝑃 (V8, V9)} 𝑆𝐷 (𝑐18,9) = 0 𝐹 (𝑐18,9) = 𝑓 (V8, V9) = 140𝑐28,9 𝑆 (𝑐28,9) = {𝑃 (V8, V9)} 𝑆𝐷 (𝑐28,9) = 0 𝐹 (𝑐28,9) = 𝑓 (V8, V9) = 140𝑐38,9 𝑆 (𝑐38,9) = {𝑃 (V8, V9)} 𝑆𝐷 (𝑐38,9) = 0 𝐹 (𝑐38,9) = 𝑓 (V8, V9) = 140𝑐48,9 𝑆 (𝑐48,9) = 0 𝑆𝐷 (𝑐48,9) = {𝑃 (V8, V9) , 𝑃 (V10, V11)} 𝐹 (𝑐48,9) = 𝛼 {𝑓 (V8, V9) + 𝑓 (V10, V11)} = 220𝛼𝑐58,9 𝑆 (𝑐58,9) = 0 𝑆𝐷 (𝑐58,9) = 𝑃 (V8, V9) 𝐹 (𝑐58,9) = 𝛼 × 𝑓 (V8, V9) = 140𝛼𝑐110,11 𝑆 (𝑐110,11) = {𝑃 (V10, V11)} 𝑆𝐷 (𝑐110,11) = 0 𝐹 (𝑐110,11) = 𝑓 (V10, V11) = 80𝑐210,11 𝑆 (𝑐210,11) = {𝑃 (V10, V11)} 𝑆𝐷 (𝑐210,11) = 0 𝐹 (𝑐210,11) = 𝑓 (V10, V11) = 80𝑐310,11 𝑆 (𝑐310,11) = {𝑃 (V10, V11)} 𝑆𝐷 (𝑐310,11) = 0 𝐹 (𝑐310,11) = 𝑓 (V10, V11) = 80𝑐410,11 𝑆 (𝑐410,11) = 0 𝑆𝐷 (𝑐410,11) = {𝑃 (V8, V9) , 𝑃 (V10, V11)} 𝐹 (𝑐410,11) = 𝛼 {𝑓 (V8, V9) + 𝑓 (V10, V11)} = 220𝛼

𝐹 (𝑐13,4) , 𝐹 (𝑐23,4) , 𝐹 (𝑐13,6) , 𝐹 (𝑐23,6) , 𝐹 (𝑐14,5) , 𝐹 (𝑐24,5) ,
F (c14,7) , F (c24,7)} = argmax {80, 120 + 70𝛼,120
+ 70𝛼, 70, 70, 70, 70, 120 + 70𝛼, 70𝛼, 70𝛼,
90, 90, 50, 50, 100, 100, 155, 155} = {𝑐21,2, 𝑐11,3, 𝑐52,3, 𝑐14,7,
𝑐24,7} .

(18)

This result implies that if𝛼 ≥ 0.5, then 𝑐21,2, 𝑐11,3, and 𝑐52,3 are the
local optimal locations to 𝑇̂1; otherwise, 𝑐14,7 and 𝑐24,7 are the
local optimal locations that cover the maximum traffic flow
(in round trips per time unit) in 𝑇̂1.

Similarly, Step 2 is repeated for 𝑇̂2. Sub-Step 2.1 constructs𝐿̂2 = {𝑃(V8, V9), 𝑃(V10, V11)}. Sub-Step 2.2 generates EP(V8,
V9) = {V8, V9}, EP(V10, V11) = {V10, V11}, CSV(V8, V9) = {V8},

CSV(V10, V11) = {V10}, CRP(V8, V9; V8) = {𝑟1, 𝑟2}, and
CRP(V10, V11; V10) = {𝑟3}, where 𝑟1, 𝑟2, and 𝑟3 are the three
cycle returning points obtained by the Cycle Returning
Point Algorithm. Then, by Expression (11), CP2 = {𝑐18,9,𝑐28,9, 𝑐38,9, 𝑐48,9, 𝑐58,9, 𝑐110,11, 𝑐210,11, 𝑐310,11, 𝑐410,11}. Figure 3(b) graphi-
cally shows the locations of RS(V𝑖, V𝑗), SC(V𝑖, V𝑗; V𝑠, 𝑟), and
the corresponding 𝑐 ∈ CP2 in 𝑇̂2, for 𝑃(V𝑖, V𝑗) ∈ 𝐿̂2, V𝑠 ∈
CSV(V𝑖, V𝑗), 𝑟 ∈ CRP(V𝑖, V𝑗; V𝑠). For 𝑐 ∈ CP2, Sub-Step 2.3
determines 𝑆(𝑐) and 𝑆𝐷(𝑐). They are summarized in the left
andmiddle sides of Table 5. Next, Sub-Step 2.4 first computes𝐹(𝑐), for 𝑐 ∈ CP2. The calculations are summarized in the
right side of the table. Sub-Step 2.4 then compares 𝐹(𝑐), for𝑐 ∈ CP2, and identifies the local optimal set of candidate
points CP∗2 in 𝑇̂2, for 0 ≤ 𝛼 ≤ 1, as follows:

CP∗2 = argmax {F (c18,9) , F (c28,9) , F (c38,9) , F (c48,9) ,
𝐹 (𝑐58,9) , 𝐹 (𝑐110,11) , 𝐹 (𝑐210,11) , 𝐹 (𝑐310,11) , F (c410,11)}
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= argmax {140, 140, 140, 220𝛼, 140𝛼, 80, 80, 80,
220𝛼} = {𝑐18,9, 𝑐28,9, 𝑐38,9, 𝑐48,9, 𝑐410,11} .

(19)

This means that if 𝛼 ≥ 0.64, then 𝑐48,9 and 𝑐410,11 are local
optimal candidate points in 𝑇̂2; otherwise, 𝑐18,9, 𝑐28,9, and 𝑐38,9
become local optimal to 𝑇̂2.

Finally, by comparing𝐹(𝑥∗1 ), for 𝑥∗1 ∈ CP∗1 , and𝐹(𝑥∗2 ), for𝑥∗2 ∈ CP∗2 , Step 3 derives the global optimal set of candidate
points CP∗ for the original tree 𝑇 that covers the maximum
traffic flow in round trips per time unit (𝐹∗):
CP∗ = argmax {𝐹 (𝑥∗1 ) , 𝐹 (𝑥∗2 ) | 𝑥∗1 ∈ CP∗1 , 𝑥∗2
∈ CP∗2 } = argmax {F (c21,2) , F (c11,3) , F (c52,3) ,
F (c14,7) , F (c24,7) , 𝐹 (𝑐18,9) , 𝐹 (𝑐28,9) , 𝐹 (𝑐38,9) , F (c48,9) ,
F (c410,11)} = argmax {120 + 70𝛼, 120 + 70𝛼, 120
+ 70𝛼, 155, 155, 140, 140, 140, 220𝛼, 220𝛼}
= {𝑐21,2, 𝑐11,3, 𝑐52,3, 𝑐14,7, 𝑐24,7, 𝑐48,9, 𝑐410,11} .

(20)

The set of optimal candidate points CP∗ changes as the
deviation portion 𝛼 varies between 0 and 1. When 0 ≤ 𝛼 <0.5, the two candidate points in CP∗ = {𝑐14,7, 𝑐24,7} are optimal
locations in tree𝑇 covering a traffic flowof 155 round trips per
time unit. Since 𝑐14,7 and 𝑐24,7 are consecutive optimal candidate
points satisfying the conditions of Theorem 8, all interior
points between 𝑐14,7 and 𝑐24,7 are also optimal, and therefore, the
complete set of optimal solutions CS∗ = ℓ(𝑐14,7, 𝑐24,7). If 0.5 ≤𝛼 < 0.8, the three candidate points in CP∗ = {𝑐21,2, 𝑐11,3, 𝑐52,3}
are optimal locations with a traffic flow coverage of 155 to
176 round trips per time unit depending on 𝛼. Since these
three optimal candidate points are located in the same spot,
CS∗ = {𝑐21,2, 𝑐11,3, 𝑐52,3}. Lastly, if 0.8 ≤ 𝛼 ≤ 1, the two candidate
points inCP∗ = {𝑐48,9, 𝑐410,11} are optimal solutionswith a traffic
flow coverage of 176 to 220 round trips per time unit. Since𝑐48,9 and 𝑐410,11 are located in the same spot, CS∗ = {𝑐48,9, 𝑐410,11}.
Figure 4 illustrates the change of the optimal solutions in tree𝑇 as the value of 𝛼 changes from 0 to 1.

7.2. Sensitivity Analysis for Coupled Effects of Deviation Por-
tion andVehicleDriving Range. In this subsection,we analyze
the coupled effects of deviation portion and vehicle driving
range on the set of optimal locations and the maximum
traffic flow covered in tree 𝑇. The actual deviation portion 𝛼,
which refers to the portion of drivers willing to deviate from
their preplanned paths for refueling service per time unit,
is difficult to obtain or likely to be inaccurately estimated.
Thus, the values of 𝛼 used in this analysis range from 0
to 1. The vehicle driving range 𝑅, which depends on the
fuel consumption, is expected to increase substantially with
improving technologies [33]. To reflect about this point, the
values of 𝑅 used in this subsection range from 𝑅 = 40 to𝑅 = 120, which are ±50% of the value of 𝑅 = 80 used in
the previous subsection, in increments of 20.
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Figure 4: Change of the optimal solutions for tree 𝑇 as deviation
portion 𝛼 changes.

The first and last three columns of Table 6 show the
complete set of optimal solutions CS∗ and corresponding
traffic flow covered 𝐹∗ (in round trips per time unit) for five
different vehicle driving ranges (𝑅 = 40, 𝑅 = 60, 𝑅 = 80,𝑅 = 100, and 𝑅 = 120) and deviation portions between
0 and 1 for the proposed solution approach. In addition,
Figure 5 displays the trade-off between deviation portion 𝛼
and maximum traffic flow covered 𝐹∗ for the five different
vehicle driving ranges. From these results, we first notice that
the maximum traffic flow covered 𝐹∗ increases or at least
stays the same as the deviation portion 𝛼 increases for a given
vehicle driving range. For example, when the vehicle driving
range is fixed to 𝑅 = 80, 𝐹∗ = 155 as 𝛼 increases from 0 to
0.5; then 𝐹∗ increases from 155 to 220 round trips per time
unit as 𝛼 increases from 0.5 to 1. Note also that the value of𝐹∗ increases or stays the same as the vehicle driving range 𝑅
increases for a given value of 𝛼 between 0 and 1. For example,
when the deviation portion is fixed to 𝛼 = 0.5, 𝐹∗ = 140 for𝑅 = 40; 𝐹∗ = 155 for 𝑅 = 60 and 𝑅 = 80; 𝐹∗ = 190 for𝑅 = 100; 𝐹∗ = 435 for 𝑅 = 120.

Figure 6 graphically presents the locations of the optimal
candidate points listed in Table 6. It can be observed that
when the maximum traffic flow covered 𝐹∗ stays the same,
the complete set of optimal solutions CS∗ may expand as the
deviation portion 𝛼 increases and the vehicle driving range 𝑅
remains constant. For example, when 𝑅 = 40 and 𝛼 increases
from 0 to 1, the maximum traffic flow covered 𝐹∗ stays at
140 round trips per time unit, but CS∗ is expanded fromℓ(𝑐1, 𝑐2), for 0 ≤ 𝛼 < 1, to ℓ(𝑐1, 𝑐2) ∪ ℓ(𝑐1, 𝑐3) ∪ ℓ(𝑐1, 𝑐4),
for 𝛼 = 1. Similarly, while 𝐹∗ remains constant, CS∗ may
enlarge as 𝑅 increases and 𝛼 stays the same. For example,
given that 0 ≤ 𝛼 < 0.5, as 𝑅 increases from 60 to 80, 𝐹∗ stays
at 155 round trips per time unit, but CS∗ is expanded from
one candidate point {𝑐5} to line segment ℓ(𝑐6, 𝑐7) including{𝑐5}.
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Table 6: Optimal locations and the corresponding traffic flows covered for each vehicle driving range (and deviation portion combination)
for three models.

Vehicle driving
range (𝑅)

DFRLM [20] Ventura et al. [18] algorithm Proposed solution approach
Complete set of

optimal
solutions
(vertices)

Traffic flow
covered (𝐹∗)

Complete set of
optimal

solutions (CS∗)
Traffic flow
covered (𝐹∗) Deviation

portion (𝛼)
Complete set of

optimal
solutions (CS∗)

Traffic flow
covered (𝐹∗)

40 {V8, V9} 140 ℓ (𝑐1, 𝑐2) 140
0.00 ≤ 𝛼 < 1.00 ℓ (𝑐1, 𝑐2) 140

𝛼 = 1 ℓ (𝑐1, 𝑐2) ∪ℓ (𝑐1, 𝑐3) ∪ℓ (𝑐1, 𝑐4) 140
60 {V8, V9} 140 {𝑐5} 155 0.00 ≤ 𝛼 ≤ 1.00 {𝑐5} 155
80 {V8, V9} 140 ℓ (𝑐6, 𝑐7) 155 0.00 ≤ 𝛼 < 0.50 ℓ (𝑐6, 𝑐7) 1550.50 ≤ 𝛼 < 0.80 {𝑐8} 120 + 70𝛼0.80 ≤ 𝛼 ≤ 1.00 {𝑐13} 220𝛼
100 {V2} 190 {𝑐11} 190 0.00 ≤ 𝛼 < 0.57 {𝑐11} 1900.57 ≤ 𝛼 < 1.00 {𝑐12} 150 + 70𝛼𝛼 = 1 {𝑐12} ∪ ℓ (𝑐9, 𝑐10) 220120 {V4} 435 {𝑐14} 435 0.00 ≤ 𝛼 ≤ 1.00 {𝑐14} 435
Note. The locations of candidate points in the complete set of optimal solutions (CS∗) are shown in Figure 6.
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Figure 5: Trade-off between deviation portion andmaximum traffic
flow covered for the five different vehicle driving ranges (𝑅 = 40,𝑅 = 60, 𝑅 = 80, 𝑅 = 100, and 𝑅 = 120).

7.3. Performance Analysis. In this subsection, the optimal
solution of the proposed procedure is compared with those
of the DFRLM [20] and the Ventura et al. [18] algorithm
using the example in this section. The three approaches
consider the same objective function, that is, maximizing
the total traffic flow covered by the station, but have differ-
ent assumptions. The main distinctions among these three
models can be summarized briefly. First, the DFRLM, like
most models published in the literature, assumes that the
set of candidate sites is the set of vertices of the network.
Therefore, the DFRLM is able to find deviation paths only
if such vertices can be reached within the remaining driving
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Figure 6: Locations of the optimal candidate points listed in Table 6.

range of vehicles. On the other hand, Ventura et al. [18]
consider that the station can be located anywhere along the
network, but vehicle deviations are not allowed. Lastly, the
proposed approach considers the continuous version of the
problem and allows vehicle deviations. Table 2 provides a
detailed comparison of these three methodologies, including
their computational complexity. In spite of the different
computational requirements, since the size of the network in
this example is small, the three solution approaches solve the
example problem very quickly.

The first column of Table 6 shows the five values of 𝑅
that are considered.The optimal locations and corresponding
traffic flow covered 𝐹∗ (in round trips per time unit) for the
DFRLM are shown in columns 2 and 3 and for Ventura et al.
[18] algorithm are provided in columns 4 and 5. The last
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Figure 7: Coupled effects of vehicle driving range and deviation
portion on the maximum traffic flow covered for the three models
(DFRLM, Ventura et al. algorithm, and the proposed solution
approach).

three columns include the results of the proposed solution
approach as explained in Section 7.2. Figure 7 displays the
coupled effects of vehicle driving range and deviation portion
on the maximum traffic flow 𝐹∗ for the three models:
DFRLM, Ventura et al. algorithm, and proposed approach.

The comparison among the three studies in Table 6
and Figure 7 verifies that the proposed solution approach
performs better than the other two studies in terms of
maximum traffic flow covered and set of optimal locations.
First, Figure 7 shows that the maximum traffic flow covered𝐹∗ of the proposed approach is always higher than or equal
to those of the other two models for all values of 𝑅. For
example, when 𝑅 = 80, the proposed approach with 𝛼 = 1.00
finds the optimal locations covering 220 round trips (per time
unit), which is 57% and 42% higher than the round trips
covered at the suboptimal locations found using the DFRLM
and Ventura et al. algorithm, respectively. Next, Table 6 also
demonstrates that when all three models find the same value
of 𝐹∗, the proposed approach may be able to detect more
optimal locations than the other two models. For example,
when 𝑅 = 40, 𝐹∗ = 140 for all three models, but the set of
optimal locations found by the proposed approach, which is
CS∗ = ℓ(𝑐1, 𝑐2) ∪ ℓ(𝑐1, 𝑐3) ∪ ℓ(𝑐1, 𝑐4), includes the two optimal
locations, {V8, V9}, found by the FRLM and the set of optimal
locations, ℓ(𝑐1, 𝑐2), found by the Ventura et al. algorithm.

An interesting point is that the DFRLM fails to find any
deviation paths in this example, while the proposed approach
finds six deviation paths from simple paths 𝑃(V2, V3),𝑃(V8, V9), and 𝑃(V10, V11), as shown in Figure 3. In this exam-
ple, no vertices from these simple paths are reachable within
the remaining driving range of vehicles; thus, the DFRLM
cannot find any feasible deviation path. On the other hand,
the proposed approach explores every point along detour
edges in polynomial time, so it finds all possible deviation
paths in the network regardless of the location of vertices on
detours.

8. Conclusions and Future Research

This article has studied the continuous version of an AF refu-
eling station location problem on a tree network considering
that a portion of drivers have the option to deviate from
their preplanned paths to be able to refuel their vehicles.
The objective of the problem is to identify the set of optimal
station locations that maximize the total traffic flow covered
(in round trips per time unit). To achieve this goal, we have
first generated a set of subtrees from the original tree network
to reduce the problem size and consider the deviation option.
Next, we have identified three sets of candidate points,
including endpoints of refueling segments, cycle starting
vertices, and cycle returning points, to locate the refueling
station. We have proved that there exists at least one optimal
solution in these sets of candidate points. Then, we have
developed a polynomial time algorithm to determine the set
of optimal candidate points that maximizes the total traffic
flow covered. Lastly, we have derived conditions under which
the line segments defined by certain pairs of consecutive
optimal candidate points are also optimal. Our performance
analysis demonstrates that the proposed solution approach
can significantly improve the suboptimality of the solutions
found by the existing refueling station location models.
Note that although in this study we have used a small-
size numerical example to illustrate and verify the proposed
solution approach step by step, this procedure can also be
applied for the large-scale problems due to its polynomial
time complexity.

For future research we have identified three clear exten-
sions to our solution approach. First, some of the assumptions
we made in this article can be relaxed. For example, some
vehicles may have different fuel tank levels at their origin and
destination points, and fuel consumption may be different
for some vehicles, which implies that they can have different
driving ranges. We also suggest to extend the approach
discussed in this article for tree networks to general networks
having multiple paths between pairs of vertices. In addition,
a multiobjective version of the refueling station location
problem can also be considered to identify efficient locations
that both maximize the total traffic flow covered by the
stations and minimize construction and maintenance costs
of the stations, assuming that these costs differ regionally.
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