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Analyzing and improving mathematical models for water quality investigation are imperative for water quality issues around the
world. This study is aimed at presenting the 1D unsteady state regarding analytical and numerical solutions of dissolved oxygen
(DO) concentration in a river, in which the increase of pollution from a source is considered as an exponential term. Laplace
transformation was utilized to obtain analytical solutions, while the finite difference technique was selected for numerical solutions.
The results show that the rate of pollutant addition along the river (q) and the arbitrary constants of an exponentially increasing
pollution source term (λ) affected inversely, while the initial concentration Xi affected directly, DO in the river. These solutions
and simulations can be enabled for testing in various scenarios in terms of the behavior of oxygen depletion in polluted rivers.

1. Introduction

The quality of surface water is one of the crucial factors that
influence the lives of humans and other creatures in the
world. The measurement of water quality parameters con-
sists of physicochemical parameters (pH, turbidity, conduc-
tivity, total suspended solids, total phosphorus, total solids,
biochemical oxygen demand (BOD), dissolved oxygen
(DO), nitrate-nitrogen, and heavy metals) and biological
parameters (fecal and total coliform bacteria) [1]. In this
paper, DO is taken as a principal indicator of water quality,
as it is an essential element for aerobic communities living
in aquatic systems. Other unwanted or waste matters, so-
called pollutants, are chosen to be incorporated as from a
hydrodynamic model of water pollution in a river. It is
assumed that this waste is largely biochemical and undergoes
various biochemical and biodegradation processes using
dissolved oxygen. In Thailand, water contamination from
land-based activities is largely associated with urbanization,
industrialization, and agricultural activities. For the major
rivers in Thailand, the observed water quality issues were
dissolved oxygen depletion, decreased fish population, high
amounts of ammonia and nitrogen, high coliform bacteria,

and eutrophication phenomena [2]. If dissolved oxygen
concentrations drop below a certain level, fish mortality
rates will rise. Low oxygen or hypoxia (less than 2mg/L)
affects the biological system. For fish to survive, DO con-
centrations throughout a water system are required to
remain at least 30% of the saturated value [3, 4]. Figure 1
shows a graph of raw data of DO concentrations which
were obtained from a mobile application developed by the
Regional Environmental Office 5, National Pollution Con-
trol Department (PCD) [5]. It shows the monitoring of
DO during the second quarter of the year (April-June)
between 2011 and 2018 and indicates that DO concentra-
tions repeatedly exceeded the National Surface Water Qual-
ity Standards and Classification limits (red line 2-6mg/L)
throughout the river.

Mathematical modeling has been extensively utilized to
forecast water quality and to provide reliable tools for
water quality management in affected areas. One of the
primary and most well-known environmental models was
derived by Streeter and Phelps in 1925. It described how
the balance of DO in rivers was affected by two processes;
the first one was that oxygen is removed from water by the
degradation of organic materials, and the second process
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was “reaeration,” which is where oxygen is transferred into
the water from the atmosphere [6]. Chapra stated the stan-
dard equations of water pollution by using advection-
diffusion equations for the pollutant and DO concentrations
[7]. Kumar et al. obtained analytical solutions for temporally
and spatially dependent solute dispersion in a one-
dimensional semi-infinite porous medium using the Laplace
transform technique [8]. Pimpunchat et al. composed two
coupled equations for the pollutant and DO concentrations
and provided some analytical solutions at steady-state flows
[9, 10], and Manitcharoen and Pimpunchat evaluated the
unsteady-state analytical and numerical solutions for 1D
advection-dispersion equations (ADE) of pollution concen-
tration by considering the increasing terms of sources in
two cases, uniformly and exponentially, respectively [11].
This study involved the relationship between oxygen concen-
trations from pollution degradation, in which oxygen deple-
tion in a river is contrasted with increasing biochemical
oxygen demand of organic waste. In [11], solutions with
exponentially increasing pollution sources were found to be
a suitable model for illustrating the behavior of increased pol-
lution along a studied river (the Tha Chin river). The objec-
tive of this study is to evaluate unsteady-state solutions for
1D of the DO concentration by considering the rate of pollut-
ant addition along a river in the case of an exponentially
increasing form. It is thought that pollutant increment results
from the pollution of the Tha Chin river. The contaminant in
the lower portion of the river is higher than the upper por-
tion, caused by geography, including various contributions
from the branch river and main river, while the increasing
wastewater is caused by swine and rice farming from the
basin area. Analytical and numerical solutions are con-
structed for the model; analytical solutions are obtained uti-
lizing the Laplace transform technique, and for numerical
solutions, the explicit finite difference technique is used. Both
solutions are compared to the values of the relative error. The
parameter values that influence the concentration, such as

the rate of pollutant addition along the river (q), the initial
concentration of DO (Xi), and arbitrary constants of expo-
nentially increasing pollution source terms (λ), are presented
to explain the behavior of dissolved oxygen in the river.

2. Materials and Methods

2.1. Governing Equation. The unsteady-state flow in the river
is modeled by two coupled advection-dispersion equations,
as 1D with spatial x and time t can be written as (2.1) and
(2.2) in [10]:

∂ APð Þ
∂t

=DP
∂2 APð Þ
∂x2

−
∂ vAPð Þ
∂x

− K1
X

X + k
AP

+ q 0 ≤ x < L≤∞,t ≥ 0ð Þ,
ð1Þ

∂ AXð Þ
∂t

=Dx
∂2 AXð Þ
∂x2

−
∂ vAXð Þ

∂x
− K2

X
X + k

AP

+ α S − Xð Þ 0 ≤ x < L≤∞,t ≥ 0ð Þ:
ð2Þ

The first equation includes both the rate of pollutant
addition along the river (q) and its removal by aeration.
The second equation is a mass balance for oxygen, in which
oxygen is added at the river surface and it being consumed
to remove pollutants. This equation is standard and was
developed by Chapra [7]. We consider a river where pol-
lutants are discharged in the form of waste. It is assumed
that these pollutants Pðx, tÞ use dissolved oxygen Xðx, tÞ
for various biochemical and biodegradation processes.
The discharge of pollutants into the river is at the constant
rate q, A is the cross-section area of the river, Dp is the
dispersion coefficient of pollutants, and Dx is the dispersion
coefficient of DO in the x-direction, v is the water velocity
in the x-direction, K1 is the degradation rate coefficient for
pollutants, K2 is the reaeration rate coefficient for DO, α is
the mass transfer of oxygen from the air to water, and S is
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Figure 1: DO status in the Tha Chin river (April-June) between 2011 and 2018 (modified from raw data which is available from [5]).
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saturated oxygen concentration. For convenience, all param-
eters are set to be constant values over time and space. The
analysis is considered by the case of negligible k (k ≈ 0); then,
(1) and (2) can be written as follows:

∂ APð Þ
∂t

=DP
∂2 APð Þ
∂x2

−
∂ vAPð Þ
∂x

− K1AP + q, ð3Þ

∂ AXð Þ
∂t

=Dx
∂2 AXð Þ
∂x2

−
∂ vAXð Þ

∂x
− K2AP + α S − Xð Þ:

ð4Þ
In this study, the result of DO concentration in (4) is

determined by the case of an exponentially increasing form
of pollution source, which is the same as (4) demonstrated
as in [11], and can be written as

∂ APð Þ
∂t

=DP
∂2 APð Þ
∂x2

−
∂ vAPð Þ
∂x

− K1AP + q 1 − exp −λxð Þð Þ,
ð5Þ

where λ is an arbitrary constant of an exponential term of
pollution source. The initial and boundary conditions associ-
ated with the DO concentration (5) are

X x, tð Þ = Xi, x ≥ 0, t = 0, ð6Þ

X x, tð Þ = X0, x = 0, t > 0, ð7Þ
∂X
∂x

x, tð Þ = 0, x→∞,t > 0, ð8Þ

where Xi is the initial concentration and X0 is the source
concentration of DO at the origin.

2.2. Analytical Technique. The steady-state solution ðt→∞Þ
of pollutant concentration for an exponentially increasing
form of source, as in (5), is given in [11] and can be written as

P xð Þ = q
AK1

−
q

AK3
exp −λxð Þ

+ P0 −
q

AK1
+ q
AK3

� �
exp γ −

βffiffiffiffiffiffi
Dp

p
 !

x

 !
,

ð9Þ

where γ = v/2Dp, β = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2/4Dp + K1

p
, and K3 = K1 − vλ −Dp

λ2. Applying the Laplace transformation to (4), we get

DxA
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dx2
− vA
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−
K2A
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S
s
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= 0, x ≥ 0, s > 0,

ð10Þ

where s is called the transform variable. After this, transform-
ing the initial and boundary conditions to (6), (7), and (8) in
the Laplace domain gives

�X x, 0ð Þ = Xi, ð11Þ

�X 0, sð Þ = X0
s
, ð12Þ

d�X
dx

x, sð Þ = 0 as x→∞: ð13Þ

Assessing (10), which uses the initial and boundary con-
ditions (11), (12), and (13) and, finally, (9), obtains its solu-
tion in the Laplace domain as
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s + η2

Dx

s !
x

 !
− P∗ K2

s s + B∗ð Þ
� �

� exp γ −

ffiffiffiffiffiffi
β2

Dp

s !
x

 !
:

ð14Þ

2.3. Numerical Technique. The numerical technique was dis-
played to utilize the explicit finite difference technique by
using the forward differences scheme for time and the central
derivatives for space. Thus, (4) in the finite difference form
can be composed as

Xn+1
m − Xn

m

Δt
= DX

Δx2
Xn
m+1 − 2Xn

m + Xn
m−1ð Þ − v

2Δx Xn
m+1 − Xn

m−1ð Þ

− K2P
n
m + α

A
S − Xn

mð Þ + 0 Δx2, Δt
� �

,

ð15Þ

where indexes m and n refer to the discrete step size Δx and
the time step size Δt, respectively. Pn

m is the pollutant concen-
tration with an exponentially increasing pollution source,
which is the same as (26) in [11]. The initial and boundary
conditions of (6), (7), and (8) for (4) can be expressed in
the finite difference form as

Xm,0 = Xi, x ≥ 0,
X0,n = X0, t > 0,

XM,n = XM−1,n, x→∞,t > 0:
ð16Þ

3. Results and Discussion

3.1. Analytical Solution. Applying the invert Laplace
transformation with the shift theorem and the convolution
theorem [12, 13] to (14), the analytical solution of DO
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concentration with an exponentially increasing pollution
source of (4) is

X x, tð Þ = S −
K2q
K1α
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where the complementary error function erfc ðxÞ = 1 − erf
ðxÞ = ð2/ ffiffiffi

π
p ÞÐ∞x e−z

2
dz, the real constants, δ, η, B∗, C∗, P∗,

A1, A2,A3, A4, A5, A6, A7, and A8 are given in the appendix.

3.2. Steady-State Solution. The steady-state solution is
derived from (17) by taking limit t→∞. Hence, pollutant
concentrations in this state give

X xð Þ = S −
K2q
K1α

+ X0 − S + K2q
K1α

+ A8

� �
exp A2xð Þð Þ

−
K2P

∗

B∗ exp A1xð Þð Þ + K2q
K3C

∗A
exp −λxð Þð Þ:

ð18Þ

The downstream of DO concentration limit was
calculated by x→∞ and therefore gives

X x→∞,t→∞ð Þ = S −
K2q
K1α

: ð19Þ

This limit is the same result which was obtained by
Pimpunchat et al. [10].

3.3. Analytical and Numerical Simulation. Numerical solu-
tions are obtained by rearranging (15). Then, the numerical
solutions must satisfy

Xn+1
m = FXn

m+1 +GXn
m +HXn

m−1 − K2Δtð ÞPn
m + J , ð20Þ

where F = ðDxΔt/Δx2Þ − ðvΔt/2ΔxÞ,G = 1 − ð2DxΔt/Δx2Þ −
ðαΔt/AÞ,H = ðDxΔt/Δx2Þ + ðvΔt/2ΔxÞ,and J = αkS/A for
pollution concentration Pn

m to be evaluated by the following
equation [12]:

Table 1: Variable and parameter values.

(a)

Variables

t is the time (day)

x is the position (m)

P is the pollutant concentration (kgm-3)

X is the dissolved oxygen concentration (kgm-3)

(b)

Parameters SI units

L is the length of the river (km) 325∗

Dp is the dispersion coefficient of pollutant in the
x-direction (m2 day-1)

3,456,000∗

Dx is the dispersion coefficient of dissolved oxygen in
the x-direction (m2 day-1)

3,456,000∗

v is the water velocity in the x-direction (mday-1) 43,200∗

A is the cross-section area of the river (m2) 2100∗

q is the rate of pollutant addition along the river
(kgm-1 day-1)

0.06∗

K1 is the degradation rate coefficient at 20° for
pollutant (day-1)

8.27∗∗∗

K2 is the reaeration rate coefficient at 20° for dissolved
oxygen (day-1)

44.10∗∗

k is the half-saturated oxygen demand concentration
for pollutant decay (kgm-1)

0.007∗∗∗∗

α is the mass transfer of oxygen from air to water
(m2 day-1)

16.50∗∗

S is the saturated oxygen concentration (mg L-1) 0.01∗

∗[14]; ∗∗[10]; ∗∗∗based on the molecular weights in the chemical reaction
K1 = ð3/16ÞK2;

∗∗∗∗estimated.
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Pn+1
m = BPn

m+1 + CPn
m + EPn

m−1 +Q, ð21Þ

where B = ðDPΔt/Δx2Þ − ðvΔt/2ΔxÞ, C = 1 − ð2DPΔt/Δx2Þ
− K1Δt, E = ðDPΔt/Δx2Þ + ðvΔt/2ΔxÞ, andQ = qð1 − exp ð−λ
xnmÞÞΔt/A. The x and t meshes must be chosen to be DxΔ

t/ðΔxÞ2 ≤ 1/2 in order to ensure stability. In this study,
the analytical and numerical solutions were compared
by utilized relative error, which is assessed by

Relative error =
Panalytical − Pnumerical

Panalytical

					
					: ð22Þ

The parameter values used in this model are the same
as in [9], given by Table 1. The results are compared
between the analytical and numerical solutions obtained
by the Laplace transform technique and the finite differ-
ence technique, respectively. Figure 2 shows the variation
in the longitudinal region 0 ≤ x ≤ 50 km at different times
t = 0:05, t = 0:5, t = 1, and t→∞ where step size Δx = 0:1,
Xo = S, Xi = 0:95 × 10−2 kgm-3, and q = 0:06 kgm-1 day-1.

The arbitrary constant of the exponential pollution
source term (λ = 0:06289 day-1) in (18) is assumed by
the total rate of pollutant addition q being reduced by
5% along the river (L = 318 km), approximately [12].
The relative errors are calculated by (22), provided in
Table 2. Their values appear acceptable between the ana-
lytical and numerical solutions. The maximum percent-
age relative error is less than 3 × 10−5%. Figure 3 depicts

Table 2: Relative error of pollutant concentrations by Δx = 0:1 and Δt = 0:001 at t = 1 day.

Exponentially increasing pollution source

Distance (km)
Analytical solutions

×10-3 (kg m-3)
Numerical solutions

×10-3 (kg m-3)
Relative errors

5 9.49966 9.99929 6:39054 × 10−9

10 9.49837 9.99591 5:49889 × 10−9

15 9.49705 9.98943 1:66079 × 10−8

20 9.49594 9.98023 2:41047 × 10−8

25 9.49507 9.96888 2:87351 × 10−8

30 9.49441 9.95590 2:13242 × 10−8
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DO concentrations with various rates of pollutant
addition along the river (q) at t = 1 day, Xo = S, Xi =
0:95 × 10−2 kgm-3, and starting from q = 0:06 to q =
0:48 kgm-1 day-1. The concentrations decreasingly vary
inversely proportional to q; X decreases as q increases.
In 1 day, the concentration gradient will gradually
decrease and greatly diminish when the distance is 35
kilometers. When the distance is long enough, the values
converge to a positive constant. Figure 4 shows the con-
centration by various initial concentrations (Xi) at 1:5 ×
10−2 ≤ Xi ≤ 5 × 10−3 at t = 0:5 and q = 0:48. The concentra-
tions decreasingly vary obviously with Xi ; X decreases as
Xi decreases. Additionally, the DO concentration surface
plot with Δx = 0:1 and Δt = 0:01 is depicted in Figure 5.
The distinction of concentration is decreased slowly near
the origin but is decreased rapidly far away, until con-
verging to a positive constant when the distance is long
enough. The rate of concentration decreases quite differ-
ently via t ; it decreases rapidly at the beginning, when t is
very small (t < 0:1 approximately), and decreases more
slowly later. The behavior in Figure 6 is a comparison of
the DO concentrations between time t = 0:5 and t→∞
(the steady state) days by varying an arbitrary constant
of exponential pollution source terms (λ). It is considered

by default from 1 × 10−5 to 1 × 10−2 day-1 by Xi = 0:005
and Xo = S = 0:01. From Table 3, concentrations decrease
rapidly (<5%) at the beginning; when entering into a
steady state, they will diminish by an exceptionally small
amount, not more than 1%.

4. Concluding Remarks

In this work, we used a mathematical model for water quality
to analytically and numerically investigate dissolved oxygen
concentrations in a river. This model was considered for
the depletion of DO due to increased pollution degradation
by the exponential form of the sources. The unsteady state
solutions in 1D are proposed by using the Laplace transform
technique and the explicit finite difference technique, for
analytical and numerical solutions, respectively. The param-
eters that directly affect the DO concentration are the rate of
pollutant addition along the river q and the initial concentra-
tion Xi. It is found that the variation is proportional directly
with Xi and is inversely proportional with q. The values of
both parameters are the result of the amount of pollutants
in the river. Based on the results, this study is suitable for riv-
ers which have pollution sources varying with a position
where the downstream pollution sources are higher than
upstream, as appears in the Tha Chin river, a distributary
of the Chao Praya river in Thailand. These results are an
observation of the reduction of DO concentrations without
treatment or aeration to the water. Otherwise, if there is no
sufficient planning or control of the amount of pollution
emitted into the river, oxygen depletion will continue to
occur and will certainly affect water quality.

Appendix

The real constants, δ, η, B∗, C∗, P∗, A1,A2, A3, A4, A5, A6,
A7, A8, A∗, and E∗ that were used in Equations (14), (17),
and (18) are as follows:

Distance from source (km)

0.5

0 10 20 30 40

25
0.49

0.495
0.5

0.505
0.51

0.515
0.52

25.5 26 26.5 27 27.5

50

0.6

0.7X
/X

o

0.8

0.9

Distance from source (km)

0.988

0.99

0.992

0.994

0.996

0.998

1

0 10 20 30 40 50

X
/X

o

1

𝜆 =

t → ∞
t = 0.5 days

25
0.49

0.495
0.5

0.505
0.51

0.515
0.52

25.5 26 26.5 27 27.5

0.988

0.99

0.992

0.994

0.996

0.998

1

X
/X

o

t →∞
y

Figure 6: Behaviors of DO concentrations ðX/XoÞ at t = 0:5 days by various arbitrary constants of exponentially increasing pollution source
terms (1 × 10−1 ≤ λ ≤ 1 × 10−5 day-1) with q = 60 kg km-1 day-1.

Table 3: Various λ for X/Xo concentrations at t = 0:5 days and t
→∞.

Exponentially increasing pollution source L = 50 km, q = 60,
Xi = 0:005

λ X/Xo at t = 0:5 days X/Xo at t→∞

1 × 10−5 0.50196 0.99999

1 × 10−4 0.501934 0.99996

1 × 10−3 0.50171 0.99965

1 × 10−2 0.49979 0.99690

1 × 10−1 0.49474 0.98769
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δ = v
2Dx
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η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

4Dx
+ α

A

s
,

B∗ = α

A
−DxA1

2 + vA1,

C∗ = α

A
−Dxλ

2 − vλ,

P∗ = P0 −
q

AK1
+ q
AK3

,

A1 = γ −
βffiffiffiffiffiffi
Dp

p
 !

,

A2 = δ −
ηffiffiffiffiffiffi
Dx

p
� �

,

A3 = δ + ηffiffiffiffiffiffi
Dx

p
� �

,

A4 = δ −
A∗ffiffiffiffiffiffi
Dx

p
� �

,

A5 = δ + A∗ffiffiffiffiffiffi
Dx

p
� �

,

A6 = δ −
E∗ffiffiffiffiffiffi
Dx

p
� �

,

A7 = δ −
E∗ffiffiffiffiffiffi
Dx

p
� �

,

A8 =
K2P

∗

B∗ −
K2q

AK3C
∗ ,

A∗ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − B∗

p
,

E∗ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − C∗

p
:

ðA:1Þ

Data Availability

The results of this study were obtained from a numerical
technique compared with analytical solutions. The raw data
was not used in the calculation of this matter. We plotted
the trends of DO and BOD increase from the data from
Mobile Application Tha Chin Water Quality, Regional Envi-
ronment Office ofMinistry of National Resources and Environ-
ment which was referred in the reference no. [5]. Accordingly,
the researchers can access this data on the website.
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