
Research Article
A Mathematical Model for Nipah Virus Infection

Assefa Denekew Zewdie 1,2 and Sunita Gakkhar1

1Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, 247667 Uttarakhand, India
2Department of Mathematics, Debre Tabor University, Debre Tabor, Ethiopia

Correspondence should be addressed to Assefa Denekew Zewdie; assefadagi@gmail.com

Received 11 June 2020; Accepted 16 July 2020; Published 30 September 2020

Academic Editor: Ferenc Hartung

Copyright © 2020 Assefa Denekew Zewdie and Sunita Gakkhar. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

It has been reported that unprotected contact with the dead bodies of infected individuals is a plausible way of Nipah virus
transmission. An SIRD model is proposed in this paper to investigate the impact of unprotected contact with dead bodies of
infected individuals before burial or cremation and their disposal rate on the dynamics of Nipah virus infection. The model is
analyzed, and the reproduction number is computed. It is established that the disease-free state is globally asymptotically stable
when the reproduction number is less than unity and unstable if it is greater than unity. By using the central manifold theory,
we observe that the endemic equilibrium is locally stable near to unity. It is concluded that minimizing unsafe contact with the
infected dead body and/or burial or cremation as fast as possible contributes positively. Further, the numerical simulations for
the given choice of data and initial conditions illustrate that the endemic state is stable and the disease persists in the
community when the reproduction number is greater than one.

1. Introduction

Nipah virus is first identified in the Malaysian village of
Sungai Nipah during an outbreak of encephalitis and
respiratory illness. Pig farmers got virus from pigs. There
were more than 265 cases including 105 deaths from Sep-
tember 1998 to April 1999 [1–3]. Later on, it spreads to
other south-east Asian regions. It is a zoonotic disease,
transmitted from animals to humans caused by a Nipah
virus which belongs to the Paramyxoviridae family. It
causes a severe illness such as brain inflammations or
respiratory infection in animal and human population
followed by death. The disease is highly infectious and
spreads through the community with infected animals;
however, no prophylaxis or effective treatment is available.
In the absence of effective drugs, its treatment is limited to
a symptomatic treatment, hospitalization, and quarantine.
Educating people and creating awareness is the only way
to control the spread of infection due to nonavailability
of any vaccine for Nipah virus [4].

The natural reservoir of Nipah virus is fruit bats belong-
ing to the Pteropus genus in Pteropodidae family [5]. Over 50

species of Pteropus bats are inhabiting the south and
south-east Asian regions [4]. Many different pathways
are observed for the Nipah virus transmission to human:
from fruit bats to human, from fruit bats to animal then
to human, and from human to human [2, 6]. Consump-
tion of date palm sap is popular in countries of the
south-east Asian region [4], and it is commonly collected
in the cold season particularly in rural areas of Bangladesh
[7]. Fruit bats also consume and contaminate the date
palm and its sap with their secretions, e.g., saliva and
urine. Human consumption of fruits or fruit products
was one of the transmission route of Nipah from fruit bats
to human in Bangladesh [6, 8]. The pigs will get infected
by consuming dropped fruits that are partially eaten and
infected by bats. These infected pigs transmit Nipah virus
to human through fluid contact, while handling ill pigs or
through consumption of pork [2]. In Malaysia and Singa-
pore, most Nipah infection cases were observed in individ-
uals having frequent contact with sick pigs [9, 10].

Further, person to person transmission was observed
during the Bangladesh Nipah outbreak of the year 2004 [11,
12]. In the outbreaks of Siliguri, India, the Nipah virus was
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not found in samples obtained from animals. However, sam-
ples of human fluid secretions found in health care settings
were positive for Nipah virus. In particular, healthcare
workers, family care givers, and hospital visitors who had
exposure to secretions of Nipah virus patients with direct
contact or through contaminated towels, bed sheets, etc.,
got infected [13, 14].

Some infectious diseases, like Ebola virus disease [15],
can transmit from person to person if there is unsafe direct
contact with the dead body of infected individuals during
funeral ceremonies or last rites. Unprotected contact of
corpse of an infected individual before burial/cremation is
another way of transmission of the Nipah virus from human
to human [16, 17].

Many researchers have studied the pathology and epide-
miology of the Nipah virus disease, but very few models are
available for it and presented as follows. Biswas studied the
disease dynamics using SIR basic mathematical model [18].
He further investigated this model and studied the possible
control and preventive strategies through optimal control
[19, 20]. Optimal control is also carried out in another SIR
model [21]. Mondal et al. have proposed an SEIR model to
study the dynamics of the disease by incorporating two con-
trol parameters (number of quarantined individuals and
enhanced personal hygiene) which have not yet used before
in a Nipah dynamic model [22]. Shah et al. proposed an
SEI model considering bat to human and human to human
disease transmission [23]. The unprotected contact of the
dead body of the Nipah virus-infected person is one way of
transmitting disease from human to human which has not
been considered so far. Durgesh et al. in [24] proposed an
SVEIR model by considering bat-human interaction, and
they analyzed that vaccination has its own role for control-
ling the disease to spread. Nita et al. also proposed an SEIHD
epidemic model with bat-human interaction in [25] and
incorporated control measures such as spray insecticides,
buried bats, self-prevention, and hospitalization. They also
analyzed the dynamics of the disease and optimal control.
Agarwal and Singh in [26] proposed an SEI epidemic model
for flying foxes and human. They consider a virus compart-
ment incorporating the fractional order differential equation
to analyze. Keeping this in view, an SIRD model is proposed
and investigated by incorporating unsafe burial or unpro-
tected contact of dead bodies of infected individuals capable
of spreading Nipah virus and its disposal rate. The objective
of this study is to investigate the role of safe burial or crema-
tion of dead bodies in the control of Nipah virus. This paper
is organized according to the following: Section 2 presents
the formulation of the proposed model and description of
the parameters. In Section 3, the model analysis including
the basic reproduction number, equilibrium points, and their
stabilities are presented. In Section 4, the numerical simula-
tion is presented and the graphical results are discussed.
Finally, the conclusion is presented in Section 5.

2. Model Formulation

The total population NðtÞ is divided into three mutually dis-
joint compartments, namely, susceptible SðtÞ, infected IðtÞ,

and recovered RðtÞ such that N = S + I + R. The suscepti-
ble are those individuals who are not infected, but they
will become infected when they come in contact with
infectious individuals. Infected are those individuals who
are infectious and may infect others. Recovered are indi-
viduals who have recovered from infectiousness either
with treatment or by their own. Moreover, the dead bod-
ies of Nipah-infected individuals can also transmit the
disease. This model incorporates deceased body compart-
ment DðtÞ; it represents the number of unburied dead
bodies of infected individuals. The natural death of sus-
ceptible and recovered is excluded from D compartment.
The constant parameters Λ and μ are the natural birth
and death rates, respectively, while θ is the rate of loss
of temporary immunity acquired by recovered individuals.
Considering the parameter β1 to be the effective unpro-
tected contact rate of susceptible individuals to get infec-
tion from dead bodies of Nipah-infected individuals and
β2 to be the effective contact rate of susceptible individ-
uals to get infection from infected individuals, then the
force of infection representing the effective transmission
rate λ is given by

λ = κβ1D + β2Ið Þ
N

: ð1Þ

Parameter κ represents a constant fraction of unsafe
or unprotected handling of dead bodies leading to the
spread of Nipah infection. Further, there is no possibility
that susceptible individuals can get infection from the
dead body of infected individuals when κ = 0. The suscep-
tible class is increased by Λ and θ rates and decreased by
λ and μ rates. The infected compartment is increased by
λ and decreased by γ, μ, and δ rates due to developing
immunity, natural death, and disease-induced death,
respectively. The recovered compartment is increased by
γ rate and decreased by μ and θ rates. The deceased
body compartment is increased by μ and δ rates released
from infected class and buried with α rate. From those
that are dead, κ rates of them can transfer the disease
before burial due to unprotected contact. This model is
described by the flow diagram given in (Figure 1) and
nonlinear ordinary differential equations given in (2).
The description and values of parameters used in the
model are given in (Table 1).
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Figure 1: Flow chart of the Nipah model.
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dS
dt

=Λ − λS − μS + θR ≡ f 1 S, I, R,D, tð Þ,
dI
dt

= λS − μ + δ + γð ÞI ≡ f 2 S, I, R,D, tð Þ,
dR
dt

= γI − μ + θð ÞR ≡ f 3 S, I, R,D, tð Þ,
dD
dt

= μ + δð ÞI − αD ≡ f 4 S, I, R,D, tð Þ:

ð2Þ

The following nonnegative initial conditions are asso-
ciated with the dynamical system given in the model
(2):

S 0ð Þ = S0 > 0,
I 0ð Þ = I0 ≥ 0,
R 0ð Þ = R0 ≥ 0,
D 0ð Þ =D0 ≥ 0:

ð3Þ

3. Model Analysis

It can be easily show that the functions f i, i = 1, 2, 3, 4 are suf-
ficiently smooth and satisfy the Lipchitz condition in R4

+.
Accordingly, the IVP in the system (2) admits a unique solu-
tion in R4

+.

3.1. Invariant Region and Positivity

Lemma 1. The system in (2) with initial conditions given in
(3) has a positive invariant solution in the
regionΩ = fðS, I, R,DÞ ∈ R4

+ : N = S + I + R ≤ ðΛ/μÞ,D ≤ ððΛ
ðμ + δÞÞ/αμÞg.

Proof. All existing solutions starting from nonnegative initial
conditions remain nonnegative for all time t ≥ 0. It can be
shown by contradiction [27]. Let there exists a time t1 > 0
such that

S t1ð Þ = 0,
S tð Þ ≥ 0,
I tð Þ ≥ 0,
R tð Þ ≥ 0,
D tð Þ ≥ 0,

0 ≤ t ≤ t1:

ð4Þ

There exists t2 > 0 such that

I t2ð Þ = 0,
S tð Þ ≥ 0,
I tð Þ ≥ 0,
R tð Þ ≥ 0,
D tð Þ ≥ 0,

0 ≤ t ≤ t2:

ð5Þ

There exists a t3 > 0 such that

R t3ð Þ = 0,
S tð Þ ≥ 0,
I tð Þ ≥ 0,
R tð Þ ≥ 0,
D tð Þ ≥ 0,

0 ≤ t ≤ t3:

ð6Þ

There exists t4 > 0 such that

D t4ð Þ = 0,
S tð Þ ≥ 0,
I tð Þ ≥ 0,
R tð Þ ≥ 0,
D tð Þ ≥ 0,

0 ≤ t ≤ t4:

ð7Þ

Table 1: Description and values of parameters.

Parameter Description Parameter values Source

Λ Recruitment rate to susceptible class 6102 day−1 [22]

β1 Rate of infection from dead bodies of infected individuals 0.65 day−1 Assumed

β2 Rate of infection from infected individuals 0.75 day−1 [22]

θ Rate of loss of immunity 0.85 day−1 Assumed

γ Rate of recovered individuals from infected class 0.09 day−1 [22]

α Rate of disposition (burial/cremation) of dead bodies Variable Assumed

μ Natural death rate 0.000038642 day−1 [22]

δ Rate of disease-induced death 0.76 day−1 [22]

κ Fraction of dead bodies that are not handled safely [0, 1] Assumed
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From the first equation of the system in model (2) and
from case (4), we have

S′ t1ð Þ =Λ − λS t1ð Þ − μS t1ð Þ + θR t1ð Þ =Λ + θR t1ð Þ > 0: ð8Þ

This means SðtÞ < 0, which contradicts the fact that SðtÞ
is initially nonnegative; it implies SðtÞ is positive. Similarly,
one can show that the solution of all state variables is positive.

The total population of individuals is given by N =
S + I + R and adding equations of the system in model
(2), we have

dN tð Þ
dt

=Λ − μN tð Þ − δI tð Þ ≤Λ − μN tð Þ: ð9Þ

It follows that:

N tð Þ ≤ Λ

μ
−

Λ

μ
−N0

� �
e−μt , ð10Þ

where Nð0Þ =N0 is the initial value of the total popula-
tion and as t⟶∞,NðtÞ ≤ ðΛ/μÞ and

dD tð Þ
dt

= μ + δð ÞI tð Þ − αD tð Þ ð11Þ

But NðtÞ = SðtÞ + IðtÞ + RðtÞ ≤ ðΛ/μÞ⇒ IðtÞ ≤ ðΛ/μÞ as
t ≥ 0.

It follows that

dD tð Þ
dt

= μ + δð ÞI tð Þ − αD tð Þ⇒D tð Þ

≤
Λ μ + δð Þ

αμ
−

Λ μ + δð Þ
αμ

−D0

� �
e−αt ,

ð12Þ

and as t⟶∞,DðtÞ⟶ ððΛðμ + δÞÞ/αμÞ.
Hence, the region Ω is positively invariant for the system

(2) and it attracts all solutions of the equations in the system.

3.2. Reproduction Number. In the absence of the disease,
the system given in model (2) has an equilibrium point
E0 = ððΛ/μÞ, 0, 0, 0Þ. The infectious class is X = ðI,DÞT ,
and the rate of appearance of new infection in each infec-
tious class is denoted by FðXÞ and given by

F xð Þ = κβ1D + β2Ið ÞS
N

, 0
� �T

: ð13Þ

The rate of other transition between infectious classes
is denoted by V ðXÞ and given by

V Xð Þ = γ + μ + δð ÞI,− μ + δð ÞI + αDð Þð ÞT , ð14Þ

where

J Fð Þ =
∂F1
∂I

∂F1
∂D

∂F2
∂I

∂F2
∂D

0
BBB@

1
CCCA

=
β2SN − κβ1D + β2Ið ÞS

N2
κβ1SN − κβ1D + β2Ið ÞS

N2

0 0

0
B@

1
CA,

J Vð Þ =
∂V 1
∂I

∂V 1
∂D

∂V 2
∂I

∂V 2
∂D

0
BB@

1
CCA =

γ + μ + δ 0
− μ + δð Þ α

 !
:

ð15Þ

At disease-free equilibrium point ðE0Þ, the matrices
J ðFÞ and J ðV Þ will give us

J Fð Þ E0j = F =
β2 κβ1

0 0

 !
,

⇒J Vð Þ E0j =V =
γ + μ + δ 0
− μ + δð Þ α

 !
,

V−1 =

1
γ + μ + δ

0

μ + δ

α γ + μ + δð Þ
1
α

0
BBB@

1
CCCA,

⇒FV−1 =
κ δ + μð Þβ1 + αβ2
α γ + μ + δð Þ

κβ1
α

0 0

0
B@

1
CA:

ð16Þ

Now the spectral radius ðρðFV−1ÞÞ of the matrix FV−1

is given by

ρ FV−1� �
= κ δ + μð Þβ1 + αβ2

α γ + μ + δð Þ : ð17Þ

Applying next-generation matrix approach [28], the
reproduction number ðRDÞ is computed as

RD = κ δ + μð Þβ1 + αβ2
α γ + μ + δð Þ = R0 +

κ δ + μð Þβ1
α γ + μ + δð Þ , ð18Þ

where R0 is the basic reproduction number of the SIR
model when κ = 0; that is, all infected dead bodies are
safely buried. Further, it may be noted that RD increases
as κ increases and it has an inverse relationship with α;
that means the quicker the dead bodies are buried or cre-
mated, the smaller will be the reproduction number.

3.3. Existence of Equilibrium Point. The system given in
model (2) always admits a disease-free equilibrium E0 = ðΛ/
μ, 0, 0, 0Þ. Further, let the μ system have an endemic
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equilibrium point, denoted by E∗ = ðS∗, I∗, R∗,D∗Þ. Then,
the force of infection from equation (1) at this equilibrium
point is

λ∗ = κβ1D
∗ + β2I

∗

N∗ ,

N∗ = S∗ + I∗ + R∗:

ð19Þ

Substituting and simplifying yields

λ∗ + aλ∗ = 0⇒ λ∗ = 0,
λ∗ = −a,

ð20Þ

where

a = θ + μð Þ α γ + μ + δð Þ − κ δ + μð Þβ1 + α + β2ð Þð Þ
α μ + θ + γð Þ

= θ + μð Þ γ + μ + δð Þ
μ + θ + γð Þ 1 − RDð Þ:

ð21Þ

For RD < 1 equation (21) has only one nonnegative solu-
tion λ∗ = 0, which is a disease-free equilibrium. But it has two
nonnegative solutions, one is the disease free and the other is
endemic equilibrium for RD > 1. This result gives us the
endemic equilibrium point exists in the system of model (2)
and the following lemma.

Lemma 2. For RD > 1, the system in model (2) has a unique
endemic equilibrium point ðE∗Þ given by, E∗ = ðS∗, I∗, R∗,
D∗Þ, where

S∗ = Λ γ + μ + θð Þ
δ θ + μð Þ RD − 1ð Þ + μ γ + θ + μð ÞRD

,

I∗ = Λ θ + μð Þ RD − 1ð Þ
δ θ + μð Þ RD − 1ð Þ + μ γ + θ + μð ÞRD

,

R∗ = Λγ RD − 1ð Þ
δ θ + μð Þ RD − 1ð Þ + μ γ + θ + μð ÞRD

,

D∗ = Λ δ + μð Þ θ + μð Þ R0 − 1ð Þ
α δ θ + μð Þ RD − 1ð Þ + μ γ + θ + μð ÞRDð Þ :

ð22Þ

It is noted that the endemic point reduces to disease-free
equilibrium point for RD = 1.

3.4. Stability Analysis

3.4.1. Local Stability of Equilibrium Points

Proposition 1. The disease-free equilibrium point of the sys-
tem given in model (2) is locally asymptotically stable if
RD < 1 and unstable if RD > 1.

Proof. The Jacobian matrix of system (2) is

J Xð Þ =

∂f 1
∂S

∂f 1
∂I

∂f 1
∂R

∂f 1
∂D

∂f 2
∂S

∂f 2
∂I

∂f 2
∂R

∂f 2
∂D

∂f 3
∂S

∂f 3
∂I

∂f 3
∂R

∂f 3
∂D

∂f 4
∂S

∂f 4
∂I

∂f 4
∂R

∂f 4
∂D

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

, ð23Þ

where X = ðS, I, R,DÞT .

At disease-free equilibrium point, the Jacobian matrix gives

J E0� �
=

−μ −β2 θ −κβ1

0 β2 − γ + μ + δð Þ 0 κβ1

0 γ − θ + μð Þ 0
0 δ + μ 0 −α

0
BBBBB@

1
CCCCCA
:

ð24Þ

The Jacobian matrix (24) of the system in (2) at the
disease-free equilibrium point gives the following polynomial
characteristic equation:

λ + µð Þ λ + θ + µð Þð Þ λ2 + Bλ + C
� �

= 0, ð25Þ

where

B = α + γ + δ + µ − β2,
C = α γ + δ + µ − β2ð Þ − κ δ + µð Þβ1:

ð26Þ

Here, we have λ1 = −μ, λ2 = −ðθ + μÞ, and other solutions
are negative provided that B and C are positive, this is possi-
ble that when RD < 1.

B = α + γ + δ + µ − β2 > γ + δ + µ − β2

= κ δ + μð Þβ1 + αβ2
αRD

− β2 sinceRD in 18ð Þ

= κ δ + μð Þβ1 + αβ2 1 − RDð Þ
αRD

> 0, forRD < 1,

ð27Þ

C = αðγ + δ + μ − β2Þ −κðδ + μÞβ1 = αðγ + δ + μÞð1 − RDÞ
> 0, forRD < 1:

For RD = 1, the quadratic factor in equation (25) has one
zero eigenvalue; it follows that the Jacobian matrix (24) has a
simple zero eigenvalue and other eigenvalues are negative
and the equilibrium point is nonhyperbolic at RD = 1. Linear-
ization does not show the stability of nonhyperbolic equilib-
rium points, so we will analyze it using the central manifold
theory [29, 30] stated below.
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Theorem 1. Consider the following general system of ordinary
differential equations with a bifurcation parameter ϕ,

dx
dt

= f x, ϕð Þ, f : ℝn ×ℝ⟶ℝn, f ∈ℂ2 ℝn ⟶ℝð Þ:
ð28Þ

Without loss of generality, it is assumed that 0 is an equi-
librium for system (28) for all values of the parameter ϕ ; that
is, f ð0, ϕÞ ≡ 0 for all ϕ . Assume that

A1. A =Dxf ð0, 0Þ = ð∂f i/∂xjÞð0, 0Þ is the linearization
matrix of system ((28)) around the equilibrium 0 with ϕ eval-
uated at 0 . Zero is a simple eigenvalue of A , and all other
eigenvalues of A have negative real parts;

A2.Matrix A has a nonnegative right eigenvector w and a
left eigenvector v corresponding to the zero eigenvalue.

Let f k be the k
th component of f and

a = 〠
n

k,i,j=1
vkwiwj

∂2 f k
∂xi∂xj

0, 0ð Þ,

b = 〠
n

k,i,j=1
vkwi

∂2 f k
∂xi∂xj

0, 0ð Þ:
ð29Þ

The local dynamics of the ODE in ((28)) around 0 is totally
determined by a and b given in ((29)).

(i) a > 0, b > 0. When ϕ < 0 with ∣ϕ ∣ < < 1, 0 is locally
asymptotically stable, and there exists a positive
unstable equilibrium; when 0 < ϕ < <1, 0 is unstable
and there exists a negative and locally asymptotically
stable equilibrium.

(ii) a < 0, b < 0. When ϕ<0 with ∣ϕ ∣ < < 1, 0 is unstable;
when 0 < ϕ < <1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium.

(iii) a > 0, b < 0. When ϕ < 0 with ∣ϕ ∣ < < 1, 0 is unstable,
and there exists a locally asymptotically stable nega-
tive equilibrium; when 0 < ϕ < <1, 0 is stable, and a
positive unstable equilibrium appears.

(iv) a < 0, b > 0. When ϕ changes from negative to posi-
tive, 0 changes its stability from stable to unstable.
Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Now setting S = x1, I = x2, R = x3, and D = x4, we can
rewrite the system of model (2) as follows:

dx1
dt

=Λ −
κβ1x4 + β2x2ð Þx1
x1 + x2 + x3

− μx1 + θx3 ≔ f 1,

dx2
dt

= κβ1x4 + β2x2ð Þx1
x1 + x2 + x3

− γ + δ + μð Þx2 ≔ f 2,

dx3
dt

= γx2 − θ + μð Þx3 : f 3,
dx4
dt

= δ + μð Þx2 − αx4 ≔ f 4:

ð30Þ

With RD = 1 corresponding to β1 = β∗
1 where

β∗
1 =

α γ + μ + δð Þ − αβ2
κ δ + μð Þ , ð31Þ

which is assumed to be a bifurcation parameter. The disease-
free equilibrium is

X0 = x01, x02, x03, x04
� �

= Λ

μ
, 0, 0, 0

� �
: ð32Þ

The linearization matrix of system (30) around the
disease-free equilibrium when β1 = β∗

1 is

DX f =

−μ −β2 θ −κβ∗
1

0 β2 − γ + μ + δð Þ 0 κβ∗
1

0 γ − θ + μð Þ 0
0 δ + μ 0 α

0
BBBBB@

1
CCCCCA
:

ð33Þ

It is clear that Dxf has a simple zero eigenvalue and a
right eigenvector corresponding to the zero eigenvalue is
w = ðw1,w2,w3,w4Þ, where

w1 =
γμ + δ + μð Þ μ + θð Þð Þα

μ μ + θð Þ ,

w2 = α,

w3 =
αγ

μ + θ
,

w4 = μ + δ,

ð34Þ

and the left eigenvector associated with the zero eigenvalue
satisfying w:v = 1 is v = ðv1, v2, v3, v4Þ.

v1 = 0,

v2 =
1

α + γ + μ + δð Þ − β2
,

v3 = 0,

v4 =
1

δ + μ
:

ð35Þ

Based on the theoretical result given in Theorem 1, we
have to compute a and b at ðX0, β∗

1 Þ where

a = 〠
4

k,i,j=1
vkwiwj

∂2 f k
∂xi∂xj

X0, β∗
1

� �
,

b = 〠
4

k,i=1
vkwi

∂2 f k
∂xi∂β1

X0, β∗
1

� �
:

ð36Þ
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Since v1 = v3 = 0, equations a and b in (36) becomes

a = v2 〠
4

i,j=1
wiwj

∂2 f 2
∂xi∂xj

X0, β∗
1

� �
+ v4 〠

4

i,j=1
wiwj

∂2 f 4
∂xi∂xj

X0, β∗
1

� �
,

b = v2 〠
4

i=1
wiwj

∂2 f 2
∂xi∂β1

X0, β∗
1

� �
+ v4 〠

4

i=1
wi

∂2 f 4
∂xi∂β1

X0, β∗
1

� �
:

ð37Þ

Substituting the eigenvectors and the computed partial
derivatives of the system (30) at ðX0, β∗

1 Þ in the formula
for a and b in (37), after some algebraic computation,
we get

a = −
2μv2 w2 +w3ð Þ

Λ
w2β2 +w4κβ

∗
1ð Þ < 0,

b = v2w4κ > 0:
ð38Þ

This indicates that at β1 = β∗
1 for RD = 1, the system

exhibits a transcritical bifurcation (i.e., the disease-free
equilibrium point changes its stability from locally stable
for RD < 1 to unstable for RD > 1). Consequently, Theorem
1 is guaranteed for the following result.

Theorem 2. The system in (2) exhibits a forward bifurcation
at β1 = β∗

1 ðfor RD = 1Þ and a locally stable positive endemic
equilibrium will appear whenever RD > 1 but near to unity.

3.4.2. Global Stability of Disease-Free Equilibrium Point

Proposition 2. The disease-free equilibrium point of the sys-
tem given (2) is globally asymptotically stable if RD < 1.

Proof. Let a be an arbitrary chosen positive constant. Con-
sider a nonnegative definite function on the invariant setΩ as

V = I + aD, a ≥ 0: ð39Þ

Taking the derivative of V gives _V = _I + a _D⇒ _V = ðκβ1D +
β2IÞS/N − ðγ + δ + μÞI + αððμ + δÞI + αDÞ

Since SðtÞ ≤NðtÞ for all t ≥ 0 in the domain Ω, it follows
that

_V ≤ κβ1D + β2I − γ + µ + δð ÞI + a µ + δð ÞI − aαD

= β2 − γ + µ + δð Þ + a µ + δð Þð ÞI + κβ1 − aαð ÞD: ð40Þ

We can choose a such that κβ1 − aα = 0; that is, a = κβ1/α
.

⇒ _V ≤ β2 − γ + μ + δð Þ + κβ1
α

μ + δð Þ
� �

I

= γ + µ + δð ÞI = γ + µ + δð ÞI κ δ + μð Þβ1 + αβ2
α γ + δ + μð Þ − 1

� �

= γ + μ + δð ÞI RD − 1ð Þ ≤ 0, for RD ≤ 1
ð41Þ

Since all parameters and variables in the model (2) are
nonnegative, the derivative of the Lyapunov function is _V
≤ 0 if RD ≤ 1 and _V = 0 if and only if I = 0. It follows that
from LaSalle’s invariance principle [31], the only invariant
singleton set in Ω is the set fE0g.

Hence, the disease-free equilibrium point is globally
asymptotically stable for RD < 1 in the invariant region Ω.

4. Numerical Analysis

In this section, some numerical simulations of model (2) are
carried out for the data shown in Table 1.

The main objective is to understand and investigate the
impact of unsafe handling ðκÞ and disposition rate ðαÞ of
the dead bodies of infected individuals during Nipah out-
break. The proposed model is also compared with that of
the SIR model where the dead body has no contribution
towards transmission of infection. Using the reproduction
number RD in (18) and solving RD = 1, the critical value of
κ is computed as 0.20249, by assuming parameters as given
in Table 1 with α = 1 day−1. From RD versus κ curve, drawn
in Figure 2, it is observed that RD < 1 for 0 ≤ κ < 0:20249
and RD > 1 for 0:20249 < κ ≤ 1. It means that the high ratio
of unsafe burial practice increases the reproduction number,
and this is leading to instability of disease-free state (Propo-
sition 1) and existence of endemic state (Lemma 2).

Furthermore, if we assume all dead body contacts are
unprotected ðκ = 1Þ and for our choice of data, we have got
the critical value of α = 4:9383 day−1. This is the value where
the reproduction number is close to unity. As shown in
Figure 3, the reproduction number is inversely related with
the rate of disposing dead bodies. For α > 4:9383 day−1, the
reproduction number is less than one and the infection
decreases through time and finally dies out from the
community.

Infection curves for various values of κ with α = 1 day−1
are drawn in Figure 4. For different values of κ with RD > 1,
the infection increases with time up to a peak point then
decreases, converging to endemic level. For instance, when
κ = 1, the infection is sharply increasing up to a peak value
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Figure 2: Graph of reproduction number RD as a function of κ.
Other parameter values are given in Table 1.
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and then decreasing to stabilize to the endemic equilibrium
level I∗ = 2107:5. A similar pattern is observed for κ = 0:5
and 0.25, with I∗ = 2107 and I∗ = 2103:5, respectively. The
peak is delayed and decreases with decreasing κ. It may be
noted that there is a significant change in the peak values
for different values of κ. The equilibrium level is also decreas-
ing with decreasing κ although not at the same rate as for the
peak value. Thus, the increase in safe burial decreases the
reproduction number which slows down the spread of infec-
tion and the peak of infection as well as the equilibrium level
is also lowered.

Furthermore, the remaining values of κ we used in the
graph make the value of RD < 1. So, broken line curves in
Figure 4 show the infection decreases and stabilizes at the
disease-free state with time. When safe burial increases, the
infection decreases faster and will die out from the
community.

In Figure 5, it is seen the infection curves for different
values of α and assuming all contacts with the dead body
are unprotected ðκÞ. As the rate of disposal ðαÞ increases
for RD > 1, the peak value of the infection decreases with time
and finally comes to stabilize at endemic state. For RD < 1, the
infection decreases fast and stabilize at disease-free state.

5. Conclusion

In most of human culture, there may be contact with the
dead body during last rites due to bathing, expressing love
or respect by hugging, touching heads and faces, etc. of the
dead body particularly very close relatives. Researchers con-
firmed such contact of the dead body of Nipah-infected indi-
viduals is one way of transmitting disease from person to
person. They recommend safe and protected contact for
healthcare workers and family caregivers when handling
the dead body. In this paper, we have proposed the SIRD
model and presented the impact of unprotected contact with
the dead bodies of Nipah-infected individuals and their dis-
posal (burial or cremation) on the spread of Nipah infection.
It is seen the numerical and analytical behavior of the
dynamics that the high fraction of unprotected contact
increases the reproduction number. It causes the disease to
persist in the community and contributes some difficulty
for the control of the outbreak. For the given choice of data,
it is observed that the reproduction number RD is greater
than one for 0:20249 < κ ≤ 1. However, for 0 ≤ κ < 0:20249,
RD is less than one. For κ = 0, the handling of the human dead
body is well protected and no possibility of transmitting dis-
ease through it. In this case, the model is reduced to SIR.

Furthermore, the rate of disposal of dead bodies is
inversely related with the reproduction number. In the
absence of protected contact ðκ = 1Þ and for the choice of
data, RD is less than unity when α > 4:9383 day−1 and greater
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Figure 3: Graph of reproduction number RD as a function of α.
Other parameter values are given in Table 1.
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Figure 4: The dynamics of infectious population for α = 1 with
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than unity when 0 < α < 4:9383 day−1. If the handling of
the human dead body to be buried is unprotected, it
should be removed within a quarter of a day to minimize
outbreak. This result shows that applying some effort to
reduce unprotected contact and removing the dead body
of infected individuals within a short period of time will
make the reproduction number less than one and it helps
in controlling the Nipah outbreak.

Data Availability

The parameter data used to support the findings of this study
are included within the article.
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