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In this paper, we proposed a new four-parameter Extended Gumbel type-2 distribution which can further be split into the Lehman
type I and type II Gumbel type-2 distribution by using a generalized exponentiated G distribution. The distributional properties of
the proposed distribution have been studied. We derive the pth moment; thus, we generalize some results in the literature.
Expressions for the density, moment-generating function, and rth moment of the order statistics are also obtained. We discuss
estimation of the parameters by maximum likelihood and provide the information matrix of the developed distribution. Two life
data, which consist of data on cancer remission times and survival times of pigs, were used to show the applicability of the Extended
Gumbel type-2 distribution in modelling real life data, and we found out that the new model is more flexible than its submodels.

1. Introduction and Motivation

Statistical distributions are important tools in analysing and
predicting real-world phenomena. Several distributions
have been developed and studied. There is always room
for development in statistical distributions to blend with
the current situations which gives room for wider applica-
tions which can be achieved by inducing flexibility into
the standard probability distribution to allow for fitting spe-
cific real-world scenarios. This has motivated researchers to
work towards developing new and more flexible distribu-
tions. There are several ways to extend standard probability
distributions, and one of the most popular methods is the
use of distribution generators such as the exponentiated
method by Lehmann [1]; the Marshall-Olkin method
developed by Marshall and Olkin [2]; the beta distribution
method proposed by Alexander et al. [3] and Eugene
et al. [4]; the gamma distribution method by Cordeiro
et al. [5], Ristic and Balakrishnan [6]), and Zografos and
Balakrishnan [7]; the McDonald method proposed and
studied by MacDonald [8]; and the exponentiated general-
ized method developed by De Andrade et al. [9]. The cubic
rank transmutation map was proposed and studied by
Granzotto et al. [10].

The Gumbel type-2 distribution is a very important
distribution method from the theory of extreme value distri-
bution. The distribution found applications in modelling
extreme events in the field of meteorology, life testing, frac-
ture roughness, seismology, and reliability analysis. It can
also be used for modelling lifetime data sets with monotonic
failure (or hazard) rates, most especially with a decreasing
hazard rate. But in real-life data analysis, the hazard rate
function of so many complex phenomena that are regularly
encountered in practice are nonmonotonic and cannot be
modelled by the Gumbel type-two (GTT) distribution. In
other to improve the fit of (GTT) distribution, Okorie et al.
[11] proposed and studied the properties of an exponentiated
form of the GTT distribution of Lehman type I. Okorie et al.
[12] investigated the properties of the Kumaraswamy G
Exponentiated Gumbel type-two distribution. The cumula-
tive distribution function (cdf) and probability density func-
tion (pdf) of the GTT distribution is given by

J(x) = exp (-ax™), (1)

j(x)=avexp (—ax™"), (2)
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where x >0 and « and v are the scale and shape parameters,
respectively.

Adding parameters to the GTT model may give rise to
new, more flexible models for fitting real-life data. Therefore,
we defined in this work an extension of the model above by
using the methodology proposed by [6]. Given any given
continuous baseline cdf J(x) and x € R, those authors defined
the exponentiated generalized class of distributions with two
extra shape parameters a > 0 and b > 0 with cdf G(x) and pdf

g(x) given by

G(x) = [1- {1-J(x)}", (3)

g(x) =abj(x){1 - J(x)}* 1= {1- J(x)})"", (4)

respectively, which have implicit dependence on the param-
eters of J(x).

Here, a > 0 and b > 0 are the two additional shape param-
eters. It should be noted that there is no complicated function
in (3), which is in contrast with the beta generalized family by
Alexander et al. [3] and Eugene et al. [4]), which also includes
two extra parameters but incorporates the beta incomplete
function. Equation (3) has tractable properties especially for
simulations, since its quantile function takes a simple form

given by
szG{l_(l_ullb)l/a}’ (5)

where Qg (u) is the baseline quantile function.

To illustrate the tractability and flexibility of the expo-
nentiated generalized model, Cordeiro et al. [13] applied (3)
to extend some well-known distributions such as the gamma,
frechet, Gumbel, and normal distributions. Several properties
for the exponentiated generalized class were discussed, which
motivate the use of this generator. In fact, for a =1 and also
taking b=1, (3) reduces to G(x)=J(x)? and G(x)=1-7]
(x)* which correspond to the cdf’s of the Lehmann type 1
and II families, respectively. For this reason, the model pro-
posed by Cordeiro et al. [13] contains both Lehmann type I
and type II classes. For this reason, the exponentiated gener-
alized family can be derived from a double transformation
using these classes. The two extra parameters a and b in den-
sity (4) can control both tail weights, allowing the generation
of flexible distributions, with heavier or lighter tails.

The above properties and many others have been exam-
ined and explored in recent works for the generator proposed
and studied by Cordeiro et al. [14]: Silva et al. [15] examined
the properties of the Dagum distribution, De Andrade et al.
[9] investigated the properties of the exponential distribu-
tion, Elbatal and Muhammed [16] studied the properties of
the Inverse Weibull distribution, De Andrade and Zea [17]
studied the properties of the Gumbel model, Cordeiro et al.
[14] studied the properties of the arcsine distribution, De
Andrade et al. [18] examined the properties of the extended
Pareto distribution, De Andrade et al. [19] studied the prop-
erties of the exponentiated generalized extended Gompertz
distribution, etc.
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2. Exponentiated Generalized Gumbel Type-
Two (EGTT) Distribution

Given that a random variable X with support on the set of
positive real numbers and EGTT(a, b, v, a) distribution, say,
X ~EGTT(a, b, v, a), is defined by inserting (1) in equation
(3). Thus, the cdf of X is given by

G(x) =[1 - {1 -exp (—ax"}", (6)

where a>0,b>0, a>0,v>0,and x> 0.

The graph of the cumulative distribution function is plot-
ted in Figure 1 drawn below by taking the values of b = 3.0,
a=1.0, and v = 1.2 and varying the value of a.

And the associated pdf is given by

v+1)

g(x) = abavx™(
1= {1 - exp ()

exp (—ax {1 —exp (—ax"}*

(7)

where a>0,b>0, >0, v>0,and x> 0.

The graphs of the pdf of EGTT distribution are drawn in
Figure 2 with various parameter values.

The graphs drawn in Figure 2 indicate that a and v con-
trol the skewness and kurtosis of EGTT distribution, and as
such, the distribution can be used to model real-life data
which are mesokurtic, leptokurtic, and platykurtic.

The reliability and hazard functions of EGGT, respec-
tively, are given by

R(x)=1-[1- {1 -exp (—ax"}"",

_ abavx™ "V exp (—ax™'{1 - exp (~ax™} 1 - {1 —exp (ﬂxx"’}”]b’l
1-[1-{1-exp (—ax"}] -

h(x)
(8)

Note that R(x) = 1 — G(x) and h(x) = (g(x)/R(x)).

The plots of the reliability and hazard rate functions are
shown in Figures 3 and 4, respectively.

The diagrams in Figures 3 and 4 indicate that the
hazard rate function of the EGTT distribution could be
shaped as unimodal, bathtub, or upside-down bathtub.
These properties suggest that the EGTT distribution is
suitable for modelling data sets with nonmonotonic hazard
rate behaviour which are mostly encountered in practical
situations.

2.1. Useful Expansion of the Probability Density Function. To
motivate analytical derivation of some basic distributional
properties of the EGTT distribution, we present the series
representation of its pdf and cdf by using the generalized
binomial expansion. If a is a positive real noninteger and P
<1, we consider the power series expansion given by

1

(1-P) = i(—l)f(“‘. 1>P’l ©)
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Graph of cumulative density function of EGTT
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FIGURE 1: This illustration indicates that the EGTT has a true pdf.
Graph of probability density function of EGTT Graph of probability density function of EGTT
0.35
0.15 4
0.30
0.25 1
0.10 4
— ~ 0.20 1
3 2
= =015
0.05 7 0.10
0054 | S ——
j —
0.00 - 0.00
0 2 4 6 8 10 0 2 4 6 8 10
x x
— a=11 — a=038 — v=138 — v=05
— a=1.0 a=05 —— v=1.0 v=0.5
— a=03 a=1.0 — v=0.38 v=12
(a)b=33v=10,anda=1.2 (b)a=1.0,b=3.0,anda=1.2
F1GURE 2: The graphs of the pdf of EGTT distribution.
Applying (9) in (4) and using the binomial expansion for Equation (10) can be rewritten as
a positive real power yield
g(x) = Kabayx™ ("1 g7 (k) (11)
o) llj PR
g(x) — ab(xvxf(vﬂ) Z z (_1)1+]+k
720 k=0 (10) Thus, we have
1
a-1 b-1 aj
efoax"’(i+k+1). e
; j k g(x)= -,.‘.;ijk(a, b)j(x;i+k+1), (12)



s co aj ek a—1 b-1 aj
i i;ﬂ;( 1) ( l. )( j ><k>
(13)

are the weights and j(x;i+k+ 1) is the pdf of a Gumbel
type-two distribution with a scale parameter of (x;i+k
+1). Consequently, the Extended Gumbel type-two den-
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where sity can be written as a linear combination of Gumbel

type-two density functions. The mathematical properties
of the EGTT follow directly from those of the GTT
distribution.

3. Statistical Properties

Here, we study the statistical properties of the (EGTT)
distribution, specifically quantile function, moments, and
moment-generating function.
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TaBLE 1: Table of values of the Bowley skewness and the Moors kurtosis.
1 1 3 3 5 7
@b v X() X(@) X3 X(s) X() X(s) X(5) S K
1.5,0.5,1.5,2.0 1.0710 1.1710 1.3051 1.0144 1.1204 1.2292 1.4299 0.1451 0.4046
0.5,0.5,1.5,0.3 1.2212 1.4723 1.9096 1.7044 1.3334 1.6472 2.43025 0.2705 1.6761
0.15, 0.25, 0.5, 0.25 0.8836 1.2105 2.2315 0.7751 1.0167 1.5399 4.4661 0.5149 1.9916
0.1, 0.05, 0.15, 0.1 0.4847 0.5646 0.7533 0.4482 0.5209 0.6283 1.2075 0.4056 1.8866
TAaBLE 2: Values for the first four moments, Var, and CVof EGTT distribution.
a,a b, v Ist 2nd 3rd 4th Var Cv
2.0,2.0,1.5,3.0 1.3783 2.0778 3.3558 7.2449 0.1781 30.6188
2.5,2.5,55,2.0 2.3227 6.1489 19.8775 95.5899 0.7539 106.7590
2.5,2.5,25,3.0 1.5135 2.4285 4.1898 7.9541 0.1378 102.9643
2.5,2.5,2.5,2.5 1.6252 2.9912 6.0721 14.6294 0.2515 104.4894

3.1. Quantile Function and Median. The quantile function
corresponding to (4) is given by

Qu) =G (u) = {—é [log (1 - [r-u] ”“)} }_l/v.

(14)

Taking U to be a uniform variate on the unit interval
(0, 1). Thus, by means of the inverse transformation method,
we consider the random variable X given by

X(u) = {—é {log (1 - [1-w] ””)] }m.

The median in particular can be derived by taking the
value of u=0.5 in equation (14); then, we have

o)-{-efi= (- [0 )]

Expression for the lower quartiles and upper quartiles
can also be developed by taking the value of u to be 1/4 and
3/4, respectively.

Invariably, the quantile function for certain fractile values
provides an alternative measure of skewness and kurtosis
such that the limitations of the classical measures are well
known. The Bowley skewness due to Bowley [20] is given by

(15)

-1/v

(16)

5 X(314) + X(1/4) - 2X(1/2)

1
X(3/4) - X(1/4) (17)
The Moors kurtosis due to Moors [21] is given by
. X(7/8)—X(5/8)—X(3/8)+X(1/8). (18)

X(6/8) — X(2/8)

The advantage of the Bowley skewness and the Moors
kurtosis over the classical measures of skewness and kurtosis

is that they can be obtained even in situations where the
moments of the distribution do not exist, and they are not
reasonably affected by extreme values.

Table 1 gives the values of the Bowley skewness and the
Moors kurtosis for various values of parameters.

From Table 1, it can be deduced that the EGTT distribu-
tion is positively skewed for various values of the parameters
considered.

3.2. Moments. Here, we consider the pth moment for (EGTT)
distribution. Moments are important features in any statisti-
cal analysis, especially in applications. They can be used to
study the characteristics of a distribution, e.g., dispersion,
skewness, and kurtosis.

Theorem 1. If X has EGTT (a, b, a, v), then the pth moment
of X is given by the following:

Hy = aback i+ -+ K] 0T (1= %’) p<v. (19

Proof. Let X be a random variable with density function (11).
The ordinary pth moment of the EGTT distribution is given

by

I _ _ OO _ ;"'-. RN y=1) —ax™V(i+k+1
Hy= E(X?) = J_Ooxpf(x)dx =423 ijkabavJ_wxP (v=1) gmaa ikt d) g
(20)
)= abak (i + j+ k) PT (1 - 1;’) : (21)

This completes the proof.

Table 2 gives the first four moments, variance, and coef-
ficient of variation (CV) for various values of the parameters
of EGTT distribution.

Based on the first four moments of the EGTT distribu-
tion, the limitations of the classical kurtosis measure are
known by the fact that some heavy-tailed distributions
for which this measure is designed may be infinite. The
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TABLE 3: Parameter estimate and standard error (parenthesis).
Distribution Estimates
EGTT 14.0571 (8.7149) 1.1494 (0.7270) 0.5629 (0.1486) 3.6017 (1.0458)
EGT 1.3020 (1.8073) 1.1747 (0.0844) 0.8173 (1.1345) — (=)
GT 1.1760 (0.0842) 1.0709 (0.1328) — () — ()
TABLE 4: Selection criterion statistics for pig data.
Distribution -1 AIC BIC CAIC HQIC A* KS P value
EGTT 98.063 204.126 213.331 204.723 207.758 0.8151 0.1192 0.2581
EGT 118.167 242.333 249.163 242.686 245.052 3.3560 0.1981 0.0070
GT 118.167 240.334 244.887 240.508 242.147 3.3656 0.1958 0.0080
Kernel density plot of pig data
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FIGURE 5: Graph of TTT plot and the kernel density function of the cancer data.

Bowley skewness of Bowley [20] was based on quartiles of
a distribution.

3.3. Moment-Generating Function. Here, we obtain an
expression for the moment-generating function of (EGTT)
distribution.

Theorem 2. If X has (EGTT) distribution, then the moment-
generating function My (t) is given by

= tf . . —v)/v
Mx(t):aba;‘a&uk[a(z+]+k)](}’ >’r(1—";’). (22)

Proof. The moment-generating function of a random vari-
able X can be obtained using a relation that exists between
a moment and the moment-generating function given by

, (23)

M, (t) = JiO;;E(xp)dx.

By inserting equation (21) into (23), we complete the
proof.

4. Order Statistics

Here, we derive closed form expressions for the pdf of the ith
order statistic of (EGTT) distribution. Let X, X,, ---, X, be a
simple random sample from (EGTT) distribution with cdf
and pdf given by (6) and (7), respectively. Let x;.,) < X(5.,)
<X, denote the order statistics obtained from this
sample. The probability density function of x;., is given by

finl®)= 5

(Ln-i+1)

where G(x,y) and g(x,y) are the cdf and the pdf of the
EGGT distribution given in equations (6) and (7), respec-
tively. Thus, we have
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Fil®) = g O =T (1= =)

- {1 =Ty
(25)

Using the binomial series expansion in (9), f,., (x) can be
expressed as

< k n-i ab . a-1
Jin(x)= Z (-1) m](x)[l - J(x)]

. {1 _ [1 _ ](x)]a}h(i+k)—1

Also applying (9) to the last term, we obtain

nei oo n—i\ [b(i+k) -1
)= ZZ(—W( ) ( >B(b+1)J()

I

3

a( +1) .
( ) (1 I’l—b1+1)j(x)[](x)]r)

where

—i

00
Zklr z ;

o n—i\ [b(i+k) -1
k+l+r

k=0 rzo ( k )( ! )

(a(l+1)—1>

By substituting equations (1) and (2), we obtain the ith
order statistic of the EGTT distribution.

(29)

5. Estimation and Inference

Here, we obtain the maximum likelihood estimates (MLEs)
of the parameters of the EGTT distribution from complete
samples only. Let X, X,, --+, X,, be a random sample of size
n from EGTT(y,x), y=(a,b,av). The log likelihood
function for the vector of parameters v = (a, b, a, v) can be
written as

LogL = n log (abav) + (a—1) Zn: IOg(l _ e—ocx,-’v)

i=0

+(b+1 ilog(l - (1 - e“”‘fv)a) (30)
(v+1 i i x;".

i=0

The log likelihood can be maximized either directly or

by solving the nonlinear likelihood equations obtained by

differentiating (30). The components of the score vector
are given by

——E+Zlog(1—e )—(b—l)
' l(l —e 1') log (1 - e“""tv)] , ()

[1=(1=e)7]

™=

Il
—

i=0 i=0
ol n o [ Ve -
7=&+W—UZL_rmi+w-nz
i=0 i=0 (33)
ax; e (1 - e""xi’“) i .
- VYx,
1-(1-e)* i
o _n =[x log (x)e :
5_;(a1m;L_T:§Ff%+mb1m;
o a 34
x;" log (x)e ™" (1 —e™) (34)
1-(1—e)*

We can obtain the estimates of the unknown parame-
ters by the maximum likelihood method by setting these
above nonlinear equations (31), (32), (33), and (24) to zero
and solving them simultaneously. Therefore, statistical soft-
ware can be employed in obtaining the numerical solution
to the nonlinear equations such as R and MATLAB. For
the four-parameter Extended Gumbel type-two pdf, all the
second-order derivatives can be obtained. Thus, the inverse
dispersion matrix is given by

a aa ab aa av
f ~N b ?ha - bb lfboc [A]bv ,
o o Utm ab Uoux Um/
v v Uva Uvb U va U vy
Uua Uab Uutx Uav
U,l —_F Uba th thx Ubv i
Uaa Uab UlXOt Uocv
Uva Uvb Uva va
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Fitted densities for pig data

0.8
0.6
= \
2 04
L
[a)
0.2
I——
0.0 - S ! ' —
I T T T T T 1
0 2 4 5 6
X
- EGTT
— EGT
— GT
F1GURE 6: Fitted densities for pig data.
TABLE 5: Parameter estimate and standard error (parenthesis) for cancer data.
Distribution MLE estimates
EGGT 11.7689 (6.4231) 0.8918 (0.2526) 0.3674 (0.0641) 5.5657 (1.0114)
EGT 2.2915 (1.9970) 0.7512 (0.0425) 1.0551 (0.9195) — (=)
GT 0.7528 (0.0424) 2.4389 (0.2200) — () —(—)
TABLE 6: Selection criterion statistics for cancer data.
Distribution -1 AIC BIC CAIC HQIC A* KS P value
EGTT 415.856 839.712 851.120 840.037 844.347 0.8731 0.0828 0.3434
EGT 444,003 894.005 902.561 894.199 897.482 4.4534 0.1404 0.0129
GT 118.167 892.003 897.707 892.099 894.321 4.5548 0.1410 0.0124
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FIGURE 7: Graph of TTT plot and the kernel density function of the cancer data.
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Fitted densities for cancer data
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FiGure 8: Fitted densities of the cancer data.

where Uij = Uif.::g::'w:w,. =(a, b, a, 1) with {]i].} = [_lij]*l =
[azl/aw,.awj]. This gives the approximate variance covari-
ance matrix. By solving for the inverse of the dispersion
matrix, the solution will give the asymptotic variance and

covariance of the MLs for @, b, @, and 7. The approximate
100(1 — v)% confidence intervals for a, b, «, and, 7 can be
obtained, respectively, as

(36)

5.1. Percentile Estimator (PE). Let X;,X,, -, X, be a ran-
dom sample for the EGTT distribution and let x(),x,),
---,x(n') be the corresponding order statistics. Based on the
PR method of estimation technique, the estimators of the

set of parameters Z = (a, b, &, v)" can be obtained by min-
imizing the following:

n
i-1

[ln (Pi —In {[1 —{l—exp (—(xx"’}”]b}ﬂz, (37)

with respect to Z, where P; denotes some estimates of
G(x, Z), and P;=i/n+1.

5.2. The Cramer-von Mises Minimum Distance Estimators.
The CV estimator is a type of minimum distance estimator
which is based on the difference between the estimate of the

cdf and the empirical cdf, as shown by D’Agostino and
Stephens [22] and Luceno [23]. The CV estimators are
obtained by minimizing

C(Z)= % + Z [{[1 ~{1-exp (—(xx"’}“]h} - 2"2;1}2.

i=1

(38)

D’Agostino and Stephens [22] mentioned that the choice
of CV method type minimum distance estimators provides
the empirical evidence that the bias of the estimator is smaller
than the other minimum distance estimators.

6. Applications to Lifetime Data

Here, we present two examples that demonstrate the flexibil-
ity and the applicability of the EGTT distribution in model-
ling real-world data. We fit the density functions of the
EGTT distribution and its submodels such as the Exponen-
tiated Gumbel type-two (EGTT) distribution and the
Gumbel type-two (GTT) distribution. The first data set rep-
resents the survival times (in days) of 72 guinea pigs infected
with virulent tubercle bacilli, observed and reported by
Bjerkedal [24]. The starting point of the iterative processes
for the guinea pig data set is (1:0; 0:009; 10:0; 0:1; and
0:1). For the survival times (in days) of guinea pigs infected
with virulent tubercle bacilli, the following data are given: 0.1,
0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1,
1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15,
1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44,
1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83,
1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4,
245, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61,
4.02, 4.32, 4.58, and 5.55. Table 3 gives the MLEs, and
Table 4 gives the selection criterion statistics for the pig data.
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Figure 5 gives the graph of the total time on test plot and the
graph of the kernel density of the pig data. Figure 6 gives the
fitted densities of the pig data.

The element of the information matrix is given by

2.959117e-04  —-1.797274e—-03 -1.771022e - 07 —5.468235¢ — 06
—9.014037e - 06 —3.564958e — 06
9.014037e - 06

—5.658267¢ - 04 —3.564958¢ - 06

—-1.797274e-03  5.567826e - 05

Ul=

—-1.771022e - 07  -5.167826e — 05 ~3.564958¢ — 06 |

—5.468235e - 06 9.666310e — 03

(39)

6.1. Cancer Remission Time Data. The second data set con-
sists of data of cancer patients. The data represents the remis-
sion times (in months) of a random sample of 128 bladder
cancer patients from Lee and Wang [25]. The starting point
of the iterative processes for the cancer patient data set is
(1:0;0:009; 10:0; 0:1; 0:1). The following data are given:
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22,
13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82,
0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,
3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,
10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96,
36.66, 1.05, 2.69, 4.23, 541, 7.62, 10.75, 16.62, 43.01, 1.19,
2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,
1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85,
8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02,
3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07,
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, and 22.69. Table 5 gives
the MLEs, and Table 6 gives the selection criterion statistics
for the cancer data. Figure 7 gives the graph of the total time
on test plot and the graph of the kernel density of the cancer
data. Figure 8 gives the fitted densities to the cancer data.
The element of the information matrix is given by

6.618289¢ - 09 1.186986¢ — 05 1.903495¢ - 06

6.052337e - 05

—6.504090¢ - 06

1.186986e - 05 3.565997e - 04 —2.096251e - 04

U*l

1.903495¢ - 06 6.052337¢ - 05  4.449735e—04 —3.880824e - 04

—6.504090e — 06  —2.096251e — 04 —3.880824e—04  9.585634e - 03

(40)

We employ statistical tools for model comparison which
includes Kolmogorov-Smirnov (KS) statistics, Anderson
Darling (A*) statistics, probability value (P value), Akaike
Information Criterion (AIC), Hannan-Quinine Information
Criterion (HQIC), Consistent Akaike Information Criterion
(CAIC), and Bayesian Information Criterion (BIC). The
selection procedure will be based on the lowest AIC, BIC,
CAIC, HQIC, A*, and KS, and the largest P value will be con-
sidered as the best model.

7. Conclusion

In this work, we studied a four-parameter distribution named
the Extended Gumbel type-two distribution which is an
extension of the Gumbel type-two distribution. This work
also provided several mathematical properties of the

Journal of Applied Mathematics

Extended Gumbel type-two distribution including explicit
expressions for the density and quantile functions, ordinary
moments, and order statistics. We employed the maximum
likelihood estimation method to estimate the model parame-
ters and also to obtain the elements of the information
matrix. To evaluate the performance/flexibility of the new
distribution, two real-life data applications which include
data on cancer remission times of patients and also survival
times of pigs clearly illustrate the potential of the Extended
Gumbel type-2 distribution in fitting the two survival data
because it possesses the lowest AIC, BIC, CAIC, HQIC, A*,
and KS as well as the largest P value.

Data Availability

The data used for this research are commonly used in the
area of research.

Additional Points

Contribution to Knowledge. This work has been able to pro-
vide the authors a more flexible distribution of work, most
especially in modelling real-life data which include failure
rate increases and decreases and nonmonotonic failure. This
is often encountered in real-life phenomenon, where failure
is considered throughout the entire life span.
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