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TheGlobal Rapid Identification ofThreats System (GRITS) is a biosurveillance application that enables infectious disease analysts to
monitor nontraditional information sources (e.g., socialmedia, online news outlets, ProMED-mail reports, and blogs) for infectious
disease threats. GRITS analyzes these textual data sources by identifying, extracting, and succinctly visualizing epidemiologic
information and suggests potentially associated infectious diseases. This manuscript evaluates and verifies the diagnoses that
GRITS performs and discusses novel aspects of the software package. Via GRITS’ web interface, infectious disease analysts can
examine dynamic visualizations of GRITS’ analyses and explore historical infectious disease emergence events. The GRITS API
can be used to continuously analyze information feeds, and the API enables GRITS technology to be easily incorporated into other
biosurveillance systems. GRITS is a flexible tool that can be modified to conduct sophisticated medical report triaging, expanded
to include customized alert systems, and tailored to address other biosurveillance needs.

1. Introduction

Infectious diseases pose a significant threat to global health
and economic stability [1, 2]. Due to extensive globalization
and urbanization, infectious diseases can spread at unprece-
dented rates [3]. Small and localized infectious disease
threats can rapidly become international catastrophes, as
demonstrated by influenza (H1N1A) in 2009, Ebola Virus
Disease in 2014, andMiddle EasternRespiratory Syndrome in
SouthKorea and theMiddle East [4–6]. Identifying infectious
disease outbreaks is critical to reducing overall harm and
preventing epidemics. Increasing biosurveillance systems’
detection and communication speed may contribute to a
reduction in overall health and economic consequences from
infectious diseases.

Traditional biosurveillance systems rely predominantly
on local clinicians, laboratory technicians, and public health
practitioners to identify infectious disease outbreaks. In part,
these systems identify cases via routine patient care where
samples are collected. Then, laboratory testing is performed
on the collected samples, and clinical case definitions are

established. Via these processes, infectious disease cases
are typically reported to a centralized authority that then
aggregates and monitors cases for signs of an above normal
caseload.

Unfortunately, traditional biosurveillance systems are
limited by their cost, their limited geographic coverage, and
their inability to rapidly communicate results. For example,
an upgrade to the existing United States’ Biowatch program
costs 61 million dollars and was canceled before its comple-
tion. Furthermore, effective biosurveillance systems depend
on the quality of underlying health care infrastructure, which
can be highly variable geographically.Without a vast network
of healthcare infrastructure, traditional biosurveillance sys-
tems may not be sensitive enough to detect rare infectious
diseases. Also, some traditional biosurveillance systems may
not be accurate (e.g., lack of laboratory capacity), thereby
overwhelming the infectious disease analyst with incorrect or
irrelevant information.

In part, these barriers lead to incomplete geographic
coverage, varying by disease type, for traditional surveillance
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systems. As a direct result of incomplete geographic coverage
for some infectious diseases, infectious disease outbreaks
in regions with inadequate healthcare infrastructure may
not be identified in the outbreak’s early stages, as seen
with the ongoing Ebola Virus Disease epidemic in West
Africa (not identified as EVD until 85 days after the first
case). Governments, who may be reticent to announce an
outbreak for fear of economic harm, often control traditional
biosurveillance systems as occurred with the 2003 SARS
outbreak. With current healthcare technology and invest-
ment levels traditional biosurveillance systems lack complete
coverage.

Typically, traditional biosurveillance systems are tailored
to a single infectious disease (e.g., ILInet,Malaria EarlyWarn-
ing System, and European Legionnaire’s Disease Surveillance
Network), requiring clinicians to report diseases based on
predefined lists [7]. Different governing entities have dif-
ferent lists of infectious diseases that must be reported by
clinicians, and these lists are at times updated to reflect the
current needs of the public health community. In some cases,
traditional biosurveillance capabilities are implemented for
specific classes of diseases, transmission pathways, and spe-
cialized laboratory capabilities (e.g., ILInet, Foodnet, and
Pulsenet). Most traditional biosurveillance systems are well
suited to monitor known infectious disease threats (e.g.,
poliovirus, influenza) but are not designed to detect threats
from unknown or extremely rare infectious diseases [8].

The term syndromic surveillance is used to refer to a
number of different types of biosurveillance systems where
symptoms are used to classify the type of infectious dis-
eases [8]. Syndromic surveillance was first used to describe
biosurveillance cases that conformed to particular clinical
case definitions (this is especially useful when monitoring
diseases where no laboratory test exists). However, its usage
has expanded to encompass most forms of biosurveillance
outside of traditional biosurveillance systems. These include
systems that collect information on hospital admissions,
pharmaceutical sales, employee absenteeism, and other data
streams that are used to detect outbreaks [8].

Digital disease detection, also called digital biosurveil-
lance, refers to analysis of web data for insight on public
health and infectious disease systems [8].The term is broadly
defined to include various uses of web-native information: (1)
aggregation of medical reports from subject matter experts
(e.g., ProMED-mail); (2) computational models built upon
search results and web traffic (e.g., Google Flu Trends); and
(3) models built on other clusters of search terms around
infectious disease trends. Digital biosurveillance examines
indirect evidence for infectious disease cases (e.g., textual
data sources from symptomatic people) and must work in
combination with traditional biosurveillance methods. Dig-
ital biosurveillance’s greatest potential is that it can possibly
identify potential outbreakswhere traditional biosurveillance
systems do not exist and can rapidly detect and communicate
infectious disease outbreaks.

Digital biosurveillance holds promise but has yet to fulfill
a concrete role as an early warning system in public health
biosurveillance.There is disagreement about the utility of dig-
ital disease surveillance for predicting influenza outbreaks [9,

10]. Initially, there was some evidence that Google Flu Trends
was useful in forecasting developing influenza outbreaks [8];
however, Google Flu Trends was inconsistently accurate from
year to year and there were substantial flaws in Google Flu
Trends ability to predict regular seasonal influenza peaks and
irregular pandemic influenza [10]. Furthermore, tools and
analytical methods that rely upon human curation of data
feeds (e.g., ProMED-mail, HealthMap) require significant
human capital and appear to scalewith the amount of training
and education of the human curators [11].

Despite these weaknesses of digital disease surveillance,
natural language processing (NLP) is a potentially useful tool
for biosurveillance systems. NLP is able to give structure
to unstructured textual data. For example, NLP has been
used to automatically classify electronic medical records
(EMR) from emergency rooms into categories for syndromic
biosurveillance [12, 13], especially in cases where specific
clinical definitions are scant (e.g., invasive mold) [14]. In the
realm of digital biosurveillance, efforts are underway to apply
NLP to socialmedia streams [15].UsingNLP to systematically
create structured data from unstructured text may enable
the monitoring of innumerable local sources of infectious
disease information globally. Digital biosurveillancemethods
that use NLP may lead to the accurate and rapid detection
of infectious disease outbreaks in places where traditional
biosurveillance systems are insufficient. For these reasons,
EcoHealth Alliance developed the Global Rapid Identifica-
tion of Threats System (GRITS) that uses NLP to identify
emerging infectious disease threats in textual sources.

2. Method

GRITS uses natural language processing to determine which
infectious diseases are most likely associated with an input
text sample. Articles are processed using a combination of
NLP methods to identify disease-related features from the
text.These features are passed to an ensemble of binary logis-
tic regression classifiers, which work together to “diagnose”
the article, ranking diseases by predicted probability.

2.1. GRITS’ Search Function. GRITS presently searches an
index of over 250,000 infectious diseases related articles. Elas-
ticsearch assigns relevance scores to individual terms using
TF-IDF (term frequency-inverse document frequency) based
models, which weight matches according to how common
words are in a document divided by how rare they are across
the corpus of documents. Additionally, GRITS’ extracted
featuremetadata for each article (including infectious disease
keywords, date, and location) are searchable can be used to
sort search results.

2.2. Feature Extraction. GRITS’ text processing and NLP
algorithms, written mainly in Python, extract disease-related
and contextual features from texts and store these features
as annotations on the text. The algorithms are detailed in
Supporting Information, and code samples are provided
(Supplemental 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/5080746). Prior to analysis,
non-English text is translated using Bing Translator.
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Table 1: The ontologies used in GRITS, their contents, and their descriptions.

Ontology Contents Description

Biocaster ontology General disease ontology English terms for symptoms, diseases, and
pathogens are used as features

GRITS ontology

Curated ontology of symptoms, control
measures, descriptions of infected
individuals, diseases, disease categories,
environmental factors, hosts, host uses,
modes of disease transmission, occupations,
disease risks, vectors, and zoonotic types

Collection of keywords and terms gathered
and vetted from a consensus of experts at
EcoHealth Alliance

HealthMap disease labels Diseases identified as significant by
HealthMap and used for their disease labels

Used as outcome in logistic regression
models

The disease ontology
Human disease related terms, phenotypic
characteristics, and medical vocabulary
disease concepts

Disease names and synonyms are used as
keyword features. Predicates from disease
definitions

USGS topographic feature vocabularies Environmental factors Subset used as features (all labels and
synonyms of type owl#Thing)

Wordnet English language ontology that maps word
relatedness

Hyponyms and lemmata for a set of
epidemiology-related root keywords are
used as features

Feature extraction is performed using Python’s standard
pattern-matching libraries and the NLTK package to match
keywords from a variety of compiled ontologies of terms
related to infectious disease and public health (Table 1).

Features are categorized: diseases, pathogens, symptoms,
hosts, and modes of transmission. Dates are extracted with
the Stanford SUTime Java library. Locations are matched
with a custom algorithm that uses data from the GeoNames
database in addition to a number of heuristics to reduce false
positive matches. Case counts are identified using the CLiPS
Pattern library’s search module, with a number of specifically
tailored search phrases. GRITS stores extracted features in
JSON with information about their position in the text, so
they can be viewed separately from the document or in their
original context.

2.3. Classifier Training, Verification, and Evaluation. GRITS
uses the binary relevance method (as implemented in scikit-
learn’s sklearn.multiclass.OneVsRestClassifier) to predict the
disease referred to by a body of text. This uses an ensemble
of logistic regression classifiers, one for each disease label
(approximately 120). Each classifier estimates the probability
that a text passage is associated with a single disease, given
the vector of features extracted by GRITS’ NLP algorithms.
Multiple occurrences of features were not counted.

Classifier training and testing used a randomly selected
corpus of approximately 150,000 articles from a 2 to 3-year
period (of the 250,000 article set) and collected and assigned
a single disease label each by analysts. Classifiers were trained
on a subset of approximately 12,000 articles. Each classifier fits
a logistic regression model, using articles with that classifier’s
disease label as positive responses and all other articles in the
training set as negative responses.

3. Results

3.1. GRITS’ Diagnostic Performance Evaluation. The classi-
fiers’ performance was tested over a set of approximately
3500 health news articles and ProMED reports. A confusion
matrix was composed, from which the microaveraged F1
score was calculated across all classifiers. The microaveraged
F1 score sums all true positives, false negatives, and false pos-
itives, evaluating classifier performance across all diseases in
the GRITS ontology. To determine the relative contribution
of features for a given diagnosis on a text, the regression
coefficients for each classifier are rescaled to sum to 1 and then
multiplied by the estimated probability of that disease for that
text.

3.2. GRITS’ Diagnostic Algorithm Verification. The GRITS
disease classification system has an overall precision (positive
predictive value) of 64% and recall (sensitivity) of 63%. The
overall F1 score is 0.317. However, GRITS diagnoses some
diseases very well (Table 2) and some diseases very poorly
(Table 3). These results included translations and were not
skewed due to translation.

4. Discussion

4.1. Context for Biosurveillance. GRITS provides a framework
for classifying the infectious disease-related content in poten-
tially arbitrary text. Monitoring digital disease signals for
impending infectious disease threats means that biosurveil-
lance capacity can be extended to areas where the healthcare
and public health infrastructure is inadequate. This is crucial
since many emerging infectious disease threats occur in
places where traditional biosurveillance infrastructure is
scant.
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Table 2: GRITS’ top 10 performing disease classifications.

Disease Precision (PPV) Recall (sensitivity) 𝐹1 score 𝑁 of positive articles
Avian influenza 0.923 0.932 0.928 208
Hepatitis 0.989 0.866 0.923 112
Influenza 0.905 0.959 0.931 830
Listeriosis 0.921 0.951 0.936 62
Measles 0.931 0.964 0.947 226
Polio 0.893 0.976 0.933 43
Salmonella 0.871 0.983 0.924 124
Scabies 1 0.862 0.925 29
Syphilis 0.928 0.928 0.928 14
Tuberculosis 0.939 0.951 0.945 82

Table 3: GRITS’ bottom 10 performing disease classifications.

Disease Precision (PPV) Recall (sensitivity) 𝐹1 score 𝑁 of positive articles
Rubella 1 0.09 0.166 11
Respiratory illness 0.666 0.181 0.285 11
Campylobacter 0.875 0.538 0.666 13
Chikungunya 0.651 0.823 0.727 34
Clostridium difficile 0.888 0.235 0.372 34
Eastern equine encephalitis 0.833 0.416 0.555 12
Hemorrhagic fever 0.486 0.947 0.642 19
HIV/AIDS 0.687 0.733 0.709 15
Lyme disease 0.588 0.833 0.689 12
Neisseria meningitidis 0.707 0.659 0.682 44

In the hands of the astute public health analyst, GRITS
is a powerful tool for infectious disease biosurveillance that
allows users to efficientlymonitor nontraditional data sources
for infectious disease threats. It can extend the capabilities
of analysts to triage and monitor a wider range of textual
sources, increasing coverage of nontraditional digital dis-
ease surveillance in areas where traditional systems do not
exist and supplementing traditional methods where they do.
GRITS is currently used in the Defense Threat Reduction
Agency’s (DTRA’s) Biosurveillance Ecosystem (BSVE) to
identify infectious disease threats globally.

4.2. Limitations and Future Directions. Large sources of
annotated disease-related textual data, required to accurately
train machine learning classifiers, are uncommon, difficult
to come by, and time-consuming to create. The HealthMap
data used to train the GRITS classifiers is sufficiently large,
but each article is only labeled with one disease, even when a
text may mention multiple diseases. This means that disease
traits extracted from an article may not map specifically to
the disease that article is labeled with, negatively impacting
classifier training.

The HealthMap training data consists largely of aggre-
gated online news articles,WHO, and ProMED-mail reports.
These texts have a set of features linguistic properties specific
to online news articles related to health. If GRITS were
applied to other sources of text, like scholarly articles or social

media feeds, new sets of training data would likely have to be
curated.

In an active surveillance system using GRITS, feature
ontologies and article classifiers should be updated on an
ongoing basis. New diseases will emerge, disease classifica-
tions and ontologies will change, and the GRITS systemmust
be updated to prevent diminishing accuracy. Incorporating
feedback from GRITS users (from the results of individual
articles) into classifier training would improve classifier fit for
that article type.

GRITS currently exists as a standalone web application.
However, its utility would be increased as part of a larger suite
of biosurveillance tools and with connections to continuous
data feeds. These would enable building out various decision
support capabilities around the GRITS toolset. For instance,
GRITS could store processed text sources and display sum-
maries of articles temporally, spatially, or by diagnosed dis-
ease or public health keyword. An alert system could be built
on top of this dataset to warn users of potentially dangerous
clusters of reports, and additional ontologies could be created
to train GRITS to make educated conclusions on additional
complex variables like pathogen class, report risk level, or
the emergence of a novel pathogen. Additionally, through
the GRITS API, these tools are planned for incorporation
to the Defense Threat Reduction Agency’s Biosurveillance
Ecosystem (BSVE) and will run continuously on BSVE data
feeds [16].
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