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Bacterial vaginosis (BV) has been described as an increase in the number of anaerobic and facultatively anaerobic bacteria relative
to lactobacilli in the vaginal tract. Several undesirable consequences of this community shift can include irritation, white discharge,
an elevated pH, and increased susceptibility to sexually transmitted infections. While the etiology of the condition remains ill
defined, BV has been associated with adverse reproductive and pregnancy outcomes. In order to describe the structure of vaginal
communities over time we determined the phylogenetic composition of vaginal communities from seven women sampled at
multiple points using 16S rRNA gene sequencing. We found that women with no evidence of BV had communities dominated
by lactobacilli that appeared stable over our sampling periods while those with BV had greater diversity and decreased stability
overtime. In addition, only Lactobacillus iners was found in BV positive communities.

Copyright © 2008 John Wertz et al. This is an open access article distributed under the Creative Commons Attribution License,
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1. INTRODUCTION

The relationship between biodiversity and ecosystem stabil-
ity has been critically discussed and investigated over the past
decade [1-10]. Most reports have provided evidence suggest-
ing that greater biodiversity leads to greater system stability
in the face of stress. A number of theoretical constructs have
been created to account for the relationship between biodi-
versity and stability [3, 11, 12] in which high biodiversity
within an ecosystem is frequently equated with a level of
functional redundancy. Thus in periods of stress, the loss of
a species is not catastrophic given a level of redundancy.
Microbial communities provide a remarkable system
for investigating these relationships. Many apparently stable
microbial communities are constructed of hundreds or thou-
sands of species. Notable examples are the human intestinal
microflora with an estimated 500-600 species [13, 14] and
soil with an estimated 2000-3000 species/gram [15]. Pertur-
bations resulting in significant community shifts have been
detected in both of these communities (e.g., [16]), but their
stability has not been carefully measured nor has the level
of biodiversity been robustly correlated with stability. Inter-
estingly, Ferndndez et al. [17] described a bioreactor with
functional stability but apparent dynamicism in the phyloge-

netic composition of the community throughout the experi-
ment. This is consistent with a level of functional redundancy
among the species present that maintained the overall
process in spite of phylogenetic shifts within the community.

From the perspective of the biodiversity-stability debate,
the vaginal tract is an interesting ecosystem. In a large
percentage of females the vaginal microbial community is
relatively simple and dominated by one or several species
of Lactobacillus [18-23]. However, when this simple com-
munity is replaced by bacterial vaginosis (BV), the shift is
from the near monoculture of lactobacillus to a community
with orders of magnitude greater phylogenetic diversity,
especially in regards to Gram-positive anaerobes [19, 24-27].
Only a few investigators have addressed the stability of the
community over time for either BV negative or BV positive
females (e.g., [28, 29]).

In the work described herein, we present phylogenetic
assessments of the vaginal microbial community from
nonpregnant women. Multiple samples were taken from each
woman on a monthly schedule, and the phylogenetic com-
position of the communities was determined by comparative
sequence analysis of 16S rRNA gene libraries. Our goal was to
compare the microbial community structure in BV positive
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and BV negative women over time and examine whether
diversity correlated with greater stability.

2. METHODS
2.1. Studysample

Vaginal samples used in this study were collected as part of
a small, randomized clinical trial (RCT) of vaginal douching
cessation. The primary goals of the RCT were to assess the
acceptability of douching cessation and an at home data
collection protocol over a four-month period. Secondary
goals included describing BV presence/absence throughout
the study period, and identifying factors associated with
BV (e.g., phase of menstrual cycle, lifestyle). The study
was conducted on a college campus and eligibility criteria
included douching currently at least once per month and
not being pregnant. Women were enrolled over a six-week
period and total sample size was limited to the first 45 eligible
women. At enrollment, women met with study personnel
at the campus clinic to review and sign consent forms
and to complete a baseline questionnaire. Participants were
then randomized either to continue usual douching patterns
or to refrain from all vaginal douching. At enrollment,
women self-collected two swabs for baseline data on vaginal
microflora. Thereafter, study participants were asked to
complete a daily diary and self-collect three vaginal swabs
a week (one on the weekend and two spread across the
weekdays) for four months. Diaries included information
about days of menses, sexual activity, contraceptive use,
vaginal douching, vaginal symptoms, bathing, showering,
illness, medications, and stress level. Diary sheets and slides
were returned by mail weekly. Participants also returned to
the campus clinic every two weeks at which time a swab for
BV assessment was collected and vaginal pH was measured.
Once per month an additional swab was collected, placed in
sterile saline and frozen at —80°C.

For the current study, frozen vaginal fluid samples from
seven women enrolled in the RCT were selected for further
study. All seven women were African-American, and they
had been assigned to the intervention arm (i.e., asked to
refrain from vaginal douching) and reported that they did
not use any form of hormone-based contraceptive. For
comparison purposes, five of the seven women were selected
because, throughout the four months of the RCT, all of their
vaginal smears were negative for BV; the other two women
were selected because they frequently showed evidence of BV
during the same study period. Clone libraries of 16S rRNA
genes were constructed from 2-3 monthly vaginal samples of
each BV negative woman and 4 monthly samples from BV
positive women.

2.2. Nugent scoring for BY

A single microbiologist with training in the Nugent method
for scoring BV [30] evaluated all vaginal smears while
blinded to the randomization assignment and data from the
diaries. In a previous study with the same microbiologist and
a second microbiologist, the kappa for BV positive (Nugent

score >7) versus BV negative smears was .81 [31]. Nugent
scores range from 0 to 10, the higher scores are indicative of
more Gram-negative aerobes and Gram-positive anaerobes
and fewer lactobacilli. A Nugent score of 0-3 is considered
BV negative, 4-6 is intermediate, and 7-10 is BV positive.

2.3. Extraction of DNA and PCR amplification

Microbial DNA was extracted using MoBio Soil DNA
extraction kits as follows. Frozen vaginal swabs were soaked
in 70% ethanol overnight. The tip was removed from the
tube and residual ethanol was squeezed out on the side
of the tube. The swab tip was then cut off and placed
into the MoBio extraction tube and stored at —20°C until
extraction. The ethanol wash was centrifuged for 30 minutes
at 10,000 x g in a microfuge and the resulting pellet was
resuspended in 200 uL of water and transferred to the MoBio
extraction tube with the swab tip. The combined pellet and
swab tip were lysed by bead beating for 1.5 minutes and then
extracted according to the manufacturer’s instructions. This
protocol ensured that both free DNA derived from lysed cells
and DNA from intact cells were collected from the samples.
Pilot PCR reactions of 25 uL were performed using bacterial
domain specific primers 27F (5'-AGA GTT TGA TCM TGG
CTCAG-3") and 1389R (5'-AGC GGC GGT GTG TAC AAG-
3") [32]. The PCR reaction volume was 25uL with 30ng
template DNA. Reactions contained 1X buffer (Invitrogen),
1.5mM MgCl,, 0.25mM of dNTPs, and 0.2uM of each
primer and 0.6 units of Taq polymerase (Invitrogen). Cycling
was initiated with an initial denaturation of 3 minutes
at 95°C followed by 25 cycles of 45 seconds at 95°C, 45
seconds at 56°C and 1 minute at 72°C, followed by a 5-
minute extension at 72°C. PCR products were analyzed
on agarose gels stained with ethidium bromide. Reactions
with the appropriate size PCR product were cloned using
Invitrogen’s TOPO cloning kit. Putative clones with inserts
were picked, screened and sequenced at the technology
center at MSU. Sequences were deposited at GenBank
(EF364727 to EF365525 (low Nugent scores) and EF365526
to EF366669 (high Nugent scores)).

2.4. Phylogenetic and statistical analyses

Each 16S rRNA gene clone was assigned a preliminary
phylogenetic affiliation by sequence comparison to the
Ribosomal Database Project II using the sequence match
tool [33]. Sequences were checked for chimerae using the
Chimera Check program [34], and sequences shorter than
550 nucleotides were removed. Sequences that were not
clearly assigned at the genus level were compared to the
Genbank nucleotide database using BLAST [35]. Sequences
were aligned based on secondary structure to the 16S
rRNA gene sequence database ssuJan03 in the ARB software
package (http://www.arb-home.de/) using the Fast Aligner
tool [36]. Unaligned or ambiguously aligned nucleotides
were corrected manually. For all subsequent analyses, 503
unambiguously aligned nucleotides corresponding to posi-
tions 119 to 638 in Escherichia coli were used.
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For phylogenetic analyses, when closely related sequences
were not identified in the ARB database, relatives were found
by a BLAST search of the Genbank database and incorpo-
rated into ARB. Phylogenetic trees were constructed using
the neighbor-joining method with a Felsenstein correction. A
minimum evolutionary distance method in PAUP* was used
for bootstrap analysis of the same data.

Differences in the libraries were tested by pairwise
comparison of PHYLIP-formatted distance matrices for
each library using webLIBSHUFF version 0.96 [37], which
combines preLIBSHUFF [38] and LIBSHUFF version 1.22
[39]. For further community analyses, the sequences were
grouped into operational taxonomic units (OTUs) using
DOTUR [39]. A distance of 3% was used to define an OTU,
and is hereafter denoted as OTUy 3. A 3% dissimilarity in
16S rRNA gene sequences is typically, though controversially,
thought to represent a species-level delineation [40]. For
each participant, the two-, three-, or four-clone libraries were
combined and the Chaol richness and Simpson diversity (D)
estimators were calculated as implemented in the DOTUR
program. The Simpson index of diversity was calculated
as 1D. The Chaol estimator, at an OTUj 3 cutoff, can be
thought to represent the estimated number of species in an
environment. The Simpson index of diversity is an estimate
that takes into account the richness as well as the evenness
(number of each species). To obtain a quantitative measure
of the OTU 3 similarity between libraries sampled from
the same participant, the Yue and Clayton nonparametric
maximum likelihood method was calculated using the SONS
software [41].

3. RESULTS

In the seven women selected for this study, vaginal pH ranged
from 4.0 to 5.8 and, as expected, pH was highest when
BV was present (Table 1). For most women, samples were
obtained at different menstrual weeks. Among BV positive
women, there were no reports of antibiotic or antifungal use,
and intercourse was infrequent in the week before vaginal
sampling.

We evaluated the structure of the microbial communities
from the seven women described in Table 1 with 16S rRNA
gene libraries. A total of 20 libraries were made from both
low- (5 women and 12 libraries) and high-(2 women and 8
libraries) Nugent scoring women. A total of 1,943 sequences
were analyzed with library sizes raging from 50 to 170 clones
(Table 1). Lactobacillus was the numerically dominant genus
in 17 of the libraries. Three of the libraries from high-Nugent
scoring women were dominated by Leptotrichia/Sneathia,
Prevotella, and Megasphaera, respectively. In total, 28 genera
were detected within the Firmicutes, Bacteriodetes, Acti-
nobacteria, Proteobacteria, and Fusobacteria phyla. In the
BV positive women, 20 different genera were detected while
only 14 (of which 9 were singletons) were identified in the
BV negative women.

Figure 1 presents the relative abundance of the detected
genera in all of the libraries. The top 12-community com-
position profiles represent the communities from the five
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FIGURe 1: Pie chart representations of the vaginal microbial
community structure between participants (top to bottom) and
within each participant, over time (left to right) as inferred by 16S
rRNA gene libraries. The percentage of each library consisting of
clones related to members of the Lactobacillus genus is given.

individual women with low-Nugent scores. These communi-
ties were dominated by lactobacilli which usually constituted
91% of the community or greater. The exception to this was
library 3a where Lactobacillus constituted only 62% of the
clones.

The eight libraries derived from two women with high-
Nugent scores are presented in the bottom two rows of
community composition profiles in Figure 1. These revealed
considerably more phylogenetic diversity than that found
in low-Nugent scoring communities, consistent with the
morphological basis of the Nugent scoring system and
previously recorded observations [30]. Ten genera were
identified in these libraries that were not detected in libraries
from low-Nugent scoring women. Most of these genera
displayed considerable volatility over time. For example, in
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TABLE 1: Relevant clinical and 16S rRNA gene clone library information for the seven participants in this study.
Frequency of Al’lFlblOth/ Phy%og.enenc Dominant
.. . Menstrual . antifungal No. of clones affiliation of
Participant ~ Library BV Score pH intercourse . . . phylotype
cycle (week) . (previous in library dominant ph- ’
(week prior) (% of library)
month) ylotype

la 0 4.4 2 0 No g5 Lactobacillus 98

1 crispatus
1b 1 44 No 86 L. crispatus 98

) 2a 4.0 0 Antibiotic 50 L. crispatus 100
2b 0 4.0 4 0 No 91 L. crispatus 99
3a 2 4.7 3 0 Antibiotic 53  Lactobacillus 62

3 gasseri
3b 4 4.7 3 0 No 58 L. gasseri 95
4a 1 44 4 4 Antifungal 79 .Lactohaczllus 99

4 ners
4b 2 4.7 4 0 Antifungal 50 L. iners 98
4c 0 4.4 6 1 Antifungal 74 L. iners 99
5a 0 4.0 3 No 53 L. iners 91

5 5b 4 4.7 2 4 No 60 L. iners 98
5¢ 0 * 5% 0 No 60 L. crispatus 93
6a 8 5.0 2 0 No 147 L. iners 59

6 6b 8 5.8 1 No 170 L. iners 41
6c 8 5.8 3 0 No 162 Leptotrichia 36

amnionii

6d 4 4.0 5% 0 No 159 L. iners 76
7a 8 5.0 3 0 No 119 i‘gegasl’ haera 62

7 7b 9 5.0 0 No 165 L. iners 54
7c 8 5.5 1 No 130 L. iners 35
7d 8 55 1 0 No gy  Prevorella 40

buccalis

*Missing data.
#Long menstrual cycle.

woman #6, the genus Megasphaera constituted 22%, 3%,
27%, and 10% of libraries A, B, C, and D, respectively. This
irregular flux in clone numbers was also seen in Prevotella
in woman number 7. Moreover, the lactobacilli were also
volatile in clone numbers over time and were, in general,
greatly reduced in numbers in women with high-Nugent
scores. This is in contrast to libraries from low-Nugent
scoring samples where lactobacilli were routinely high and
constant in clone numbers over time.

To quantitate these diversity differences we applied a
suite of ecological and statistical measurements to these
libraries (Table 2). The Simpson’s diversity index revealed
at least a twofold difference between low and high-Nugent
scoring communities while the Chao species richness sim-
ilarly revealed substantial differences between these two
groups. The Yue and Clayton analysis [41] measures library
similarities. In this table, we calculate intra-woman library
similarities and then compare these across the range of
Nugent scores. All libraries with low- Nugent scores had high
similarity (>79%) whereas the high-Nugent scoring libraries
had low similarities (<44%). On visual inspection of these

libraries, it was clear that there was structural instability
in the community over time. Nugent scores did not reveal
subtleties of phylogenetic composition as demonstrated by
comparing community profiles 3a and 6d.

Analysis of the microbial communities among and
between participants with high- and low-Nugent scores
showed that approximately 95.0% (758 out of 799) of the
clones from the low-Nugent scoring women were lactobacilli
(Table 3). Of the remaining 5%, most were identified as
streptococci (19 clones) or pseudomonads (9 clones). The
genus Lactobacillus also contained the most number of
clones of any other genus identified in the participants with
high-Nugent scores, though the lactobacilli only accounted
for 38.3% (438 out of 1144) of the total. A majority of
the remaining clones grouped with the genera Prevotella
(17.3%), Megasphaera (15.7%), Atopobium (7.5%), Sneathia
(7.3%), Dialister (3.6%), and Cryptobacterium (2.4%). Of
these, only Sneathia was not consistently present in all eight
libraries (Figure 1). No clones belonging to any of these
genera were obtained from participants with low-Nugent
scores.
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TaBLE 2: Relationship between BV score and the diversity, richness, and stability of the vaginal microbial community.

Participant! BV score? Simpson diversity (1D) Chaol species richness Library similarity (%)?
1(2) 0.5 0.15 7 97.0 = 1.9
202) 0 0.03 4 100.0 + 0.1
3(2) 3 0.38 14 79.1 £ 8.6
4(3) 1 0.03 7 100 = 0.1
5(3) 1.3 0.33 15 91.0 £ 5.0
6 (4) 7 0.75 27 43.1 £ 4.6
7 (4) 8.3 0.85 22 38.2+£6.9

!Numbers in parentheses represent the total number of clone libraries for that participant.

2Mean of BV scores given in Table 1.

3Calculated by the nonparametric maximum likelihood estimator of Yue and Clayton. Values + SE.

Lactobacillus iners
(438, 351)

—|7L. gasseri (0, 87)

L. crispatus
(0, 304)

L———————{ = L. jensenii (0, 13)
S — vaginalis (0, 3)

——— L. reuterii

—\v Bacillus subtilis

0.1

Ficure 2: Neighbor joining based phylogeny of the 1,196 Lac-
tobacillus 16S rRNA gene clones obtained in this study. Clones
that were closely related to known Lactobacillus species were
condensed into trapezia. Numbers in parentheses represent, for
each group, the number of clones obtained from participants with
bacterial vaginosis (left) and without bacterial vaginosis (right).
The phylogeny is based on 503 unambiguously aligned nucleotides.
Branch points with >75% conservation are represented with a
closed circle; branch points with 50-74% conservation are shown
with an open circle. Genbank accession numbers for reference
species are shown in brackets. A 16S rRNA gene from Bacillus
subtilis was used as the outgroup. Scale bar represents 0.1 change
per nucleotide.

Among the two participants with high-Nugent scores, the
distribution of Prevotella, Atopobium, and Cryptobacterium
species was distinct (Figure 3). A majority of Prevotella
clones from participant 6 grouped with Prevotella bivia,
whereas those from participant 7 grouped most closely
with Prevotella buccalis, P. corporis and P. disiens. Similarly,
participant 6 had approximately three times the number
of clones that grouped with Atopobium vaginae than did
participant 7, whereas participant 7 had approximately three
times the number of clones grouped with Cryptobacterium
curtum than participant 6 (Figure 3). Both participant 6 and
7 had a similar overall distribution of species within the
Megasphaera and Dialister genera.

As mentioned above, clones belonging to the genus
Lactobacillus were the most abundant, irrespective of Nugent

score. However, participants with low-Nugent scores had a
diversity of Lactobacillus species that included L. iners, L.
gasseri, L. crispatus, L. jensenii, and L. vaginalis (Figure 2)
whereas libraries from participants with high-Nugent scores
contained only L. iners (Figure 2).

4. DISCUSSION

Regarding the vaginal tract community structure of women
with low-Nugent scores, our results were similar to pre-
viously reported studies [18-20, 23, 42]. All communities
were dominated by Lactobacillus spp. Five different species
were detected in the 758 Lactobacillus sequences including
L. iners, L. gasseri, L. crispatus, L. jensenii, and L. vaginalis.
Interestingly, we failed to detect any Lactobacillus sp. other
than L. iners in BV positive women. Similar asymmetric
distribution of lactobacillus species have been reported
where L. gasseri and L. iners were “negatively correlated to
each other” [43] or positively correlated with BV-associated
bacteria [44]. Our results suggest that L. iners may be better
adapted to the polymicrobial state of BV, including elevated
pH.

Bacterial vaginosis has been described as a polymicrobial
syndrome [19, 21, 25, 45, 46] with higher microbial diversity
than what is perceived as the healthy ground state dominated
by lactobacilli. Clinically it is characterized by a white
discharge, an increase in pH and amine concentration, the
appearance of clue cells, and a microbial community shift
detected by Gram stain of smears from vaginal fluid 19, 21,
24-26, 45, 46]. Similar to previous work (e.g., [19, 47]) we
detected greater species diversity in the BV positive subjects.
In our 7 samples from the two BV positive women, we
detected five clades within the Prevotella genus, the most
abundant of the nonlactobacillus genera present in our
libraries. Two of the Prevotella clades detected were present
in both BV positive women while three were present in only
one. This may reflect host differences that select for unique
species or the consequences of sampling at nonsaturating
levels. Magasphaera (2 clades, 180 clones), Dialister (2 clades,
41 clones), Cryptobacterium (1 clade, 27 clones) Atopobium
(1 clade, 86 clones), Eggerthella (1 clade, 21 clones), and
Gardnerella (1 clade, 7 clones) were also detected in BV
positive women, although clone numbers were different. The
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TasLE 3: Phylogenetic affiliation of 16S rRNA gene clones obtained from participants with and without bacterial vaginosis.
Phylum Genus! Participants with BV Participants without BV Total

Firmicutes
Lactobacillus 438 758 1196
Megasphaera 180 0 180
Dialister 41 0 41
Streptococcus 3 19 22
Acetivibrio 15 0 15
Aerococcus 16 0 16
Micromonas 8 0 8
Gemella 5 1 6
Veillonella 0 2 2
Anaerococcus 1 1 2
Peptoniphilus 0 1 1
Helcococcus 1 0 1
Staphylococcus 0 1 1
Turicibacter 0 1 1
Bacteroidetes
Prevotella® 198 0 198
Actinobacteria
Atopobium 86 0 86
Cryptobacterium 27 0 27
Eggerthella 21 0 21
Gardnerella 7 0
Mobiluncus 5 0
Proteobacteria
Escherichia 0 1 30
Serratia 2 0 23
Pseudomonas 6 9 15
Janthinobacterium 1 2 3
Ralstonia 0 1 1
Dechloromonas 0 1 1
Klebsiella 0 1 1
Fusobacteria
Sneathia 83 0 83
Total 1144 799 1943
Total OTUj 3 31 19 46

Typically, clones with >94% 16S rRNA gene identity to the nearest cultivated relative were considered members of that genus.
2Clones grouped with the Prevotella genus had 92-94% 16S rRNA gene identity to their closest cultivated relative.
3Operational taxonomic units (OTUs) were calculated at a cutoff of 97% similarity.

surprising aspect of these studies was the volatility in clone
demographics over time exhibited by the BV positive women.
This suggests that in the case of women with clinically
identified BV, the increase in diversity is accompanied by
a decrease in community stability. It is possible that in
spite of the phylogenetic volatility, the community function
remains constant, as in the case of the previously cited
bioreactors [17]. Other explanations are possible (see below).
Nonetheless, in our BV positive women the phylogenetic
composition changed dramatically over time in contrast to
women with low-Nugent scores.

It is intriguing to consider the vaginal community in the
light of ongoing discussions of biodiversity and stability of
ecosystems, in part because of the demographic instability
that we detect when the community is at its greatest diversity,
in the BV positive women. While it seems (somewhat)
intuitive to equate high biodiversity with a more resilient
ecosystem; previous workers have concluded that there was
“no such arbitrarily general rule” [48, 49]. Indeed, May
points out that randomly constructed ecosystems “are more
likely to lose species after disturbances than are simple
ones” [49]. Moreover, in a separate paper May reported that
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4|7(92, 35)

Prevotella bivia [1L16475]

(1,47)

(0, 6)
Prevotella buccalis [L16476]

(0, 13)

Prevotella corporis [L16465]
(0,4)

Prevotella disiens [116483]

(67,76)

); Megasphaera
(21, 16)

Megasphaera cerevisiae [L37040]

(13, 20)
Dialister sp. [AY958874]

(4,4)

(65, 21) Atopobium vaginae
Atopobium parvulum [X67150]

(12, 36)
Cryptobacterium curtum [AB019260]

o1 Aquifex pyrophilus [M83548]

V Gardnerella vaginalis [M58744]
(2,5)

F1GURE 3: Neighbor joining-based phylogeny of 16S rRNA gene clones related to bacterial genera consistently present in participants with
bacterial vaginosis. Closely related clones were condensed into trapezia with numbers in parentheses representing, for each group, the
number of clones obtained from participant 6 (left) and participant 7 (right). The phylogeny is based on 503 unambiguously aligned
nucleotides. Branch points with >75% conservation are represented by a closed circle. Genbank accession numbers for reference species
are shown in brackets. A 16S rRNA gene from Aquifex pyrophilus was used as the outgroup. Scale bar represents 0.1 change per nucleotide.

simple nonlinear difference equations that describe growth
can produce stable cycles as well as apparent chaotic regimes
[50]. Hence, the community instability in the BV positive
state that we observed could be more a reflection of a
randomly assembled community and/or the composite of
populations with nonoverlapping growth curves.

BV can be a recalcitrant condition even in the face
of clinical treatment [25, 26, 46]. While the molecular
approaches of microbial ecology have provided considerable
insight into the phylotypes present [18-20, 23, 28, 42, 44],
we remain somewhat distant from a complete ecological
description of the vaginal community that includes the host
genotypic variability, environmental influences, a complete
description of the community including eukaryotes, bacteria
and viruses [51] and critical interactions between species,
not to mention prevailing nutrient sources and food webs
[52]. It is encouraging that some investigators have identified
strong correlations between certain bacterial phylotypes and
BV (e.g., [19]). In addition, the hormonal milieu appears
to influence vaginal microflora, as evidenced by a lower
prevalence of BV in women exposed to exogenous hormones
[31, 53] and a higher prevalence of BV in the first week
of the menstrual cycle [31, 54]. In this study of seven
selected participants, we specifically chose women who were
unexposed to exogenous hormones and had consistent BV

scores (i.e., primarily negative/intermediate or primarily
positive) irrespective of the timing in the menstrual cycle.
Moreover, we have come to view the syndrome as an
ecosystem gone awry and currently efforts are being directed
at identifying the conditions or events that cause community
shifts [25, 26, 46]. While this ecosystem approach is more
complex, it may prove more productive than pathogen
hunting.

Our report is a preliminary study of relatively few women
sampled over time where community structure was deter-
mined using culture independent techniques. We recognize
the potential biases that can arise from PCR amplification
and library construction [55] including primer bias. The
latter is of particular concern because some phylogenetic
groups can be missed entirely by poorly matched primer
sets. For example Frank et al. [56] and Verhelst et al. [42]
recently demonstrated that detection of Gardnerella, a genus
frequently associated with BV (e.g., [42]), can be strongly
influenced by primer selection. While our primer set did
pick up Gardnerella sequences, the abundance may have
been influenced by primer bias. However, in spite of these
limitations we have identified substantial diversity within
the Prevotella clones, an asymmetric distribution of the
lactobacilli species and large demographic shifts over time in
BV positive women.
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