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The vibration signal of rotating machinery compound faults acquired in actual fields has the characteristics of complex noise
sources, the strong background noise, and the nonlinearity, causing the traditional blind source separation algorithm not be
suitable for the blind separation of rotating machinery coupling fault. According to these problems, an extraction method of
multisource fault signals based on wavelet packet analysis (WPA) and fast independent component analysis (FastICA) was
proposed. Firstly, according to the characteristic of the vibration signal of rotating machinery, an effective denoising method of
wavelet packet based on average threshold is presented and described to reduce the vibration signal noise. In the method, the
thresholds of every node of the best wavelet packet basis are acquired and averaged, and then the average value is used as a
global threshold to quantize the decomposition coefficient of every node. Secondly, the mixed signals were separated by using
the improved FastICA algorithm. Finally, the results of simulations and real rotating machinery vibration signals analysis show
that the method can extract the rotating machinery fault characteristics, verifying the effectiveness of the proposed algorithm.

1. Introduction

Rotating machinery plays an increasingly important role in
modern industry and intelligent manufacturing. The real-
time monitoring of the working state of rotating machinery
can not only avoid the occurrence of disasters but also
increase obvious economic benefits [1, 2]. The rotor system
is one of the important joints of rotating machinery equip-
ment in industrial production. It is widely used in different
fields. The normal operation of the rotor system is directly
related to the working performance of the whole mechanical
equipment. Therefore, the rotor system is a good research
object of the exploration and mining of new fault diagnosis
methods. In practical engineering, the rotor vibration signal
caused by local defects usually has the characteristics of non-
linear, nonstationary, low signal-to-noise ratio, and unclear
fault characteristics [3, 4]. It is difficult to make effective diag-
nosis by directly using spectrum analysis. In addition, some
conventional diagnostic methods such as spectral kurtosis
and time-frequency analysis have their own limitations.

Therefore, it is a practical problem to explore an effective
fault diagnosis method for the rotor system in engineering
practice [5, 6].

In order to effectively identify the feature information
contained in the fault signal of rotating machinery and reveal
its inherent characteristics, many fault feature extraction
methods of rotating machinery have been proposed, such
as empirical mode decomposition (EMD) [7, 8], mathemati-
cal morphology filtering [9, 10], wavelet decomposition [11,
12], adaptive filtering [13, 14], matching pursuit [15, 16],
cyclostationary signal analysis [17, 18], Wiener filter [19],
Kalman filter [20, 21], and stochastic resonance [22, 23] that
are widely used in early fault diagnosis of rotating machinery.
The EMD proposed by Huang et al. [7] is a nonstationary sig-
nal analysis method, which can find the hidden characteristic
information in the signal, and has been widely used in the
extraction and noise reduction of the impact signal of rotat-
ing machinery. Xin et al. [24] proposed a fault feature extrac-
tion and diagnosis method for vibration signal based on
iterative empirical wavelet transform (EWT) and sparse filter
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(SF). Pang et al. [25] proposed an adaptive filtering
algorithm based on mathematical morphology for rolling
bearing fault diagnosis. Kang et al. [20] proposed an
improvement method associated with the Kalman filter to
estimate the bearing dynamic coefficients. Cheng et al. [26]
proposed a novel deconvolution algorithm called adaptive
multipoint optimal minimum entropy deconvolution
adjusted (AMOMEDA) for extracting fault-related features
from noisy vibration signals. The condition monitoring
and diagnosis technology of mechanical equipment has
made many encouraging achievements and has been gradu-
ally applied to practice. However, there are still many prob-
lems in the research of fault diagnosis mechanism, signal
detection, feature extraction, and fault reasoning, which
need to be further studied. For example, the detection
method of fault characteristic signal of rotating machinery
is not universal. One of the important problems is that the
working condition of the equipment is often complex, and
the fault characteristic signal is often superimposed by vari-
ous interference signals. How to effectively remove the inter-
ference signal and extract the effective signal has become a
key problem. The emergence of blind signal separation
(BSS) theory can provide a feasible way to solve the above
problems. Blind signal separation refers to the process of
recovering the source signal only from the observed signal
according to the statistical characteristics of the source signal
when the parameters of the source signal and transmission
channel are unknown.

BSS plays an increasingly important role in the field of
digital signal processing and has been widely used in com-
munication [27], speech processing [28], fault diagnosis
[29, 30], seismic exploration [31], biomedicine [32, 33],
image processing [34], radar [35], and economic data analy-
sis [36]. In blind signal separation, the typical algorithms
commonly used include the fast fixed-point algorithm [37],
natural gradient algorithm [38], Equivariant Adaptive Sepa-
ration via Independence (EASI) algorithm [39, 40], and Joint
Approximation Diagonalization of Eigen-matrices (JADE)
algorithm [41, 42], etc. Grotas et al. [43] developed the
constrained maximum likelihood (ML) estimator of the
Laplacian matrix for this graph BSS problem with
Gaussian-distributed states. Eitner et al. [44] used two blind
source separation algorithms to estimate the modal parame-
ters of a reduced-scale rocket nozzle using onlymeasurements
of deformation. Ge and Jiang [9] proposed a framework based
on joint blind source separation (JBSS) in order to solve the
jamming suppression problem in the noise environment for
the distributed radar with single transmitter and multiple
receivers, where the multiple jamming enter into all the
receivers through the main beam of the antennas. Belaid
et al. [45] proposed a new multiscale decomposition algo-
rithm which enables the blind separation of convolutely
mixed images. All the above algorithms show good separation
performance when separating noiseless mixed signals. How-
ever, in the separation of noisy signals, there will be a large
error, especially in the case of low signal-to-noise ratio, and
even draw a completely wrong conclusion, because these algo-
rithms are derived without considering the noise model. In
the process of rotating machinery running, the signal mea-

sured by vibration sensor installed on mechanical equip-
ment inevitably contains signal noise. If the noise is
ignored and the blind source separation algorithm is directly
used to separate the mixed vibration signals, it may produce
large errors or draw wrong conclusions. Therefore, before
the blind separation of mechanical vibration signals, it is
very important to reduce the noise and improve the
signal-to-noise ratio.

Therefore, aiming at the problem of weak fault feature
signal extraction of rotating machinery under the influence
of noise, a fault separation method based on wavelet packet
analysis (WPA) filter and improved fast independent compo-
nent analysis (FastICA) algorithm is proposed. Firstly, wave-
let packet filter is used to denoise the mixed signal under
noise interference, and then the improved FastICA algorithm
is used to separate the denoised signal, and then the weak
fault signal is effectively extracted.

The contents of the following sections are as follows:
Section 2 introduces the basic theory and model of blind
source separation. Section 3 presents the principle of the
wavelet packet denoising algorithm. Section 4 presents
implementation algorithm steps of the improved WPA-
FastICA Method. Simulated and experimental verifications
are conducted in Sections 5 and 6. Finally, the conclusions
and outlook are both given in Section 7.

2. The Basic Theory and Model of Blind
Source Separation

Blind source separation (BSS) refers to the process of
extracting and recovering (separating) the original signals
which cannot be directly observed from multiple observed
mixed signals. The “blind” means that the source signal is
unobservable, and the hybrid system characteristics are
unknown or only a small amount of prior knowledge is
known. Independent component analysis (ICA) is the main
method to solve the problem of blind source separation,
which is based on the independence of the source signal.
The solution steps of ICA are as follows: establish the
objective function of the observed signal according to the
principle of statistical independence and then use the opti-
mization algorithm to separate the observed signal, so that
the output component is as independent or completely
independent as possible in statistics. In this way, the signal
can be separated.

The mathematical model of fast ICA problem is
described as follows:

xi = 〠
n

j=1
aijsj tð Þ + ni tð Þ ; i = 1, 2, 3,⋯,m, ð1Þ

where xðtÞ = ½x1ðtÞx2ðtÞ⋯ xmðtÞ�T is the observation sig-
nal with m-dimension, A is the mixing matrix of source
signal aliasing and unknown, sðtÞ = ½s1ðtÞs2ðtÞ⋯ snðtÞ�T
is the source signal, and nðtÞ = ½n1ðtÞn2ðtÞ⋯ nmðtÞ�T is
the noise.
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The purpose of fast ICA is to find a separation matrix
W to separate the source signal sðtÞ from xðtÞ, and the
mathematical model of the separation process is expressed
as follows:

y tð Þ =Wx tð Þ, ð3Þ

which is
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⋮
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, ð4Þ

Where yðtÞ is the estimated value of sðtÞ.To separate the
source signal is to find the separation matrix U to make
the following true:

S
_

tð Þ =UX tð Þ =UA~S tð Þ: ð5Þ

If

UA = I, ð6Þ

where if I is a unit matrix, then S
_ðtÞ is an effective sepa-

ration of ~SðtÞ.

3. The Principle of the Wavelet Packet
Denoising Algorithm

Wavelet packet analysis is a more detailed analysis and
reconstruction method of signal from wavelet analysis. In
wavelet analysis, the signal is actually decomposed into
low-frequency rough parts and high-frequency details, and
then only the low-frequency details are decomposed for the
second time, instead of the high-frequency parts [46, 47].
But in practice, we are only interested in some undetermined
time (point) or frequency domain (point) signal, only need to
extract the information of these specific time and frequency
points. In this case, the fixed distribution of the time-
frequency window of orthogonal wavelet transform is not
an optimal choice. Wavelet packet analysis not only decom-
poses the low-frequency part but also makes a secondary
decomposition of the high-frequency part, which can make

a more detailed description of the high-frequency part of
the signal, and has a stronger ability to analyze the signal.

In order to simplify the problem without losing gener-
ality, considering that the collected vibration signal
contains noise signal and has statistical characteristics,
and considering that the measured vibration signal data
is discrete data in time, the equation for vibration signal
is established as follows:

x tð Þ = As tð Þ + n tð Þ, ð7Þ

where xðtÞ is the sampling signal, A is the mixing matrix
of source signal aliasing and unknown, sðtÞ is the source
signal, and nðtÞ is the noise signal.

Suppose fhngn∈z is the orthogonal low-pass real filter
corresponding to the orthogonal scaling function ΦðtÞ, and
fgngn∈z is the high pass filter corresponding to the orthogo-
nal wavelet function ΨðtÞ, where gn = ð−1Þnh1−n; that is, the
two coefficients satisfy the orthogonal relationship, and then
the recursively defined function μn is called the wavelet
packet determined by the orthogonal scaling function μ0 =
Φ. So, there is the following function:

μ2n tð Þ =
ffiffiffi
2

p
〠
k∈z

hkμn 2t − kð Þ,

μ2n+1 tð Þ =
ffiffiffi
2

p
〠
k∈z

gkμn 2t − kð Þ,

8>><
>>: , n = 1, 2, 3⋯ð Þ: ð8Þ

Therefore, for any nonnegative integer Nez, there exists the
following equation:

Un
j+1 =U2n

j ⊕U2n+1
j , j ∈ zð Þ: ð9Þ

If the orthogonal wavelet decomposition algorithm of the
Mallat multiresolution analysis algorithm is extended to the
wavelet packet decomposition algorithm, the fast decomposi-
tion and reconstruction formula of wavelet packet can be
obtained. It is expressed as follows:

d2nj kð Þ =〠
l∈z
hl−2kd

n
j+1 l½ �,

d2n+1j kð Þ =〠
l∈z
gl−2kd

n
j+1 l½ �,

8>><
>>:

dnj+1 kð Þ =〠
l∈z
hk−2ld

2n
j l½ � +〠

l∈z
gk−2ld

2n+1
j l½ �,

ð10Þ

where the coefficients d2nj and d2n+1j are the projections of an

approximation function f ðtÞ at scale 2l on subspaces U2n
j and

U2n+1
j , respectively. Therefore, wavelet packet decomposition

can not only decompose the low-frequency components of
the signal but also can decompose the high-frequency
components. Figure 1 is the schematic diagram of wavelet
packet decomposition, in which A represents low-frequency
coefficients, D represents high-frequency coefficients, and
numbers indicate the number of levels of wavelet packet
decomposition.
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A group of normal orthogonal bases extracted from
wavelet library which can form L2ðRÞ are called wavelet
packet bases. Different wavelet packet bases have different
abilities of time-frequency localization, and wavelet packet
decomposition of a signal can be realized by many wavelet
packet bases. Therefore, in order to better express the charac-
teristics of signals, it is necessary to find an optimal wavelet
packet basis. People usually define an information cost func-
tion that satisfies both additive and concentration properties
to select the optimal wavelet basis. The common information
cost functions include Shannon entropy, lp norm ð1 ≤ p ≤ 2Þ,
logarithmic energy entropy, and threshold entropy. The
commonly used definition of Shannon entropy is as follows:

E sið Þ = −〠
i

s2i lg s2i
� �

, ð11Þ

where 0 lg ð0Þ = 0.According to these information cost func-
tions, the wavelet packet sequence which minimizes the
information cost function is obtained. The best wavelet
packet basis can be obtained by using the fast search method
from bottom to top.

In wavelet analysis, threshold denoising is a common
method. Similarly, in wavelet packet analysis, the threshold
method can also be used to process the coefficients of wavelet
packet decomposition. In practice, how to select the thresh-
old is the key to the algorithm design. The usual threshold
selection is based on Donoho’s hard threshold and soft
threshold. The mathematical expression is as follows:

WHj =
sign WTj,k

� �
∘ WTj,k
�� �� − μλ
� �

, WTj,k
�� �� ≥ λ

0, WT j,k
�� �� ≤ λ

(
,

ð12Þ

Where WTj,k is the wavelet decomposition coefficient before
processing, sign ð∘Þ is its symbol,WHj is the coefficient after
processing, 1 ≺ j ≺ J , J is the maximum number of layers of
wavelet decomposition, λ is the threshold value, when μ = 0,
and it is the hard threshold method; when μ = 1, it is the soft
threshold method.

Generally, the threshold selection criteria include unbi-
ased likelihood estimation, fixed threshold criterion, hybrid
criterion, and minimax criterion. Here, the threshold AA is
selected as

λ = σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lg Nð Þ

p
, ð13Þ

where N is the number of high-frequency coefficients in the
corresponding decomposition level, and σ is the noise stan-
dard deviation. Generally, its value is the median value of
the absolute value of wavelet packet decomposition coeffi-
cient WTj,k in each layer divided by 0.6745. The formula
can be expressed as follows:

σ =median WTj,k
�� ��� �

/0:6745, ð14Þ

where medianð∘Þ is the median value. In addition, soft
threshold denoising can be divided into global threshold
denoising and layered independent threshold denoising.
The global threshold means that the same threshold is used
to process each layer coefficient of wavelet packet decompo-
sition, while the layered independent threshold means that
different thresholds are used when processing each layer
coefficient. The results show that the global denoising thresh-
old value is better than the independent threshold value.

In this paper, an average threshold method is proposed to
extract the vibration signal of rotating machinery. Firstly, the
noise standard deviation of each node after wavelet packet
decomposition is obtained by using formula (14), and the
threshold value of each node is calculated by formula (13).
Then, the threshold value of all nodes is averaged as the
global threshold of wavelet packet denoising. The formula
can be expressed as follows:

λ = 1
M

〠
M

m−1
σm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lg Nð Þ

p
, ð15Þ

where 1 ≺m ≺M, M, is the number of nodes after wavelet
packet decomposition, 1 ≺ j ≺ J .

Therefore, according to the wavelet packet analysis
method, the following steps can be adopted to filter the noisy
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Figure 1: The time–frequency waveform of source signal.
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signal collected by the sensor. The specific algorithm steps
are as follows.

Step 1. The level n of wavelet packet decomposition is deter-
mined, and the vibration signal of rotating machinery under
strong background noise is decomposed by wavelet packet.

Step 2. Shannon entropy is chosen as the information cost
function to determine the optimal orthogonal wavelet
packet basis.

Step 3. For the coefficients on each node of the optimal wave-
let packet basis, the average threshold is obtained according
to formula (15), and the threshold is processed by using the
soft threshold method.

Step 4. The coefficients of the optimal wavelet packet basis
after thresholding are reconstructed to realize the filtering
of weak vibration signal under strong noise background.

4. The Algorithm of Blind Source Separation

4.1. Problem Description of Blind Source Separation. The ICA
method is a kind of signal processing method to extract inde-
pendent signal sources when the observed data are known
and the mixing mode of signal sources is unknown. This
method takes the non-Gaussian source signals as the research
object, and under the assumption of their statistical indepen-
dence, blind separation is carried out for the multichannel
observed mixed signals, so as to separate the independent
source signals hidden in the mixed signals perfectly The clas-
sical ICA model is as follows:

X tð Þ = AS tð Þ, ð16Þ

where X is the m-dimensional observation signal; S is the n
-dimensional source signal; A is the M ×N mixed matrix,
which is generally assumed to be M =N .

By inverse equation (16), we can get the following results:

Y =WX, ð17Þ

where Y is the estimation of source signal S and W = A−1 is
the unmixing matrix.

The basic idea of ICA is to adjust the weight vector wi to
make the components of the output signal yi as independent
as possible. In this paper, the FastICA algorithm with simple
calculation and fast convergence speed is used to extract the
source signal.

The iterative formula of the separationmatrix is as follows:

w+
i = E Zg wT

i Z
� �� �

− E Zg′ wT
i Z

� �
wi

h i
,

wi =wi/ w+
ik k:

ð18Þ

In the formula,Z is thewhitened signal of the observation signal
X; the nonlinear function is gðuÞ = u exp ð−au2/2Þ, and a = 1.

In practice, the observed signal is often mixed with vari-
ous noises. The model is as follows:

X tð Þ = AS tð Þ +N tð Þ, ð19Þ

where NðtÞ is the additive white Gaussian noise; so, the esti-

mated Y = S
_
+ v is the noisy signal, where S

_
is the unbiased

estimation of S; v is the noise signal. When it is sparse, the
standard ICA model can carry out sparse coding of uncorre-
lated components and then select the contraction function to
remove the noise in it. The probability density function
model of the signal needs to be selected. In this paper, the
double exponential function is selected to approximate the
fault signal. The function is as follows:

p Yð Þ = 1ffiffiffi
2

p exp −
ffiffiffi
2

p

d
Yj j

 !
, ð20Þ

where pðYÞ is the sparse distribution and d = E½Y2� is the
scale value.

S
_
can be obtained by maximum likelihood estimation as

follows:

S
_
= f WXð Þ, ð21Þ

where f is the contraction function, which is defined as

f Yð Þ = sign Yð Þ max 0, Yj j −
ffiffiffi
2

p
σ2

n o
, ð22Þ

where σ2 is the variance of the signal containing noise.

4.2. Algorithm Steps of the Improved WPA-FastICA Method.
In this paper, the specific steps of the multisource weak signal
extraction method are as follows:

Z = z1z2 ⋯ zp
� �T

: ð23Þ

Step 1. Using sensor to collect p-channel linear aliasing noise
observation signal X = ½x1x2 ⋯ xp�. The wavelet packet
decomposition of each observation signal xi is to use db2 as
the wavelet basis function to decompose the noisy signal in
five layers and use Shannon entropy to get the reconstructed
denoised signal.

Step 2. The denoised signal xi′ðtÞ is deaveraged to make E½xi′
ðtÞ� = 0 and then whitened to obtain the signal zi. The p
-path signal inX ′ is obtained after deaveraging and whitening.

Step 3. Let p be equal to the number of independent source
signals to be estimated.

Step 4. The initial weight vector wi is generated randomly, so
that wi =wi/kwik.

Step 5. wi ← E½ZgðwT
i ZÞ� − E½g′ðwT

i ZÞ�wi,wi =wi/kwik.
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Step 6. Orthogonal normalization: wi ←wi − ∑i−1
j=1ðwT

i wjÞwj,
wi =wi/kwik.

Step 7. If wi does not converge, return to step (5).

Step 8. Ifwi converges, then i = i + 1. If i ≤ p, return to step (4).

Step 9. The solution matrix is W = ½w1w2 ⋯wp�T , and

according to Y =WZ, the unmixing signal is Y =
½y1y2 ⋯ yp�T .

Step 10. Ŝ is calculated from equation (21), and pseudoinverse
transformation is performed: Ŝ = pinvðWÞf ðYÞ.

Finally, the separation signal is Ŝ = ½s∧1s∧2 ⋯ s∧p�T .

5. Simulation

5.1. Evaluation Index of Separation Performance of the
Method. In the fast ICA algorithm, the main indexes to eval-
uate the separation performance of the algorithm usually
include correlation coefficient, normalized mean square error
(NMSE), and scatter plot of source signal and separated sig-
nal. At the same time, when the separation results with the
same accuracy are obtained, the number of iterations is com-
pared to evaluate the performance of the three algorithms.

5.1.1. Correlation Coefficient. It describes the parameters of
correlation between two signals. Suppose that the i-th signal
in the source signal s is si, and the estimated signal obtained
after the algorithm is run is si′, then the calculation formula
of the correlation coefficient between si and si′is as follows [48]:

ρ =
cov si, si′

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov si, sið Þ cov si′, si′

� 	r , ð24Þ

where cov ð·Þ is the variance.
The closer the absolute value of the correlation coefficient

between the two signals is 1, the closer the signal is, the better
the separation effect of the algorithm is.

5.1.2. Normalized Mean Square Error (NMSE). Normalized
mean square error measure is used to measure the accuracy
of hybrid matrix estimation. Its expression is as follows [49]:

NMSE = 10 × lg
∑M

m=1∑
N
n=1 a∧mn − amnð Þ2

∑M
m=1∑

N
n=1 amnð Þ2

 !
dBð Þ: ð25Þ

In equation (18), M is the number of rows of A, N is the
number of columns of A, and âmn is the estimated mixed
matrix element. The smaller the value of NMSE, the higher
the accuracy of mixed matrix estimation.

5.1.3. Number of Iterations. It refers to the number of times
that the formula in the algorithm is repeatedly calculated in

order to approximate the desired target or result. When the
ideal results can be obtained, the less iterations, the shorter
the running time and the faster the convergence speed.

5.2. Simulation of Mixed Signal Separation under Different
Carrier Frequencies and Noises. In order to effectively simu-
late the fault characteristics of rotating machinery, the fault
signal features under the actual working conditions of rotat-
ing machinery are selected to simulate the unbalance and rub
impact faults. The simulation functions of these four types of
source signals are as follows:

S tð Þ =
s1 tð Þ
s2 tð Þ

( )
=

1:5 sin 100πtð Þ
cos 100πtð Þ + 2 sin 200πtð Þ

( )
,

ð26Þ

where s1ðtÞ simulates the unbalance fault signal and s2ðtÞ
simulates the characteristic signal of rub impact fault.

A mixing matrix A ∈ R4×N is generated randomly, and the
two source signals are mixed according to equation (6).

X = As = A s1, s2, s3, s4½ �, ð27Þ

where X is the observable mixed signal and A is the mixing
matrix, where

A =
0:311 0:673

0:926 0:176

" #
: ð28Þ

The time-frequency waveform of the mixed signal generated
by matrix a mixing is shown in Figure 2; the time-frequency
waveform of two source signals is shown in Figure 1.

It can be seen from Figure 1 that the simulated unbalance
and rub impact fault signals are concentrated at 50 kHz and
100 kHz, respectively. Therefore, when wavelet packet is used
for noise reduction, db2wavelet is selected for 5-layer wavelet
packet decomposition, and the second to sixth characteristic
wavelet packet is selected for reconstruction, and the signal
with frequency of 42.5-127.5Hz is obtained as wavelet packet
denoising signal. The interference noise NðtÞ is generated
automatically by MATLAB.

5.3. Result Analysis. In order to compare with other separa-
tion methods, we add classic FastICA and SOBI separation
methods to separate mixed signals and compare with
WPA-FastICA method proposed in this paper.

The multisource unbalance and rub impact fault signals
mixed with different intensities of white Gaussian noise are
separated by using the extraction method in this paper. The
source signals are mixed by random matrix, and then 0dB,
10 dB, and 20dB random white Gaussian noises are added,
respectively, to obtain the observation signal shown in
Figure 3. In order to intuitively compare the characteristics
of the vibration signals before and after separation, it is
necessary to analyze and compare the spectrum characteris-
tics of the separated vibration signals under different noises.

Figure 4 is the time-frequency waveform after separating
the simulation aliasing fault signal by using the classic
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Figure 4: Continued.
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FastICA algorithm. It can be seen from Figure 4 that the clas-
sical FastICA algorithm has a very good separation effect
when the signal-to-noise ratio is greater than 20, but when
the signal-to-noise ratio is less than 20, the separation result
is wrong. Figure 5 is the time-frequency waveform after
separating the simulation aliasing fault signal by using the
classical SOBI algorithm. It can be seen from Figure 5 that
the separation result of the classical SOBI algorithm is wrong
no matter under any Gaussian noise interference.

It can be seen from the time-domain waveform in
Figure 6 that the algorithm proposed in this paper is used
to separate the sampled signal under different noise interfer-

ence, and the noise can be well filtered from the time-domain
waveform. Through the analysis of the frequency domain
waveform characteristics, rub impact and unbalance fault
can also be clearly identified when the signal-to-noise ratio
is 0. The simulation fault is consistent with the separated fault
signal, which shows that the WPA-FastICA algorithm can be
used to separate the coupling faults of the rotor system.

Therefore, through Table 1 and Figures 4–6, compared
with the three methods, the extraction effect of the proposed
method is obviously better than that of the other two
methods, and the direct separation by the SOBI method has
the worst effect.
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9International Journal of Rotating Machinery



0 200 400 600 800 1000

–1

A
m

pl
itu

de
 (m

m
)

A
m

pl
itu

de
 (m

m
)

A
m

pl
itu

de
 (m

m
)

0

1

2

Number of samples (no noise)
0 200 400 600 800 1000

Number of samples (no noise)

0 200 400 600 800 1000
Number of samples (SNR = 0 dB)

0 200 400 600 800 1000
Number of samples (SNR = 0 dB)

0 200 400 600 800 1000
Number of samples (SNR = 10 dB)

0 200 400 600 800 1000
Number of samples (SNR = 10 dB)

–0.1

0

0.1

–4

–2

0

2

4

–0.1

0

0.1

–2

0

2

–0.2

0

0.2

(a) The separated time domain signals with different noises by SOBI

Figure 5: Continued.

10 International Journal of Rotating Machinery



6. Applications

In order to effectively verify the effectiveness of the proposed
method, a fault simulation experimental platform is built.
The experimental table is shown in Figure 7(a). The experi-
mental platform is 134mm long, 51mm wide, 120mm high,
and weighs about 50 kg. The rotor is composed of two shafts
about 49mm long and connected by coupling. There are
three large mass disks and four small mass disks installed
on the rotor, which are used to simulate the blades of rotating
machinery in the industrial field. 13 sensors are installed on
the bearing. The front 12 sensors are installed in the X direc-
tion and Y direction of the same section in a mutually
perpendicular way, as shown in Figure 7(b). They are used
to measure the vibration displacement signal of the rotor.
After the vibration signals output by the sensors in the X
and Y directions are combined, the rotor axis trajectory dia-
gram of this section can be obtained. In the experimental
process, the inverter is used to control the operation of the
variable frequency motor, and then the rotor is driven by
the variable frequency motor, and the motor power is about
1.1KW. The minimum speed of the test bed can be set arbi-
trarily, and the maximum speed can reach 12000 rpm, which
is far more than the critical speed of the system, which can

meet the experimental requirements. Moreover, the speed
up and down of the rotor can be adjusted through the
keyboard of the frequency converter. The control mode of
the motor can be manual control or computer control.

The rotor test bed is an experimental device used to sim-
ulate the vibration of rotating machinery. Various rotor fault
simulation experiments can be done on the rotor test bench,
such as rotor misalignment, imbalance, pedestal looseness,
dynamic and static rubbing, oil film whirl, and oil film oscil-
lation. In addition, it can also be used for lubrication theory,
nonelectric measurement, data acquisition, signal analysis,
rotor bearing system dynamics, condition monitoring, and
fault diagnosis. In this experiment, by adding bolts on the
mass disk of the rotor test bed and adding rubbing device on
the bearing, the simulation experiment of rotor unbalance
and dynamic static rubbing fault is realized. The experimental
speed is 3000rd/min, and the sampling frequency is 5000Hz.

The time-frequency waveform of rotor vibration signal
collected by two sensors is shown in Figure 8. The classical
second-order blind identification (SOBI) and separation
algorithm are used to separate the sampled signal directly,
and the time-frequency waveform of the separated signal is
shown in Figure 9. The classical fast independent component
analysis (FastICA) algorithm is used to separate the sampled
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Figure 5: Time-frequency waveform of the SOBI algorithm.
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signal directly, and the time-frequency waveform of the
separated signal is shown in Figure 10. The WPA-FastICA
algorithm proposed in this paper is used to separate the sam-
pled signal directly, and the time-frequency waveform of the
separated signal is shown in Figure 11.

It can be seen from the time domain waveform in
Figure 8 that the sampled signal is interfered by strong noise,
and the fault characteristics of the rotor system cannot be
identified from the time domain. However, from the charac-
teristics of the frequency domain signal, we can clearly see the
first harmonic of 50Hz and the weak second harmonic of

100Hz. From the analysis of frequency domain characteris-
tics, only slight unbalance fault can be identified.

As can be seen from the time-domain waveform in
Figure 9, the time-domain waveform separated by the classi-
cal SOBI algorithm contains strong noise; so, the fault char-
acteristics of the rotor system cannot be identified from the
time-domain waveform. However, from the characteristics
of frequency-domain signals, it is obvious that one of the
signals contains the first harmonic of 50Hz and the second
harmonic of 100Hz, and the other signal is random and
disordered. From the analysis of frequency domain charac-
teristics, only slight unbalance fault can be identified.

It can be seen from the time-domain waveform in
Figure 10 that under strong noise interference, the classical
FastICA is used to directly separate the sampling signal,
and the fault type of the rotor system cannot be identified
from the time-domain waveform. However, through the
frequency domain waveform characteristics, rub impact
and unbalance fault can be identified, but the noise interfer-
ence is particularly obvious.

As can be seen from the time-domain waveform in
Figure 11 that under the strong noise interference, the algorithm
proposed in this paper is used to separate the sampled signal.
From the time-domain waveform, it can be seen that the noise
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Figure 6: Time-frequency waveforms signals of the WPA-FastICA algorithm.

Table 1: Comparison of evaluation indexes of blind source
separation at SNR 0 dB.

Algorithm si ρi NMSE/dB t/s

SOBI
s1 0.531 –12.142

s2 0.611 –11.311 0.051

FastICA
s1 0.911 –21.132

s2 0.835 –21.214 0.043

WPA-FastICA
s1 0.998 –52.212

s2 0.997 –52.318 0.053
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is well filtered. According to the frequency domain waveform
characteristics, rub impact and unbalance fault can be clearly
identified. The simulated fault of the test bed is consistent

with the separated fault signals, which shows that the
WPA FastICA algorithm can be used to separate the cou-
pling faults of the rotor system.

Control motor Rotor Coupling Quality disk Bearing

(a) The rotor test bed

Eddy current sensor

(b) Installation position of sensors

Figure 7: Multifunctional rotor test platform.
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7. Conclusions

A blind source separation algorithm based onWPA-FastICA
is proposed to solve the problem of fast feature extraction for
weak fault of rotating machinery. Our conclusions are as
follows:

(1) In the background of noise interference, the vibration
signal of rotating machinery has nonlinear and non-
stationary characteristics, which will affect the effec-
tive extraction of fault features. In order to solve
this problem, an algorithm combining wavelet packet
filtering and blind source separation are introduced
to effectively extract the components related to fault
features, eliminate irrelevant components, and
enhance the effective extraction of weak fault features

(2) If the traditional blind source separation (BSS) algo-
rithm is used to separate the observed signals directly
under noise interference, the separation result error is
very different, especially when the signal-to-noise
ratio is lower than 15 dB, even the wrong result may
be obtained

(3) The improved WPA-FastICA blind source separa-
tion algorithm proposed in this paper can effectively
separate the simulated rotor vibration signals, and
its performance has been greatly improved compared
with the traditional method under different noise
interferences

(4) The improved WPA-FastICA blind source separa-
tion algorithm can separate the real rotor fault signal
through the time and frequency domain analysis of
the separated signal, which is consistent with the
experimental set-up fault

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare no conflict of interest.

0 1000 2000 3000 4000 5000

–2

FF
T 

am
pl

itu
de

A
m

pl
itu

de
 (m

m
)

0

2

Number of samples
0 1000 2000 3000 4000 5000

Number of samples

–2

0

2

200

400

600

500
1000
1500
2000

0 50 100 150 200 250 300
f (Hz)

0 50 100 150 200 250 300
f (Hz)

Figure 10: Time–frequency waveforms of rotor coupling fault vibration signals by the FastICA algorithm.

A
m

pl
itu

de
 (m

m
)

FF
T 

am
pl

itu
de

0 1000 2000 3000 4000 5000
Number of samples

0 1000 2000 3000 4000 5000
Number of samples

0 50 100 150 200 250 300
f (Hz)

0 50 100 150 200 250 300
f (Hz)

–1
0
1
2

–1
0
1
2

500
1000
1500
2000

500
1000
1500
2000

Figure 11: Time–frequency waveforms of rotor coupling fault vibration signals by the WPA-FastICA algorithm.

15International Journal of Rotating Machinery



Acknowledgments

The authors thank all those who helped in the course of this
research. This project was also supported by the National
Natural Science Foundation of China (Grant No. 51675253)
and Key Technologies R&D Program of Henan Province
(Grant No. 172102210097).

References

[1] M. Rostaghi, M. R. Ashory, and H. Azami, “Application of dis-
persion entropy to status characterization of rotary machines,”
Journal of Sound and Vibration, vol. 438, pp. 291–308, 2019.

[2] F. Miao, R. Zhao, L. Jia, and X.Wang, “Fault diagnosis of rotat-
ing machinery based on Multi-Sensor Signals and Median Fil-
ter Second-Order Blind Identification (MF-SOBI),” Applied
Sciences, vol. 10, no. 11, p. 3735, 2020.

[3] H. Shao, H. Jiang, H. Zhao, and F. Wang, “A novel deep auto-
encoder feature learning method for rotating machinery fault
diagnosis,” Mechanical Systems and Signal Processing, vol. 95,
pp. 187–204, 2017.

[4] L. Song, H. Wang, and P. Chen, “Vibration-based intelligent
fault diagnosis for roller bearings in low-speed rotating
machinery,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 67, no. 8, pp. 1887–1899, 2018.

[5] M. Xia, T. Li, L. Xu, L. Liu, and C. W. de Silva, “Fault diagnosis
for rotating machinery using multiple sensors and convolu-
tional neural networks,” Ieee-Asme Transactions on Mechatro-
nics, vol. 23, no. 1, pp. 101–110, 2018.

[6] H. Shao, H. Jiang, F. Wang, and H. Zhao, “An enhancement
deep feature fusion method for rotating machinery fault diag-
nosis,” Knowledge-Based Systems, vol. 119, pp. 200–220, 2017.

[7] N. E. Huang, M.-L. Wu, W. Qu, S. R. Long, and S. S. P. Shen,
“Applications of Hilbert-Huang transform to non-stationary
financial time series analysis,” Applied Stochastic Models in
Business and Industry, vol. 19, no. 3, pp. 245–268, 2003.

[8] R. Abdelkader, A. Kaddour, A. Bendiabdellah, and
Z. Derouiche, “Rolling bearing fault diagnosis based on an
improved denoising method using the complete ensemble
empirical mode decomposition and the optimized threshold-
ing operation,” IEEE Sensors Journal, vol. 18, no. 17,
pp. 7166–7172, 2018.

[9] Y. Ge and X. Jiang, “Mathematical morphology and deep
learning-based approach for bearing fault recognition,” Inter-
national Journal of Performability Engineering, vol. 14, no. 5,
pp. 995–1003, 2018.

[10] T. Gong, Y. Yuan, X. Yuan, and X. Wu, “Application of opti-
mized multiscale mathematical morphology for bearing fault
diagnosis,” Measurement Science and Technology, vol. 28,
no. 4, article 045401, 2017.

[11] Y. Liu, K. Li, and P. Chen, “Fault diagnosis for rolling bearings
based on Synchrosqueezing wavelet transform,” Zhongguo
Jixie Gongcheng/China Mechanical Engineering, vol. 29,
no. 5, pp. 585–590, 2018.

[12] G. Özmen and S. Özşen, “A new denoising method for fMRI
based on weighted three-dimensional wavelet transform,”
Neural Computing and Applications, vol. 29, no. 8, pp. 263–
276, 2018.

[13] C. Liu, Z. Zhang, and X. Tang, “Sign normalised spline adap-
tive filtering algorithms against impulsive noise,” Signal Pro-
cessing, vol. 148, pp. 234–240, 2018.

[14] M. A. Z. Raja, N. I. Chaudhary, Z. Ahmed, A. Ur Rehman, and
M. S. Aslam, “A novel application of kernel adaptive filtering
algorithms for attenuation of noise interferences,” Neural
Computing and Applications, vol. 31, no. 12, pp. 9221–9240,
2019.

[15] J. Li, M. Li, X. Yao, and H. Wang, “An adaptive randomized
orthogonal matching pursuit algorithm with sliding window
for rolling bearing fault diagnosis,” IEEE Access, vol. 6,
pp. 41107–41117, 2018.

[16] H. Wang and D. Sun, “The application of matching pursuit
based on multi feature pattern set in the signal processing of
rotating machinery,” Journal of Vibration and Control,
vol. 25, no. 13, pp. 1974–1987, 2019.

[17] Z. Ma, Y. Liu, D. Wang, W. Teng, and A. Kusiak, “Cyclosta-
tionary analysis of a faulty bearing in the wind turbine,” Jour-
nal of Solar Energy Engineering, vol. 139, no. 3, 2017.

[18] A. Mauricio, J. Qi, and K. Gryllias, “Vibration-based condition
monitoring of wind turbine gearboxes based on cyclostation-
ary analysis,” Journal of Engineering for Gas Turbines and
Power, vol. 141, no. 3, 2019.

[19] L. Yu, J. Antoni, H. Wu, and W. Jiang, “Reconstruction of
cyclostationary sound source based on a back-propagating
cyclic wiener filter,” Journal of Sound and Vibration, vol. 442,
pp. 787–799, 2019.

[20] Y. Kang, Z. Shi, H. Zhang, D. Zhen, and F. Gu, “A novel method
for the dynamic coefficients identification of journal bearings
using Kalman filter,” Sensors, vol. 20, no. 2, p. 565, 2020.

[21] M. C. Pan, W. C. Chu, and D.-D. Le, “Adaptive angular-
velocity Vold-Kalman filter order tracking - Theoretical basis,
numerical implementation and parameter investigation,”
Mechanical Systems and Signal Processing, vol. 81, pp. 148–
161, 2016.

[22] P. Shi, C. Su, and D. Han, “Fault diagnosis of rotating machin-
ery based on adaptive stochastic resonance and AMD-EEMD,”
Shock and Vibration, vol. 2016, Article ID 9278581, 11 pages,
2016.

[23] R. Jia, T. Li, Z. Xia, and X. Ma, “Vibration fault diagnosis of
hydroelectric generating unit by using stochastic resonance
and empirical mode decomposition,” Shuili Xuebao/Journal
of Hydraulic Engineering, vol. 48, no. 3, pp. 334–340, 2017.

[24] Y. Xin, S. Li, J. Wang, P. Yi, and J. Liu, “Gear fault diagnosis
method based on iterative empirical wavelet transform,” Yi
Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument,
vol. 39, no. 11, pp. 79–86, 2018.

[25] B. Pang, G. Tang, Y. He, and T. Tian, “Weak fault diagnosis of
rolling bearings based on singular spectrum decomposition,
optimal Lucy-Richardson deconvolution and speed trans-
form,” Measurement Science and Technology, vol. 31, no. 1,
article 015008, 2020.

[26] Y. Cheng, B. Chen, and W. Zhang, “Adaptive multipoint opti-
mal minimum entropy deconvolution adjusted and applica-
tion to fault diagnosis of rolling element bearings,” IEEE
Sensors Journal, vol. 19, no. 24, pp. 12153–12164, 2019.

[27] J. Lu, W. Cheng, Y. Zi, and Z. He, “Nonlinear blind source sep-
aration combining with improved particle swarm optimiza-
tion,” Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong
University, vol. 50, no. 6, pp. 15–22, 2016.

[28] Y. Li, W. Nie, F. Ye, and Q. Wang, “A complex mixing matrix
estimation algorithm in under-determined blind source sepa-
ration problems,” Signal, Image and Video Processing, vol. 11,
no. 2, pp. 301–308, 2017.

16 International Journal of Rotating Machinery



[29] Y. Guo and A. Kareem, “System identification through nonsta-
tionary data using time-frequency blind source separation,”
Journal of Sound and Vibration, vol. 371, pp. 110–131, 2016.

[30] F. Miao and R. Zhao, “A new fault diagnosis method for rotat-
ing machinery based on SCA-FastICA,” Mathematical Prob-
lems in Engineering, vol. 2020, Article ID 6576915, 12 pages,
2020.

[31] M. Kemiha and A. Kacha, “Complex blind source separation,”
Circuits, Systems, and Signal Processing, vol. 36, no. 11,
pp. 4670–4687, 2017.

[32] F. Negro, S. Muceli, A. M. Castronovo, A. Holobar, and
D. Farina, “Multi-channel intramuscular and surface EMG
decomposition by convolutive blind source separation,” Jour-
nal of Neural Engineering, vol. 13, no. 2, article 026027, 2016.

[33] E. Petersen, H. Buchner, M. Eger, and P. Rostalski, “Convolu-
tive blind source separation of surface EMG measurements of
the respiratory muscles,” Biomedizinische Technik, vol. 62,
no. 2, pp. 171–181, 2017.

[34] Z. Huang, B. Fang, X. He, and L. Xia, “Image denoising based
on the dyadic wavelet transform and improved threshold,”
International Journal of Wavelets, Multiresolution and Infor-
mation Processing, vol. 7, no. 3, pp. 269–280, 2009.

[35] M. Ge, G. Cui, and L. Kong, “Mainlobe jamming suppression
for distributed radar via joint blind source separation,” IET
Radar, Sonar and Navigation, vol. 13, no. 7, pp. 1189–1199,
2019.

[36] X.-F. Gong, Q.-H. Lin, F.-Y. Cong, and L. De Lathauwer,
“Double coupled canonical Polyadic decomposition for joint
blind source separation,” IEEE Transactions on Signal Process-
ing, vol. 66, no. 13, pp. 3475–3490, 2018.

[37] A. Aldhahab and W. B. Mikhael, “Face recognition employing
DMWT followed by FastICA,” Circuits, Systems, and Signal
Processing, vol. 37, no. 5, pp. 2045–2073, 2018.

[38] D. G. Fantinato, L. T. Duarte, Y. Deville, R. Attux, C. Jutten,
and A. Neves, “A second-order statistics method for blind
source separation in post-nonlinear mixtures,” Signal Process-
ing, vol. 155, pp. 63–72, 2019.

[39] C. Wang, H. Huang, Y. Zhang, and Y. Chen, “Variable learn-
ing rate EASI-based adaptive blind source separation in situa-
tion of nonstationary source and linear time-varying systems,”
Journal of Vibroengineering, vol. 21, no. 3, pp. 627–638, 2019.

[40] F. Miao, R. Zhao, and X.Wang, “Research on the Fault Feature
Extraction Method of Rotor Systems Based on GAW- PSO,”
Mathematical Problems in Engineering, vol. 2020, Article ID
9296720, 10 pages, 2020.

[41] J. H. Lee, H. J. Kwon, and Y. K. Jin, “Numerically efficient
implementation of JADE ML algorithm,” Journal of Electro-
magnetic Waves and Applications, vol. 22, no. 11-12,
pp. 1693–1704, 2008.

[42] F. Miao, R. Zhao, X. Wang, and L. Jia, “A new fault feature
extraction method for rotating machinery based on multiple
sensors,” Sensors, vol. 20, no. 6, p. 1713, 2020.

[43] S. Grotas, Y. Yakoby, I. Gera, and T. Routtenberg, “Power sys-
tems topology and state estimation by graph blind source sep-
aration,” IEEE Transactions on Signal Processing, vol. 67, no. 8,
pp. 2036–2051, 2019.

[44] M. A. Eitner, J. Sirohi, and C. E. Tinney, “Modal parameter
estimation of a reduced-scale rocket nozzle using blind source
separation,” Measurement Science and Technology, vol. 30,
no. 9, article 095401, 2019.

[45] S. Belaid, J. Hattay, W. Naanaa, and T. Aguili, “A new multi-
scale framework for convolutive blind source separation,” Sig-
nal, Image and Video Processing, vol. 10, no. 7, pp. 1203–1210,
2016.

[46] F. Miao, R. Zhao, and X. Wang, “A new method of denoising
of vibration signal and its application,” Shock and Vibration,
vol. 2020, Article ID 7587840, 8 pages, 2020.

[47] H. Zhao, H. Liu, Y. Jin, X. Dang, and W. Deng, “Feature
extraction for data-driven remaining useful life prediction of
rolling bearings,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1–10, 2021.

[48] M. Lv, C. Zhang, A. Guo, and F. Liu, “A new performance deg-
radation evaluation method integrating PCA, PSR and
KELM,” IEEE Access, vol. 9, pp. 6188–6200, 2021.

[49] X. Cai, H. M. Zhao, S. Shang et al., “An improved quantum-
inspired cooperative co-evolution algorithm with muli-
strategy and its application,” Expert Systems with Applications,
vol. 171, article 114629, 2021.

17International Journal of Rotating Machinery


	Multisource Fault Signal Separation of Rotating Machinery Based on Wavelet Packet and Fast Independent Component Analysis
	1. Introduction
	2. The Basic Theory and Model of Blind Source Separation
	3. The Principle of the Wavelet Packet Denoising Algorithm
	4. The Algorithm of Blind Source Separation
	4.1. Problem Description of Blind Source Separation
	4.2. Algorithm Steps of the Improved WPA-FastICA Method

	5. Simulation
	5.1. Evaluation Index of Separation Performance of the Method
	5.1.1. Correlation Coefficient
	5.1.2. Normalized Mean Square Error (NMSE)
	5.1.3. Number of Iterations

	5.2. Simulation of Mixed Signal Separation under Different Carrier Frequencies and Noises
	5.3. Result Analysis

	6. Applications
	7. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

