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To accurately assess the state of a generator in wind turbines and find abnormalities in time, the method based on improved
random forest (IRF) is proposed. The balancing strategy that is a combination of oversampling technique (SMOTE) and
undersampling is applied for imbalanced data. Bootstrap is applied to resample original data sets of generator side from the
supervisory control and data acquisition (SCADA) system, and decision trees are generated. After the decision trees with
different classification capabilities are weighted, an IRF model is established. The accuracy and performance of the model are
based on 10-fold cross-validation and confusion matrix. The 60 testing sets are assessed, and the accuracy is 95.67%. It is more
than 1.67% higher than traditional classifiers. The probabilities of 60 data sets at each class are calculated, and the
corresponding state class is determined. The results show that the proposed IRF has higher accuracy, and the state can be
assessed effectively. The method has a good application prospect in the state assessment of wind power equipment.

1. Introduction

In recent years, the number of wind turbines is increasing
with the extensive application of wind energy. The generator
is the key component of wind turbines. So, its operation state
has a direct impact on the power generation of wind turbines.
Generally, wind farms are built in complex and harsh places
such as the Gobi. The wind turbine generator has failed
frequently under the influence of extremely harsh working
environment, complex working conditions, and extreme
weather [1, 2]. A major problem is maintenance which is
difficult and expensive. So, it is crucial to assess the operation
state of a wind turbine generator.

There is a growing body of scholars that recognized
the importance of state assessment in the wind turbine
generator. Some methods such as fuzzy comprehensive
evaluation, support vector machine (SVM), and neural
networks (NN) are main methods to assess. At the same
time, the SCADA system has been installed in many wind
farms. It is a powerful way to obtain operating data of
wind turbines. Extensive research has shown that state
parameter data from the SCADA system is critical. It is

related to the operation state of wind turbines, and the
state assessment is realized. Wang et al. established an
evaluative model based on fuzzy mathematics to assess
the design performance of wind turbines comprehensively,
but its operating state was not assessed effectively [3]. Zheng
et al. considered randomness into the fuzzy method. Combi-
nation weight was applied to determine the index weight for
higher accuracy, and the health state was assessed effectively
[4]. An et al. comprehensively considered multisource infor-
mation such as wind speed and rotational speed. The exper-
imental data of different faults was verified based on SVM.
Finally, fault diagnosis of the wind turbine was realized [5].
Liang and Fang considered the coupling relationship among
components of the wind turbine and established a regression
prediction model with SVM [6]. Lin et al. proposed an adap-
tive immune fruit fly optimization algorithm (AIFOA) to
optimize the parameters of SVM. The feature index was
predicted more accurately. And performance assessment
was realized comparing deviation with normal value [7].
With the usage of the traditional SCADA alarm system, the
fault diagnosis was more convenient. Li et al. established a
normal behavior model based on NN to assess the wind
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turbine operation state. The health class was proposed to
measure differences between operating state and normal state
in the paper. Finally, the wind power generation system was
effectively assessed [8]. Wang proposed a two-level NN
recognition method used for fault classification and fault
diagnosis, respectively [9]. Zhao et al. proposed a deep learn-
ing method (DLM) with a deep autoencoder (DAE) network
and established the DAE model. SCADA data was input, and
early warning of fault components was realized [10]. Yang
et al. established an assessment index system for wind
turbines firstly. Quantitative assessment of main components
such as blades and generator bearings in wind turbines was
realized based on SCADA data [11]. Tautz and Watson real-
ized state and fault monitoring of wind turbines based on
SCADA data and five aspects which concluded clustering
methods, normal behavior modeling, damage modeling,
and expert system review estimate [12]. Hu et al. proposed
an evaluation method based on temperature characteristic
parameters and deterioration degree function. The early
deterioration of the wind turbine generator system was
detected successfully [13]. Qian et al. proposed an online
sequential extreme learning machine (OS-ELM) algorithm
for wind turbine condition monitoring. The long-term dete-
rioration characteristics and the short-term faults of the gear-
box were detected efficiently based on SCADA data and the
proposed method [14]. Hsu et al. regarded control charts
based on an exponentially weighted moving average
(EWMA) model as a main assessment method and set upper
and lower limits to monitor state variables. The operation
state of wind turbines could be reacted at all times, but the
data was limited in this process [15].

These research findings provide the theoretical and
experimental foundations for assessment of wind turbines
or their core components. However, some problems exist.
Fuzzy comprehensive assessment is defective in determina-
tion of index weight; it is highly subjective. SVM is suitable
for classification based on the small size of samples, but it is
difficult for the large size of samples. NN is simple to learn
and implement compared with the first two methods, but
results must be obtained accurately based on a large number
of data sets. Importantly, the obtained results are highly
dependent on the parameters, and a lot of work and experi-
ence are required in the process of fine tuning these parame-
ters require [16].

However, ensemble learning is a learning paradigm
where many classifiers are combined to solve a problem.
The generalization ability of a single classifier can be signifi-
cantly improved based on a classifier ensemble. For example,
random forest (RF) is widely applied because of strong clas-
sification ability, strong learning ability, and no requirements
for samples. Importantly, the method is more suitable for
classification or regression problems with less noise. It is
insensitive to the adjustment of parameters. Classification
attributes are not divided too much, and data dimensions
should be under tens of dimensions. Wang et al. proposed a
panoramic crack detection method based on structured RF
to realize condition monitoring and fault diagnosis. Finally,
the surface cracks of a panoramic steel beam were found effi-
ciently [17]. But the same weight is given to decision trees
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with different classification capabilities in the final voting
stage of RF, which weakened classification performance.
Therefore, a state assessment method based on IRF is
proposed in the paper. Undersampling and SMOTE are
introduced for imbalanced data sets. Right weight is intro-
duced to the final voting stage of RF. To improve accuracy,
different weights are set according to the different capabilities
of decision trees. 10-fold cross-validation and improved
assessment criteria based on a confusion matrix are applied
for model assessment. Finally, the method is verified based
on data sets from the SCADA system in wind turbines. The
state of generators is assessed correctly. The efficiency of
the method is verified compared with traditional classifiers.

2. Method: Improved Random Forest

2.1. Processing for Imbalanced Data. Unbalanced data mean
that some categories have a large number of samples and
others have a small number of samples, which forms an
imbalance of each category in the data sets. Generally, a small
number of samples is called a minority. It is easy to be mis-
classified with a small number of categories, and classifica-
tion accuracy is bad because of imbalance. At present, the
imbalance is solved by data processing and algorithms. The
data processing is that increasing minority samples is based
on undersampling or reducing majority of samples based
on oversampling. However, oversampling is a copy of a
minority of samples, which causes overlap and overfitting
of data sets. An undersampling method is to randomly delete
some data to balance samples, which causes some important
sample information lost, and the result is affected. Someone
has studied the combination of two methods, and good
results are obtained, so the method combined between
undersampling and Synthetic Minority Oversampling Tech-
nique (SMOTE) is introduced in the paper [18].

SMOTE is linear interpolation realized between a few
neighboring samples to synthesize new minority samples.
That is, k (usually 5)-nearest neighbor samples are found for
each sample in the minority data sets. According to the sam-
pling magnification N, N same kind of samples are randomly
selected from k-nearest neighbor samples, it is y;, y,, -+, yx-
The linear interpolation is realized between x and y,(1,2,---,
N) of minority samples to synthesize new minority samples
new_data. The formula is expressed as follows:

new_data=x+rand * (y, - x)(i=1,2,---), (1)

where rand is a random number between (0, 1). new_data is
new samples.

2.2. Random Forest

2.2.1. Establishment of RF Model. RF is a classifier integration
algorithm that combines “random subspace method” and
“bootstrap aggregate” to establish decision trees (DT). RF is
established as follows [19].

The bootstrap resampling method is applied to allocate
training set and testing set. The original sample sets are
replaced and randomly sampled N times to form a new
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training set that is the same size as the original sample sets.
According to the distribution of probability, 60+% of samples
are repeatedly collected as the training set. About 36% of
samples not collected are the testing set.

Each generated training set is applied to establish a corre-
sponding decision tree C,,C,, -+, C,. m(m < M) attributes
are extracted from each node of decision trees and as the split
attribute of the current node for classification. During the
growth of an entire forest, m is determined by the Gini index
of each node. The Gini index indicates impurity of each node.
The purity is inversely proportional to the Gini index. The
formula is expressed as follows:

Gini(X)=1- i (P))%, 2)

where P; is probability that the sample X contains the attri-
bute j.

The input testing set is verified by each decision tree, and
results are obtained based on the number of votes. The RF
model is expressed as follows [20]:

H(x)=arg max Zl(hi(x) =Y), (3)

where h;(x) =Y is output by the ith decision tree. Y =1,2,
.-+, ¢ is the corresponding category, i=1,2,---,n, n is the
number of decision trees in the random forest. I(+) is the indi-
cator function. - is classed correctly; its value is 1; otherwise,
itis 0.

The number of decision trees in RF has crucial influences
on generalization ability. The data sets that are not extracted
are set to Q. Q is input to the above RF model; the corre-
sponding classified result is output. The number of incorrect
classification is set to R, so the probability of incorrect classi-
fication about Q is Eyop = R/Q. Finally, the number of deci-
sion trees is determined effectively [21].

2.2.2. Improvement Process of RF. To avoid the effect that tra-
ditional RF makes on assessment accuracy owing to the same
weight for each decision tree. Weight is introduced to the
voting process. Different weights are endowed to different
decision trees, and generalization ability is improved. The
formula of weight is expressed as follows:

correct,i
i 1 ’

i=1,2,3,--,m,

(4)

where X' is the pretested sample (it is part of the training set)
and X' is the number of samples classed correctly.
The improved RF model is expressed as follows:

H(x)=arg myax{il(h,-(x) = Y)w,}. (5)

The assessment process of the wind turbine generator
with IRF is shown in Figure 1. The setting of weight is shown
in Figure 2.

2.3. Online Assessment Strategy. To assess errors caused by
noise, online assessment is introduced. The class of operation
state is set to ¢; data at time ¢ is input to IRF model H(x). The
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voting results Y; of each decision tree are output, so
degree probability of the cth operation state is expressed
as follows:

_ ZnI(YZ = C)wi

Plex) = 22X (Y= C)wi.

(6)

The state degrees of the generator are converted
between adjacent degrees. Finally, the corresponding state
degree of the data x, is expressed as follows:

¢ =arg {Y_r?g?s CP(Cxt)}- (7)

2.4. Assessment of Model Performance

2.4.1. K-Fold Cross-Validation. To assure statistical signifi-
cance in the results, 10-fold cross-validation is applied to ver-
ify the model performance. The samples are randomly divided
into 10 servings to ensure the uniform distribution of the data
sets as much as possible. Nine of them are taken as the training
set, and the remaining 1 is taken as the test set. 10 times are
repeated, and the results are the average of 100 values.

2.4.2. Confusion Matrix. Generally, classification accuracy
(ACC) is used as an assessment standard of the model.
But the model performance is often ignored for the
minority samples from unbalanced data sets. So, a confu-
sion matrix is introduced in the paper [22]. The relation-
ship between the true category of the samples and the
classification result is described by the confusion matrix
to present the assessment standard of model performance.
The confusion matrix is shown in Table 1.

N is the majority class; P is the minority class; TP, TN is
the number of majority classes and minority classes classified
correctly, respectively; and FN,FP is the number of majority
classes and minority classes misclassified.

To assess the classification model more accurately, har-
monic average of minority class accuracy and F — measure,
geometric average correct rate (G- mean), and Matthew
correlation coefficient (MCC) are determined as the assess-

ment standard of the model based on the confusion matrix.
The specific formula is expressed as follows:

TP
recall= ——— |
TP+ FN
oo TN
specificity = 7.
. TP
recision = ——,
P FP+ TP

G — mean = y/recall * specificity,

2 x recall * precision
F — measure =

recall + precision

TP« TN - FN # FP
/(TP + FN)(TP + FP)(TN + FN)(TN + FP)’

MCC

TP+ TN + FN
TP+ FP+ TN+ FN’

ACC = (8)

However, F —measure, G —mean, and MCC are only
applicable for binary problems. A “one vs. one” strategy is
introduced to solve multiclass problems in the paper. That
is, multiclass is paired in pairs; the multiclass problem is con-
verted into binary problems. The average is finally taken as a
result. So, the improved assessment standard is applied in the
paper. The formula is expressed as follows:

YN F— measure,
N

F — measure =

>

N UN
G —mean = H(recalli * specificity,)
i=1

1

©)

— Y¥ N, x MCC,

MCC=2&=*t ~ 1
N

—— YN N, x MCC,

ACC= &=L l
N
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TaBLE 1: Confusion matrix.

Classification value

Real value e N
Positive instances Negative instances

Positive instances True positive (TP) False positive (FN)

Negative instances False positive (FP) True positive (TN)

TABLE 2: Details of original data sets.
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FIGURE 3: Importance of each feature based on Gini index.

3. Simulation Results and Discussion
3.1. Preparation for Simulation

3.1.1. Data Collection. The data sets in the paper come from
the SCADA system of wind turbines in a wind farm. The
SCADA is a distributed control system (DCS) and power
automation monitoring system based on a computer. It
achieves data collection, equipment control, measurement,
and parameter adjustment of core components in wind
turbines such as generators, gearboxes, and blades by moni-
toring and controlling on-site equipment, namely, wind tur-
bines. The purpose is to correctly grasp the state of system
and each component, to make a decision quickly, to help
diagnose the fault state, and so on. The F7 wind turbine failed
in the wind farm at 14:01 on July 1, 2017. The generator data
sets are collected before failure from the SCADA system in
the paper. The data details are shown in Table 2, which
includes the number of samples, features, classes, class distri-
bution, and imbalance rate. The imbalance rate is obtained
by the largest sample and the smallest sample.

3.1.2. The Setting of Assessment Features. According to fea-
tures related to the generator in the SCADA system, nine
feature data sets of generator that have a greater impact
are determined, respectively, A;: front shaft temperature;

5
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0.07 4
0.06 -l
Q
® 0.05
£ 0.04
s3]
0.03
0.02 |
0.01
0 T T T T T
0 50 100 150 200 250 300
Number of trees
FIGURE 4: The fitness of RF.
TaBLE 3: Generator feature data sets from SCADA system.
Features Time
4:30 6:30 8:30 10:30 12:30 14:00
A, 44.0 46.6 50.7 48.7 55.1 58.5
A, 44.4 46.9 49.7 47.8 49.8 52.3
A, 54.2 39.5 44.0 447 45.5 48.2
Ay 78.6 77.8 84.0 81.5 81.6 85.3
A 75.5 75.3 81.0 76.5 78.5 832
Ag 78.1 77.2 82.9 79.0 80.9 85.9
A 77.3 76.7 82.5 78.6 79.1 85.8
Ag 78.6 79.0 84.2 80.2 80.7 87.3
A 77.4 76.3 82.6 78.8 80.3 84.7

A,: rear bearing temperature; A;: cooling water inlet temper-
ature; A,: u, winding temperature; A;: u, winding tempera-
ture; Ag: v,  winding temperature; A, v,winding
temperature; Ag: w, winding temperature; and Ay: w, wind-
ing temperature.

3.1.3. The Setting of State Degree. Generally, it is appropri-
ate to divide state degrees into 3-5. In this paper, the state
degrees of the wind turbine generator are finally deter-
mined as 4, namely, “excellent,” “good,” “attention,” and
“badness.”

3.1.4. The Setting of Optimal Characteristic. The mean
decrease accuracy is calculated based on the Gini index (as
shown in Figure 3). The number of optimal characteristics
is the same as above 70%. Namely, the number of optimal
characteristics is set to 4 in the paper, and decision trees are
branched.

As shown in Figure 4, the out-of-band (OOB) error
rate decreases as the number of decision trees increases.
After n>150, the OOB error rate remains stable and
below 4%. To assess more accurately, it is set to #n = 200.
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TaBLE 4: The assessment results of IRF based on different sizes of data sets.

Assessment standard

The size of data sets Classes Size Average number of corrected assessment ACC F—measure G mean

Excellence 35 32
Good 35 31

1400 . 0.9529 0.9536 0.9546
Attention 35 35
Badness 35 35
Excellence 25 23
Good 25 23

1000 . 0.9560 0.9548 0.9615
Attention 25 25
Badness 25 24
Excellence 15 13
Good 15 14

600 . 0.9567 0.9545 0.9600
Attention 15 15
Badness 15 15

TaBLE 5: Comparison of different classifier results.

1.0
Classifiers Assessment standard
0.8 ACC F — measure G — mean MCC
E‘ IRF 0.9567 0.9545 0.9600 0.9159
ig 06 RF 0.9400 0.9379 0.9428 0.8824
E 0.4 LvVQ 0.9400 0.9386 0.9502 0.8926
SVM 0.9067 0.9046 0.9188 0.8282
0.2 DT 0.9083 0.9013 0.9283 0.8380
PNN 0.9083 0.9045 0.9245 0.8358
o 1 2 3 4 5 6 7 8 9 10
Number of cross validation
B ACC The feature distribution is shown in Figure 5 after unbal-
[ F-measure anced data set processing based on a combination of under-
[ G-mean sampling and SMOTE.
In the paper, a simulation testing is completed on
F1GURE 6: The result based on 10-fold cross-validation. MATLAB R2016a. Firstly, the impact of the sample size is

analyzed on the accuracy of the model. The total number of
3.2. State Assessment and Analysis of Simulation Results. The ~ samples is determined as 1400, 1000, and 600. The accuracy
proposed model in the paper is verified based on the data sets ~ of the improved random forest model is verified by 10-fold
in Table 2. The data sets are imbalanced for the classification ~ cross-validation and improved assessment criteria. The
problem. Part of data sets is shown in Table 3. results are shown in Table 4.
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TaBLE 6: Definition of all the symbols used in the paper.

A,: front bearing temperature

A,: rear bearing temperature

Aj: cooling water inlet temperature
A, u; winding temperature

As: u, winding temperature

Ag: vy winding temperature

A,: v, winding temperature

Ag: w; winding temperature

Ay: w, winding temperature

ACC: classification accuracy

ACC: average of ACC

C,: the nth decision tree

c: state degree

c,”: state degree at time ¢

Eqop: error rate of classification

FN: false positive

FP: false positive

F — measure: harmonic average of minority class accuracy and
recall

F — measure: average of F — measure
Gini(X): Gini index

G — mean: geometric average correct rate
G — mean: average of G — mean

H(x): comprehensive assessment result

h;(x): i = 1-n, assessment result of ith decision tree

I(+): indicator function
k: 5 number of nearest neighbor samples
M: the number of attributes
m: the number of optimal attributes
MCC: Matthew correlation coefficient

MCC: average of MCC

N: the number of data sets

n: the number of decision trees

new_data: new samples

Pj: j=1-m, probability that the sample X contains the attribute j
P(c|x,): probability of x, being in ¢ degree

Q: the number of data sets not extracted

R: the number of incorrect classification from data sets not extracted

t: time
w;: i = 1-n, weight for the ith decision tree
x,: data value of generator at time ¢

i=1-n, the number of samples classified correctly for the ith
tree

correct,i*

X': the number of pretested sample

x: some sample
y;: samples are randomly selected from nearest neighbor samples
rand: random number between (0,1)
TP: true positive
TN: true positive
Y: the corresponding category

According to the assessment results in Table 4, it is not
significant for the number of the training set to affect accu-
racy of the assessment model, and final assessment accuracy
will fluctuate around 95%-96%. Meantime, the assessment
results for 10-fold cross-validation based on 600 data sets
are shown in Figure 6.

To further verify that IRF has higher generalization abil-
ity and classification ability on state assessment of a genera-
tor, in the same condition, DT, RF, Probabilistic Neural
Network (PNN), Learning Vector Quantization (LVQ), and
SVM are adopted separately for training and testing. The
data set size of 600 is taken as an example, and comparison
of the assessment accuracy of different classifiers based on
10-fold cross-validation and confusion matrix is shown in
Table 5.

As you can see from Table 5, IRF is significantly
improved based on the RF. The assessment standard is sorted
by model as ACC: IRF>RF=LVQ >DT=PNN>SVM,
F —measure: IRF>LVQ>RF>SVM>PNN>DT, G-
mean: IRF > LVQ > RF > DT > PNN > SVM, and MCC: IRF
>LVQ>RF>DT >PNN > SVM. The results are analyzed
comprehensively. Average accuracy is higher by 1.67% than
RF. The IRF model has the best performance, which reflects
that it has good prediction accuracy, extrapolation ability,

and robust performance. Definition of all the symbols used
in the paper is shown in Table 6.

Meanwhile, 60 testing sets are used to calculate the prob-
ability of state classes. The results of probability are shown in
Figure 7.

In Figure 7, the probability of “excellent” is the largest
for the first 13 samples. From the 14th sample, the proba-
bility of “good” gradually increases. From the 14th sample
to the 23rd sample, the probability of “good” is the largest.
From the 24th sample, the probability of “good” gradually
decreases, and the probability of “attention” gradually
increases. From the 31th sample to the 37th sample, the
probability of “attention” is the largest. From the 38th sam-
ple, the probability of “attention” gradually decreases, and
the probability of “badness” gradually increases. From the
46th sample to the 60th sample, the probability of “bad-
ness” is the largest.

The state assessment class and original class are shown in
Figure 8. The assessment results of 60 data sets are deter-
mined: 1st-13th: excellent; 14th-30th: good; 31st-45th: atten-
tion; 46th-60th: badness. That is, the original testing set at
“excellent” class is mistakenly classified as good twice, and
original testing set at “good” class is mistakenly classified as
“excellent” class once. The accuracy of results reaches
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Oversampling Technique (SMOTE) is introduced to solve
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the imbalanced data problems in the paper. Bootstrap is
applied to resample original data sets, and then, decision
Attention P trees are generated. The weight is determined according to
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1 . and confusion matrix. The state of wind turbine generator
Excellent - S8 is assessed correctly, and then, the same data sets are applied
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FIGURE 8: Assessment degree of operating state.

95.67% compared with the state degree of real operation. So,
the effectiveness of the proposed method is verified.

4. Conclusion

The state assessment method for a wind turbine generator
based on improved random forest (IRF) is proposed. Firstly,
data sets containing nine features of generator are deter-
mined from the supervisory control and data acquisition
(SCADA) system. Undersampling and Synthetic Minority

to realize online assessment. The accuracy reaches 95.67%.
The proposed method can not only ensure accuracy and
effectiveness of assessment but also improve efficiency. The
accuracy of the proposed method is better than traditional
classifiers. It provides a certain reference for state assessment
of wind power equipment.
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