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The shape characteristic of the axis orbit plays an important role in the fault diagnosis of rotating machinery. However, the original
signal is typically messy, and this affects the identification accuracy and identification speed. In order to improve the identification
effect, an effective fault identification method for a rotor system based on the axis orbit is proposed. The method is a combination of
ensemble empirical mode decomposition (EEMD), morphological image processing, Hu invariant moment feature vector, and
back propagation (BP) neural network. Experiments of four fault forms are performed in single-span rotor and double-span
rotor test rigs. Vibration displacement signals in the X and Y directions of the rotor are processed via EEMD filtering to
eliminate the high-frequency noise. The mathematical morphology is used to optimize the axis orbit including the dilation and
skeleton operation. After image processing, Hu invariant moments of the skeleton axis orbits are calculated as the feature vector.
Finally, the BP neural network is trained to identify the faults of the rotor system. The experimental results indicate that the
time of identification of the tested axis orbits via morphological processing corresponds to 13.05 s, and the identification
accuracy rate ranges to 95%. Both exceed that without mathematical morphology. The proposed method is reliable and effective
for the identification of the axis orbit and aids in online monitoring and automatic identification of rotor system faults.

1. Introduction

A rotor system is a core component of rotating machinery,
and the rotor system plays a key role in the stable operation
of rotating machinery. Once the rotor system fails, it may
cause catastrophic accidents of the whole equipment [1].
Generally, common faults of the rotor system include unbal-
ance, shaft cracks, coupling misalignment, oil whirl, oil whip,
rotor-stator rub, rotation stall, and surge. Fault diagnosis by
the vibration signal of mechanical equipment is a common
and effective method, but vibration signals typically contain
a considerable amount of fault information in conjunction
with environmental noise. Hence, it is difficult to identify
faults by only using vibration signals. Identifying the axis
orbit is one of the important methods for fault diagnosis of
the rotor system. The axis orbit diagram is composed of
two sets of vibration displacement signals, which are perpen-
dicular to each other on the same cross-section. The axis

orbit contains a lot of significant information, and the run-
ning state of the equipment can be visually and intuitively
reflected by the axis orbit diagram. To a certain extent, the
intelligent level of fault diagnosis for the rotor system is
determined by the automatic identification accuracy of the
axis orbit. Therefore, it is of great significance to study the
automatic identification of the axis orbit.

In the field of rotating machinery, its fault identification
is usually divided into four steps: signal purification, image
processing, feature extraction, and automatic identification.
There are several methods for signal purification, among
which the more common and representative methods
include wavelet transform/wavelet packet transform [2–4],
harmonic wavelet decomposition, empirical mode decompo-
sition (EMD) [5], and ensemble empirical mode decomposi-
tion (EEMD) [6, 7]. Wavelet transform will inevitably cause
loss of details when processing signals, and it will also cause
problems such as frequency aliasing and threshold selection.

Hindawi
International Journal of Rotating Machinery
Volume 2020, Article ID 9540791, 13 pages
https://doi.org/10.1155/2020/9540791

https://orcid.org/0000-0001-7302-2479
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9540791


Harmonic wavelet decomposition [8] analyzes arbitrary
details in different frequency bands and different decomposi-
tion layers and overcomes the problem of loss of details in
wavelet decomposition. EMD has good phase retention,
but due to the calculation method of EMD decomposition,
there are unavoidable problems such as mode aliasing and
endpoint effects. Therefore, EEMD has been proposed. This
method can well suppress the mode aliasing during the
EMD decomposition process. Therefore, EEMD is used in
signal purification.

Morphological processing is a method of digital image
processing, based on set theory as a mathematical foun-
dation. The basic operations of mathematical morphology
include expansion, erosion, opening, and closing. Based on
these basic operations, the morphology and structure of dig-
ital images can be processed. It has obvious advantages in the
invariance and standardization of image translation, rota-
tion, and scaling [9]. The application of the method in image
processing of the axis orbit is mainly image purification and
data reduction. Compared with traditional signal processing
methods, it does not need to know the frequency distribution
of noise and required signals in advance and prior knowledge
of rotor faults, so it is fast, simple, and efficient.

At present, the commonly used methods of feature extrac-
tion include Fourier-Mellin descriptor, geometric parameter
methods, and some moment feature extraction methods.
The Fourier-Mellin descriptor is a method to describe a
closed curve, which is complex and inefficient, and it is only
suitable for a single closed curve [10–12]. The geometric
parameter method pays attention to the characteristics of
the axis orbit graph itself and describes different axis orbit
shapes by feature quantization [13]. However, the accuracy
of extracting the shape parameters of this method is not high,
and when the graph is interfered by large nonlinear noise or
the fault features are not obvious, its recognition accuracy
will be greatly affected. Moments are operators that describe
image features, and they have important applications in the
fields of pattern recognition and image analysis. So far, the
common moment descriptors can be divided into the follow-
ing types: geometric moments, orthogonal moments, com-
plex moments, and rotation moments. Among them, the
geometric moment was proposed for the earliest time and
has a simple form, and its research is the most adequate.
The geometric moment is also the called geometric invariant
moment because of its invariant features such as rotation,
translation, and scaling. Because the Hu invariant moment
has a certain description ability for simple image, compared
with other operators, it is extremely simple and generally
only needs a number to express, so this paper uses the Hu
invariant moment as the method of image feature extraction.

With the rapid development of computer technology,
intelligent fault diagnosis technology is gradually applied.
At present, the widely used methods in the field of rotor
system axis orbit feature recognition are the artificial neu-
ral network (ANN), support vector machine (SVM), fuzzy
clustering, and gray correlation analysis [14–16]. Based on
probabilistic neural network (PNN), [17] proposed a feature
fusion model and applied it to the automatic identification of
the axis orbit of a turbo generator and high-speed centrifugal

compressor set. To directly classify the continuous wavelet
transform scalogram (CWTS), [18] proposed a novel diagno-
sis method by using a convolutional neural network (CNN).
The BP neural network has the ability of arbitrary com-
plex pattern classification and excellent multidimensional
function mapping, has a simple structure, and is of great sig-
nificance for solving nonlinear complex problems. It has
become one of the most widely used neural network models
in the world [19]. The fuzzy clustering method is used to
cluster and identify the axis orbit of multiple faults in a
hydropower station [20], and the gray correlation analysis
method is used to automatically identify the axis orbit of
water turbine generator units [21]. Some researchers have
applied SVM to the fault diagnosis of nuclear power plants,
centrifugal pumps, and flow control valves and other equip-
ment [22–24]. The feature extraction and automatic iden-
tification of the axis orbit often use invariance pattern
identification of its two-dimensional graphics, extract invari-
ance features, and automatically perform identification. Li
et al. used the Canny operator and Hu invariant moments
to identify the axis orbit in the image discipline and applied
artificial fish streamline redundant data and PNN for fault
classification [25]. Based on the two-dimensional statistical
invariant moments and the Fourier descriptor theory, [26]
proposed a technique for extracting the shape characteristics
of the axis orbit based on D-S evidence theory information
fusion. Zolfaghari et al. used Fourier transform and multi-
layer perceptron neural network to monitor and classify the
broken rotor bar fault [27]. In this paper, a combination of
the Hu invariant moment and BP neural network is used to
extract and automatically identify the fault signals of the
rotor system axis orbit.

Although traditional fault recognition methods can per-
form filtering, feature extraction, and automatic recognition
on fault signals, they do not incorporate mathematical mor-
phology into them, and they have problems of low recogni-
tion speed and efficiency. In order to improve this problem,
this paper uses mathematical morphology as the image pro-
cessing method; combines it with EEMD, Hu invariant
moment, and BP neural network to process the axis orbit of
the rotor system; uses the single-span and double-span rotor
test bench to verify the method, which is aimed at improving
the speed and efficiency of fault identification in the field of
rotating machinery; and provides new research directions
and data support for rotor fault diagnosis research.

2. Proposed Method

In the rotor system, the vibration displacement signals of the
shafting in two directions are measured, i.e., horizontal direc-
tion (X) and vertical direction (Y). The high-frequency noise
of the vibration signal is filtered via EEMD. Mathematical
morphology is used to optimize the image, and the pure axis
orbit is obtained. The Hu invariant moment was calculated
and considered as the feature vector. Finally, automatic iden-
tification of the axis orbit is realized by the BP neural net-
work. The process of optimization and identification of the
axis orbit is shown in Figure 1.
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Figure 1: Image optimization and automatic identification process
of the axis orbit.

EEMD filtering and image processing make the edge of
the axis orbit image smoother and the image structure more
concise. This reduces the effort involved in the computation
of the image feature vector and improves the calculation
efficiency.

2.1. EEMD Filtering. The EEMD exhibits good antimixing
filtering properties. White noise is added to the decomposed
signal, the mixed signal is evenly distributed in the complete
time-frequency space. In the calculation process, a series of
Intrinsic Mode Function (IMF) components are obtained
by EMD decomposition of signals with the addition of white
noise several times. The zero-mean characteristic of white
noise is used, and the influence of noise in IMF components
is eliminated on average several times, and thus, the effect of
suppressing model aliasing is achieved. The EEMD decom-
position steps are as follows:

(1) Gaussian white noise niðtÞ with N times mean 0, and
an amplitude standard deviation constant is added to
the original signal xðtÞ, and this is expressed as

xi tð Þ = x tð Þ + ni tð Þ, i = 1, 2,⋯,N ð1Þ

(2) xiðtÞ is decomposed by EMD, and K IMF compo-
nents and a residual term riðtÞ are obtained:

xi tð Þ = 〠
K

j=1
cij tð Þ + ri tð Þ: ð2Þ

In (2), cijðtÞ denotes the jth IMF component after
adding Gaussian white noise for the ith time.

(3) Based on the principle that the statistical average
value of uncorrelated random sequences is 0, the
IMF corresponding to the above steps is conducted
in the overall average operation to eliminate the
influence of multiple addition of Gaussian white
noise on the IMF components. Finally, the IMF com-
ponents and residual term rðtÞ after EEMD decom-
position are obtained:

cj tð Þ =
1
N
〠
N

i=1
cij tð Þ, ð3Þ

r tð Þ = 1
N
〠
N

i=1
ri tð Þ: ð4Þ

In (3), cjðtÞ denotes the jth IMF component after the
EEMD decomposition of the original signal.

(4) Finally, K IMF components and a residual term are
obtained:

x tð Þ = 〠
K

j=1
cj tð Þ + r tð Þ: ð5Þ

The corresponding low-pass, high-pass, and band-pass
filter expressions are obtained through (5). The low-pass fil-
ter is expressed as

xlp tð Þ = 〠
K

j=m
cj tð Þ + r tð Þ, 1 <m < K: ð6Þ

The high-pass filter is expressed as

xhp tð Þ = 〠
n

j=1
cj tð Þ, 1 < n < K: ð7Þ

The band-pass filter is expressed as

xbp tð Þ = 〠
m

j=n
cj tð Þ, 1 < n <m < K: ð8Þ

Simultaneously, the corresponding IMF components are
intentionally selected for reconstructing the signal to achieve
the filtering effect.

2.2. Mathematical Morphology. The method based on math-
ematical morphology uses an operator developed by set the-
ory to analyze and process the image [28]. The morphology
involves the shape of the image, and this is considered as a
set of points. The mathematical morphology defines two
basic transformations, namely, image erosion and dilation.
The morphological operator is a local transformation that
changes the pixel value by defining hit or miss transforms.

3International Journal of Rotating Machinery



Among them, the pixel value of the image is considered as
a set.

In the hit and miss transform, the target of set X is
detected by the structural elements of set B, and the process-
ing results for different structural elements on set X are dif-
ferent. The hit or miss transform is defined as follows:

X ⊗ B = x ∣ B1
x ⊂ X ∩ B2

x ⊂ XC� �
: ð9Þ

The simplest form of morphological operators is that any
one of B1 or B2 is empty. When B1 is empty, Equation (9) is
defined as erosion, and Equation (9) corresponds to dilation
when B2 is empty. That is, the processing of image erosion:

X ⊖ B = x ∣ B1
x ⊂ XC� �

: ð10Þ

The processing of image dilation is as follows:

X ⊕ B = x ∣ B2
x ⊂ XC� �

: ð11Þ

The erosion corresponds to a shrinking transformation,
and this reduces the gray level of the image. It does not signif-
icantly affect the image area with slow changes in the gray
level, and it significantly affects the image edge region with
evident changes in the gray level. The dilation is an expansion
transformation, and this improves the gray level of the image,
and it is also sensitive to the image edge region with the evi-
dent change of the gray level. The erosion is typically used to
filter the interior of the image, and the dilation is generally
used to filter the exterior of the image [9, 29].

The image skeletonization is a processing method of
image thinning, and this transforms the original image into
the image of a few lines (the ideal image is composed of single
pixel width lines). The skeleton makes the image more com-
pact. Simultaneously, given the reduction in the effective
data, the effort in calculating the image feature vector is
reduced, and the computational efficiency improves.

In the study, morphological processing with dilating and
skeletonizing is used to deal with the axis orbit as shown in
Figure 2. Specifically, Figure 2(a) corresponds to the original
image of the axis orbit, and the size is 512 × 512. The dilated

image by using the 6 × 6 disk structure element is shown in
Figure 2(b). The skeleton image is shown in Figure 2(c).

As shown in the results, the original image changes into a
clean and clear axis orbit, and the amount of data reduces.
This aids in calculating the feature vectors of the axis orbit.

2.3. Hu Invariant Moment for the Image. The moment feature
mainly represents the geometric feature of the image, so it is
also called the geometric moment. Given its invariant proper-
ties of rotating, translating, and scaling, it is also known as the
invariant moment. Due to the invariant property of the target
moment, the Hu invariant moment theory for image recogni-
tion has been proved to have many advantages in feature
extraction, and the method is widely used [30, 31].

The invariant moment is similar to the moment of force.
It considers the pixel points in the region as a particle and the
pixel value as the force arm. The moments are calculated to
show the shape characteristics of the region. With respect
to a digital image with a size of M ×N , its p + q order
moments are as follows:

Mpq = 〠
M

i=1
〠
N

j=1
ip jq f i, jð Þ, p, q = 0, 1, 2,⋯: ð12Þ

In (12), f ði, jÞ is used as the quality of a pixel, and Mpq

corresponds to the moment of the image under different p
or q. The corresponding (p + q) order central moments are
as follows:

mpq = 〠
M

i=1
〠
N

j=1
i −�i
� �p j −�j

� �q f i, jð Þ: ð13Þ

In (13), ð�i,�jÞ denote the central coordinates of the graph,
and ð�i,�jÞ are calculated as follows:

�i,�j
� �

= M10
M00

, M01
M00

� �
: ð14Þ

In order to ensure that the image exhibits invariance
of rotation, translation, and scaling, the zero-order central
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Figure 2: Morphological processing of the axis orbit.

4 International Journal of Rotating Machinery



moment is used to normalize the center moment of other
orders, and the following normalized central moment is
obtained:

μpq =
mpq

mγ
00
, ð15Þ

where γ = ððp + qÞ/2Þ + 1, p + q = 2, 3,⋯.
Using the second and third order normalized central

moments, the seven invariant moments are expressed in μpq
with translation, scaling, and rotation invariance:

φ1 = μ20 + μ02, ð16Þ

φ2 = μ20 − μ02ð Þ2 + 4μ211, ð17Þ
φ3 = μ30 − 3μ12ð Þ2 + 3μ21 − 3μ03ð Þ2, ð18Þ
φ4 = μ30 + μ02ð Þ2 + μ21 + μ03ð Þ2, ð19Þ
φ5 = μ30 − 3μ12ð Þ μ30 + μ12ð Þ

� μ30 + μ12ð Þ2 − 3 μ21 + μ03ð Þ2� 	

+ 3μ21 − 3μ03ð Þ μ21 + μ03ð Þ
� 3 μ30 + μ12ð Þ2 − μ21 + μ03ð Þ2� 	

,

ð20Þ

φ6 = μ20 − μ02ð Þ μ30 + μ12ð Þ2 − μ21 + μ03ð Þ2� 	

+ 4μ11 μ30 + μ12ð Þ μ21 + μ03ð Þ,
ð21Þ

φ7 = 3μ21 − μ03ð Þ μ30 + μ12ð Þ
� μ30 + μ12ð Þ2 − 3 μ21 + μ03ð Þ2� 	

− μ30 − 3μ12ð Þ μ21 + μ03ð Þ
� 3 μ30 + μ12ð Þ2 − μ21 + μ03ð Þ2� 	

:

ð22Þ

Among the seven moments of the above equations, the
low order moments mainly describe the general features of

the image, and the higher order moments mainly describe
the detailed features of the image [32]. The invariant moment
and the combined moments exhibit a few characteristics that
describe the features of the image and are applied in the field
of fingerprint identification, scene matching, and chromo-
some analysis. The Hu invariant moment was used as the fea-
ture vector of the axis orbit in this study, and the BP neural
network was trained to realize automatic identification by
using Hu invariant moments.

2.4. BP Neural Network. The essence of automatic identifica-
tion of the axis orbit corresponds to the pattern identification
of axis orbit images. A neural network is an artificial intelli-
gence technology that establishes a reasoning classification
system that simulates the structure of the brain neural net-
work via computers. In the multilayer network structure of
a neural network, information is distributed in the weight
coefficient of the connection, and this exhibits high fault tol-
erance and robustness. In the study, the BP neural network
used is a multilayer feed-forward neural network. Given that
the Levenberg-Marquardt (LM) algorithm exhibits faster
convergence speed and higher computing efficiency, the axis
orbit identification of the neural network is based on the LM
algorithm. Following the determination of the structure of
the neural network, the design of the BP network is per-
formed and includes the number of layers, number of neu-
rons, activation functions, initial value, and learning rate of
the network. The structure of the BP neural network is shown
in Figure 3.

2.4.1. Network Layer. In the study, the one-seven-order Hu
moments of the axis orbit are considered as the input to
the neural network, and the output is considered as four fail-
ure modes (i.e., imbalance, misalignment, oil whirl, and oil
whip). The model of the neural network corresponds to a
forward feedback type. The structure of the network

.

.
.

Input layer Hidden layer Output layer

Forward propagation

Expectation
Error feedback
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Imbalanced

Misalignment

Oil whirl

Oil whip

One-order moment (φ1)
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�ree-order moment (φ3)
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Figure 3: BP neural network topology diagram.
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contains three layers as follows: input layer, output layer,
and hidden layer.

2.4.2. Hidden Layer Node Number. The number of hidden
layer nodes should be determined based on the application
scenario and precision of the neural network. Under the pre-
mise of achieving the requirement of error, a reduction in the
number of hidden layer is considered as an improvement.

Based on (23) and the experimental data of the axis orbit,
the hidden layer finally contains six nodes as follows:

n = ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni + no

p + a, ð23Þ

where n denotes the number of hidden layer nodes, ni denotes
the number of input nodes, no denotes the number of output
nodes, and a denotes the constant between 1 and 10.

2.4.3. Selection of Initial Weight and Learning Rate. The
choice of initial weight significantly affects the training time
and determination of convergence. A random number
between the initial weight (-1,1) is selected to ensure that
the output of each neuron after the initial weighted value is
close to zero and that the weight of each neuron is regulated
within the maximum range of the sigmoid function.

The learning rate determines the training error and train-
ing speed of the neural network. The selection range of the
learning rate is between 0.01 and 0.8, and the appropriate
learning rate is selected based on the complexity of the iden-
tified object.

3. Experiment

3.1. Test Rig. In the study, the rotor system is examined, and
experimental data for a single-span rotor and a double-span
rotor test rig are collected to verify the applicability and reli-

ability of the identification method in different rotor systems.
In identification experiments, training samples are derived
from the single-span rotor test rig, and test objects are
obtained from the double-span rotor test rig.

The experimental rig corresponds to INV1612 series
multifunctional flexible rotor experimental equipment, and
this was manufactured by the China Orient Institute of Noise
and Vibration. The single-span rotor test rig is shown in
Figure 4(a), and its first critical speed is 3120 r/min; the
double-span rotor test rig is shown in Figure 4(b), and its first
critical speed is 3810 r/min. The horizontal and vertical eddy
current sensors are installed near the disk of the rotor test rig.
The X direction denotes the horizontal direction, and the Y
direction denotes the vertical direction.

The way of setting the misalignment fault is to add a gas-
ket under the bearing pedestal, and the thickness of the gas-
ket is 0.5mm. Taking the single-span rotor test rig as an
example, the misalignment is realized by introducing the off-
set between the motor and the shaft through the coupling.
Specifically, the bearing pedestal close to the motor is raised
by 0.5mm, and the measuring point is near the disc, as
shown in Figure 4(a). In order to be consistent with the

MotorSha�
Displacement

sensor (X)Bearing Rotor disc 
Displacement

sensor (Y) Speed sensor 

(a)

Bearing Rotor disc 
Displacement 

sensor (Y)
Displacement 

sensor (X) Sha� ΙSha� ΙІ MotorSpeed sensor Coupling 

(b)

Figure 4: Test rig of rotor system.

Table 1: Speed range of each fault.

Fault types Speed range (r/min)

Single-span rotor test bench

Unbalance 2716-2861

Misalignment 1774-2828

Oil whirl 5917-6231

Oil whip 7050-7623

Double-span rotor test bench

Unbalance 2511-5530

Misalignment 1550-1786

Oil whirl 7575-8010

Oil whip 8174-8287
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single-span measurement point signal, the bearing pedestal
in front of the measurement point is also raised 0.5mm on
the double-span rotor to achieve the misalignment. The
way to set the unbalance fault is to add a screw in the hole
on the disc, and the mass of the screw is 0.5 g.

The speeds corresponding to these four faults (unbalance,
misalignment, oil whirl, and oil whip) are shown in Table 1.
Because the fault type of the rotor system at low speed is
mainly unbalanced and misaligned fault, while the fault of
oil whirl and oil whip at high speed is more obvious, the
speed corresponding to the imbalance and misaligned fault
in this paper is mainly below the first critical speed, while
the speed corresponding to oil whirl and oil whip is mainly
near the twice critical speed. When collecting sample data

on a single-span rotor test rig, the collection time of each
fault is 10 s, and the sampling frequency is 4096Hz, and then,
10 sets of data are randomly arbitrarily intercepted, each set
of data contains 512 data points, and the corresponding time
is 0.125 s. Based on this, 10 axis orbits under the fault were
drawn. In the same way, the test data on the double-span
rotor test bench is composed of arbitrarily intercepting 5 sets
of data during the collection time of each fault.

As can be seen from Table 1, the speed corresponding to
each fault is a range, not a specific value. This is set because
the fault image with obvious characteristics can be selected
from it, which is convenient for training the model. Com-
pared with determining the speed value, the model has stron-
ger adaptability. In addition, the speed ranges corresponding

Single-
span
rotor

Double-
span
rotor

Training 
samples

Test 
objects

EEMD filtering

Composite axis orbit image

Vibration 
displacement signal

Morphological processing

Hu invariant moment 
feature extraction

BP neural network training

Identify fault type

Hu invariant moment 
feature extraction

BP neural network training

Identify fault type

Comparison and analysis

Figure 5: Experimental procedure.
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to the same fault types on single-span and double-span rotor
test benches are also different. This is to improve the general-
ization ability of the model, that is, to train the model in one
speed range and then apply the model to fault diagnosis in
different speed ranges.

3.2. Experimental Plan. In order to reflect the role of mathe-
matical morphology in the pattern identification of the axis
orbit, the identification results of the axis orbit with and with-
out morphological processing were compared. The detailed
experimental procedure is shown in Figure 5.
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Figure 7: Axis orbit.
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Figure 8: Axis orbit after EEMD processing.
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4. Results and Analysis

4.1. EEMD Filtering Result. The vibration displacement sig-
nals in X and Y directions of the rotating shaft in the rotor
test rig are shown in Figure 6. Figure 7 corresponds to the
axis orbit of the rotor. It is observed that the original signal
contains high-frequency vibration noise. The original signal
of the axis locus is normalized and filtered via EEMD. The
IMF signal component of the noise is removed, and the other
IMF signal components are reconstructed. The axis orbit after
purification is shown in Figure 8. As shown in Figure 8, the
axis orbit image after EEMD filtering is smoother.

4.2. Morphological Processing of the Axis Orbit Image. The
vibration displacement signals under four types of faults are
collected from a single-span flexible rotor rig. After EEMD
filtering and morphological processing, 40 axis orbits are
obtained as shown in Figure 9. Among them, the numbers
1-10 represent the imbalanced fault, 11-20 represent the mis-
alignment fault, 21-30 represent the oil whirl fault, and 31-40
represent the oil whip fault.

The 20 axis orbits generated by the double-span flexible
rotor rig are used as test objects as shown in Figure 10.
Among them, the numbers 1-5 correspond to the imbalanced
fault, 6-10 correspond to the misalignment fault, 11-15 corre-

spond to the oil whirl fault, and 16-20 correspond to the oil
whip fault.

4.3. Feature Extraction Based on HU Invariant Moments.
The Hu invariant moments are calculated based on the
image features. The procedure is based on (12), (13), (14),
(15), (16), (17), (18), (19), (20), (21), and (22). The Hu
invariant moments of the samples are shown in Table 2.
The Hu invariant moments of the tested axis orbits are
shown in Table 3.

4.4. Parameter Settings of the BP Neural Network. After
image processing, the features of the axis orbit are classified
by the standard BP neural network. In order to realize the
automatic identification of the axis orbit, a BP neural net-
work is established based on the experimental data. The
input layer has 7 nodes (Hu invariant moments). The num-
ber of hidden layer nodes is 6. The output layer node corre-
sponds to 4. The output coding of the neural network is
shown in Table 4. The transfer functions of hidden layer neu-
rons and output layer neurons are tansig and purelim. The
training function and the actual output function of the test
sample are trainlm and sim. The learning rate, maximum
epoch, and error goal are set to 0.1, 1000, and 0.001, respec-
tively. Hu invariant moments of samples in Table 2 are used
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Figure 9: Samples of axis orbits.
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Figure 10: Tested axis orbits.
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as feature vectors to train the network. The data in Table 3 is
used to test the BP neural network.

4.5. Analysis and Comparison of Identified Results. The neu-
ral network output result of the tested axis orbits is obtained
via morphological processing and without processing. The
output coding of the BP neural network is compared with

the output result after rounding, and the fault type of the
rotor system is identified.

The comparison of the tested axis orbits by morphologi-
cal processing and without processing is shown in Table 5.
The training and identifying time of the BP neural network
of tested axis orbits by morphological processing is 13.054 s,
and this is less than the time in the without processing condi-
tion. The identification accuracy rate is 95%, and this exceeds
that in the without processing condition.

Table 2: Hu invariant moments of the samples.

Number
Hu invariant moments

φ1 φ2 φ3 φ4 φ5 φ6 φ7
1 1.251 1.829 0.505 -0.897 -1.892 -0.039 -1.056

2 1.337 0.350 1.843 1.907 4.131 1.980 2.453

3 1.165 1.601 2.265 1.231 2.717 1.984 2.130

4 1.169 1.512 2.270 1.741 3.685 2.348 3.204

5 1.286 1.725 0.197 -2.428 -2.294 -1.570 -2.563

6 1.336 1.955 0.271 2.209 3.415 3.185 3.712

7 1.153 1.392 0.802 0.360 1.400 0.745 1.195

8 1.286 0.632 1.139 1.110 1.972 1.365 2.020

9 1.155 1.336 2.286 1.284 3.602 1.951 3.148

10 1.198 1.089 1.100 -0.906 0.026 -0.539 -0.516

11 0.926 1.398 2.440 1.962 4.058 2.500 4.011

12 1.063 1.945 2.734 2.321 4.854 3.007 4.035

13 1.019 1.962 -0.029 -1.255 -1.608 -0.275 -2.479

14 0.917 1.619 1.687 0.987 2.051 -0.439 2.264

15 1.056 2.019 0.721 1.268 2.432 2.271 0.518

16 1.056 1.916 0.814 -0.052 -0.030 0.358 0.149

17 1.063 1.976 0.878 0.444 0.875 1.366 1.051

18 1.035 1.896 0.339 0.511 0.351 1.426 0.935

19 1.042 2.001 0.230 -0.687 -1.848 -0.023 -2.816

20 1.014 1.971 -0.033 -1.111 -1.541 -0.128 -2.323

21 0.706 0.733 -0.253 -0.654 -3.639 -0.537 -1.265

22 0.697 0.369 0.653 -0.193 0.084 -0.736 -0.278

23 0.839 0.966 0.559 -0.246 0.494 -1.322 0.542

24 0.929 1.019 1.334 0.156 0.999 0.125 0.527

25 0.978 1.215 1.684 1.424 3.030 1.770 1.586

26 1.000 0.899 0.942 1.079 2.413 1.523 1.700

27 1.087 1.256 1.173 1.656 3.068 2.184 1.849

28 1.148 0.987 0.594 1.466 1.508 1.706 2.784

29 0.925 0.877 1.368 -0.194 1.012 0.220 0.820

30 1.077 1.365 1.177 1.512 2.962 1.937 2.803

31 0.499 0.405 0.059 0.192 0.317 0.394 -2.003

32 0.507 0.428 -1.133 -1.823 -3.375 -2.117 -4.265

33 0.609 -0.363 -0.529 0.388 0.615 -0.163 0.592

34 0.526 -0.474 -0.801 -0.876 -1.409 -3.416 -1.847

35 0.560 -2.462 -0.511 0.302 0.252 -0.929 0.570

36 0.557 -1.243 -1.058 -1.063 -1.820 -1.686 -1.718

37 0.539 0.372 -0.797 0.041 -0.239 -0.225 0.058

38 0.431 -1.194 -1.643 -2.238 -4.501 -3.082 -3.473

39 0.538 -0.971 -0.309 0.238 -0.699 -0.443 0.568

40 0.537 -0.743 -1.060 -1.198 -2.020 -2.521 -2.005

Table 3: Hu invariant moments of the tested axis orbits.

Number
Hu invariant moments

φ1 φ2 φ3 φ4 φ5 φ6 φ7
1 1.293 1.545 1.728 1.471 2.681 1.671 2.523

2 1.336 1.955 0.271 2.209 3.415 3.185 3.712

3 1.237 1.738 0.647 -0.853 -1.625 -0.198 -0.951

4 1.272 1.314 1.724 1.322 2.651 1.969 3.373

5 1.470 2.190 1.439 1.994 3.890 3.085 3.672

6 0.969 1.871 1.412 1.326 2.774 2.262 2.382

7 1.031 1.914 0.695 -0.836 -0.774 -0.105 -1.241

8 1.041 1.953 0.359 -0.936 -1.683 -0.238 -1.588

9 1.044 2.029 0.231 -0.722 -1.683 -0.094 -1.950

10 1.066 2.005 0.967 -0.073 -1.043 0.373 0.415

11 0.855 0.820 0.981 1.118 2.299 1.292 2.006

12 0.905 1.002 1.160 1.281 2.513 1.667 0.633

13 0.998 1.183 1.345 1.519 2.450 1.712 2.966

14 1.067 0.954 1.311 1.139 2.404 1.612 2.918

15 0.998 1.175 1.442 1.425 3.267 2.010 2.345

16 0.521 -0.089 -0.342 -0.913 -1.198 -0.958 -1.005

17 0.643 -0.837 0.486 -0.642 -0.228 -1.394 -1.182

18 0.649 0.128 -0.238 -0.859 -1.352 -0.817 -2.135

19 0.571 0.040 0.217 -0.861 -1.558 -1.379 -2.149

20 0.402 -0.426 -0.890 -1.462 -3.135 -1.817 -2.574

Table 4: Expected outputs of the forward feedback neutral network.

Fault type Output 1 Output 2 Output 3 Output 4

Imbalance 0 0 0 1

Misalignment 0 0 1 0

Oil whirl 0 1 0 0

Oil whip 1 0 0 0

Table 5: Comparison of the tested axis orbits by morphological
processing and without processing.

Processing mode
Time of training and

identification
Identification
accuracy rate

Morphological
processing

13.054 s 95%

Without
morphological
processing

16.827 s 80%
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5. An Application Example

In order to further verify the effectiveness of the autore-
cognition fault method of the morphological processing
axis orbit, the experiment was carried out through another

self-designed rotor test rig, that is, a single-disc flexible rotor
system. The test rig is shown in Figure 11. The axis orbit was
generated by axial displacement signals from X and Y eddy
current sensors. A certain amount of imbalance was set in
the disc to verify the recognition result.

Due to noise interference in the original signal, the axis
orbit is very messy, as shown in Figure 12. In this paper,
the original signals were processed by median filtering. The
axis orbit after filtering is shown in Figure 13.

It can be seen that the filtered signal becomes smoother.
However, the edge of the axis orbit is still messy, which is dis-
advantageous to recognition of fault. The dilated image and
the skeleton image of the axis orbit were obtained by a series
of mathematical morphological processing, as shown in
Figures 14 and 15.

The Hu invariant moments of the skeleton axis orbit in
Figure 15 are shown in Table 6. The neural network output
results are shown in Table 7. The result of Table 7 shows that
the rotor test rig has imbalanced fault. It is proved that this
method can realize automatic recognition.

6. Conclusions

Morphological processing played an important role in the
automatic identification of an axis orbit. The axial

X eddy current sensor AC motor Torque sensor Magnetic powder brake

Y eddy current sensor 

Figure 11: Rotor rig for testing.
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Figure 12: Axis orbit of original signals.
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Figure 13: Axis orbit after filtering.
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Figure 14: Dilated image of axis orbit.
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displacement signals were filtered by EEMD to eliminate
high-frequency noise, and the image of the axis orbit was
then processed by using mathematical morphology including
the dilation and skeleton operation. The axis orbit is ade-
quately restored by the method.

In the study, Hu invariant moments of the skeleton axis
orbits were calculated, and the BP neural network was
trained by using the Hu invariant moment as the feature vec-
tors to identify the fault. In the experiment, 40 samples were
trained, and 20 axis orbits were tested. The results indicate
that the calculation speed is evidently improved. Addition-
ally, the identification accuracy rate is up to 95%, and this
exceeds that without using mathematical morphology.

The method solves the problem of automatic identifica-
tion of the fault in the actual working conditions. It is a reli-
able and effective method for identifying the axis orbit. The
use of the axis orbit for fault diagnosis of the rotor system
has a good practical value, which is conducive to debugging
and online monitoring of the rotor system.
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