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Performance feature extraction is the primary problem in equipment performance degradation assessment. To handle the problem
of high-dimensional performance characterization and complexity of calculating the performance indicators in flexible material
roll-to-roll processing, this paper proposes a PCA method for extracting the degradation characteristic of roll shaft. Based on the
analysis of the performance influencing factors of flexible material roll-to-roll processing roller, a principal component analysis
extraction model was constructed. The original feature parameter matrix composed of 10-dimensional feature parameters such
as time domain, frequency domain, and time-frequency domain vibration signal of the roll shaft was established; then, we
obtained a new feature parameter matrix Zorg

∗ by normalizing the original feature parameter matrix. The correlation measure
between every two parameters in the matrix Zorg

∗ was used as the eigenvalue to establish the covariance matrix of the
performance degradation feature parameters. The Jacobi iteration method was introduced to derive the algorithm for solving
eigenvalue and eigenvector of the covariance matrix. Finally, using the eigenvalue cumulative contribution rate as the screening
rule, we linearly weighted and fused the eigenvectors and derived the feature principal component matrix F of the processing
roller vibration signal. Experiments showed that the initially obtained, 10-dimensional features of the processing rollers’
vibration signals, such as average, root mean square, kurtosis index, centroid frequency, root mean square of frequency,
standard deviation of frequency, and energy of the intrinsic mode function component, can be expressed by 3-dimensional
principal components F1, F2, and F3. The vibration signal features reduction dimension was realized, and F1, F2, and F3
contain 98.9% of the original vibration signal data, further illustrating that the method has high precision in feature parameters’
extraction and the advantage of eliminating the correlation between feature parameters and reducing the workload selecting
feature parameters.

1. Introduction

The object of flexible material roll-to-roll processing is flexi-
ble electronic film material; once the core components of
processing equipment begin to degrade, flexible electronic
film products will be deformed to varying degrees, resulting
in processing quality problems [1, 2]. Therefore, it is neces-
sary to predict the performance and health status of the core
components of flexible material R2R processing equipment.
However, the number of rollers of the flexible material R2R
processing equipment is large, and there are correlations
between the movement state variables of the collected rollers,

which lead to complications in the process of extracting per-
formance degradation feature. If the performance degrada-
tion feature parameters of each roller are analyzed
separately, the results are often isolated; if the parameters
are blindly reduced, it may lead to incorrect performance
state prediction conclusions due to the loss of too much
raw information. Thus, it is extremely necessary to fuse and
reduce the dimensions of the feature data for roll shaft per-
formance degradation prediction and extract representative
feature [3].

Previous studies have shown that principal component
analysis (PCA), based on the idea of spatial
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transformation, achieves the purpose of optimal variance
without reducing the information content contained in
the original data and describes the high-dimensional data
information with less principal component information,
which has incomparable advantages over other algorithms
[4–6]. In reference [4] (2018), spearman grade correlation
coefficient and PCA were used for feature fusion to obtain
the health index representing the declining state of rolling
bearing performance. The analysis results of an example
show that the proposed method can accurately identify
the declining state of the rolling bearing performance. In
reference [5] (2018), a frequency analysis method based
on the residuals generated by SOM-PCA algorithm is pro-
posed. This method is effective for fault detection and
diagnosis of most of the unsupervised classification exper-
imental data sets. In reference [6] (2018) proposed a sen-
sor fault detection method of water chiller sensor based on
empirical mode decomposition (EMD) threshold denoising
and principal component analysis (EMD-TD-PCA). PCA
model is established by EMD threshold denoising data.
Q statistic is used to detect sensor fault. Compared with
the traditional PCA method, EMD-TD-PCA method can
effectively improve the efficiency of fault detection. There-
fore, on the basis of previous research, this paper proposes
a PCA method for extracting the degradation feature of
R2R roll shaft of flexible material, constructs the principal
component analysis extraction model of the degradation
feature of processing roll shaft, establishes the feature
matrix of the original vibration signal of roll shaft and
the covariance matrix of the degradation feature, and
introduces Jacobi method. The eigenvalues and eigenvec-
tors of the covariance matrix, as well as the principal com-
ponent matrix algorithm of the vibration signal of the
processing roll, are studied. Finally, the validity and effec-
tiveness of the proposed method for extracting the perfor-
mance degradation eigenvalues are verified by R2R
processing experiments.

2. Flexible Material R2R Processing Roller
Performance Degradation Feature Extraction
Based on PCA

The principle framework of flexible material R2R perfor-
mance degradation feature extraction is shown in Figure 1.
As shown in Figure 1, the vibration acceleration data of roller
axle during R2R processing were collected by sensors. After
filtering and denoising the vibration acceleration signal data,
the eigenvalues of the vibration acceleration data in the time
domain, frequency domain, and time-frequency domain
were calculated by integrating mathematical statistics, power
spectrum, and empirical mode decomposition (EMD) [7–9].
On this basis, the eigenvalue normalized feature matrix and
the covariance matrix of eigenvalue were established. Finally,
using the eigenvalue cumulative contribution rate as the
screening rule, we linearly weighted and fused the eigenvec-
tors, then obtained the degradation feature parameters prin-
cipal component of processing roll shaft performance, i.e.,

the R2R processing roller shaft performance degradation
indicator characterizing amount.

3. Algorithm Derivation of PCA Extraction
Model of Processing Roller’s Performance
Degradation Feature

Considering the correlations between the vibration signal
features of the unwinding roller, the guide roller, the driving
roller, and the rewinding roller of R2R processing equipment,
the principal component analysis (PCA) method is intro-
duced to study the weighted fusion and dimensionality
reduction of processing roller vibration feature data, i.e., the
extraction of the feature parameters of roller performance
degradation [10].

3.1. Establishing the Matrix of Original Vibration Signal of
Feature Parameters. Time-domain analysis and frequency-
domain analysis are easy to calculate, and physical meaning
of their feature parameters is clear. The time-frequency
eigenvalues of the original vibration signal of R2R roller are
listed as follows. The original vibration signal of roller in
the flexible material processing system is represented by x.
The sample length is L, the sliding window width is M, and
the sample mean value of smooth filter output is yL. Accord-
ing to the definition of sliding average filtering [11], yL can be
obtained as:

yL =
xL + xL−1 + xL−2+⋯+xL−M+1

M
: ð1Þ

Based on the data after smoothing filtering, matrices of
primitive feature parameters of processing roll axis vibration
signal that were analyzed in the time domain, frequency
domain, and time-frequency domain can be established.

We postulated the number of samples is n, and feature
parameter value of roller vibration signal is Zij (Zij represents
the No j feature variable value of the No i sample data), so the
feature parameter matrix of roller vibration signal was
expressed as follows:

Z =

z11 z12 ⋯ z1m

z21 zij ⋯ z2m

⋮ ⋮ ⋯ ⋮

zn1 zn2 ⋯ znm

0
BBBBB@

1
CCCCCA = Z1, Z2,⋯,Zmð Þ: ð2Þ

In equation (2), Z = ðZ1, Z2,⋯,ZmÞ is a simplified expres-
sion of the feature parameter matrix, and its No j column
vectors of different feature parameters are Zj =
½z1j, z2j,⋯, znj�T .

Furthermore, the mean value, root mean square, and
kurtosis indices of roller vibration signals are expressed
by�Y , YRMS, and KV , respectively. The frequency of bary-
center, root mean square, and standard deviation of fre-
quency related to the power spectrum of roller vibration
signals are expressed by FC , RMSF, and RVF, respectively
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[12]. The energy of intrinsic mode function components
of vibration signals after EMD is represented by E½IMF1�,
E½IMF2�, E½IMF3�, and E½IMF4� [13]. Take n roller vibra-
tion signals and with �Y , YRMS, KV , FC , RMSF, RVF, E½

IMF1�, E½IMF2�, E½IMF3�, and E½IMF4� as parameters in
equation (2), the original feature parameter matrix of the
roller shafts’ vibration signal Zorg can be obtained as
follows:

In equation (3), the center of gravity frequency Fc =Ð +∞
0 f sð f Þdf /Ð +∞0 sð f Þdf , root mean square frequency RMSF

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ +∞
0 f 2sð f Þdf /Ð +∞0 sð f Þdf

q
, and frequency standard devi-

ation RVF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ +∞
0 ð f − FcÞ2sð f Þdf /

Ð +∞
0 sð f Þdf

q
, where f is

the vibration frequency and sð f Þ is the power spectrum of
the vibration signal.

3.2. Normalization of Feature Parameter Matrix. Since the
parameters of feature parameter matrix Zorg have different
dimension and dimension units, in order to eliminate the
influence of dimension between indexes on the accuracy of
data analysis results, it is necessary to normalize feature
parameter matrix so that each index is in the same order of
magnitude [14].

For n samples collected, zkj is an element of the feature
parameter matrix Z; then, the mean value of feature parame-
ters in column No j of feature parameter matrix Z is obtained
by �Zj = EðZjÞ =∑n

k=1zkj/n. For normalization of feature
matrix Z, the variable zkj of No j column and No k row in fea-
ture matrix Z is divided by the mean value �zj of the feature

parameter in No j column in turn. That is, the normalized
value zkj

∗ of zkj is calculated by the following equation (4):

zkj
∗ =

zkj
E Zj

� � =
zkj

∑n
k=1zkj/n

 , j = 1, 2,⋯,m: ð4Þ

According to the above normalization method, the fea-
ture parameter matrix Z represented by equation (2) is nor-
malized to Zð1Þ as follows:

Z 1ð Þ =

z11
∗ z12

∗ ⋯ z1m
∗

z21
∗ z22

∗ ⋯ z2m
∗

⋮ ⋮ ⋯ ⋮

zn1
∗ zn2

∗ ⋯ znm
∗

0
BBBBB@

1
CCCCCA = Z1

∗, Z2
∗,⋯,Zm

∗ð Þ:

ð5Þ

Equations (4) and (5) are used to normalize the origi-
nal feature parameter matrix Zorg expressed by equation
(3). Equation (4) is used to obtain the average value, root
mean square, kurtosis index, center of gravity frequency,
root mean square of frequency, standard deviation of

Principal component analysis extraction model for
processing roller performance degradation feature
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Figure 1: R2R processing roller shaft performance degradation feature extraction model framework.

Zorg =

�Y1 YRMS1 KV1
FC1

RMSF1 RVF1 E IMF1½ �1 E IMF2½ �1 E IMF3½ �1 E IMF4½ �1
�Y2 YRMS2 KV2

FC2
RMSF2 RVF2 E IMF1½ �2 E IMF2½ �2 E IMF3½ �2 E IMF4½ �2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
�Yn YRMSn KVn

FCn
RMSFn RVFn E IMF1½ �n E IMF2½ �n E IMF3½ �n E IMF4½ �n

0
BBBBB@

1
CCCCCA: ð3Þ
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frequency, and the energy of intrinsic mode function com-
ponents of roller vibration signal processed by flexible
material R2R system: �Y j

∗, YRMS j
∗, KV j

∗, FCj

∗, RMSFj
∗,

and RVFj
∗ and E½IMF1�j∗, E½IMF2�j∗, E½IMF3�j∗, and E

½IMF4�j∗. Equation (5) is used to obtain the normalized
matrix Zorg

∗ of the original feature parameter matrix
Zorg of the vibration signal of R2R processing roll for flex-
ible material is expressed as equation (6).

Based on equation (6), it can be seen in Table 1 that each
column vector in the feature parameter matrix Zorg

∗ repre-
sents one of the eigenvectors of the vibration signal of R2R
processing roll for flexible material.

3.3. Construction of Covariance Matrix of Feature Parameters
and Screening of Feature Values. The feature parameter
matrix of vibration signal of R2R processing roll for flexible
material has been deduced above. However, in order to
obtain the principal component variable of the feature
parameters of the vibration signal of the processing roller, it
is necessary to construct the feature quantity covariance
matrix of Zorg

∗ and screen the feature values.
According to the definition of the covariancematrix, the cor-

relation covariance matrix between two parameters in feature
parameter matrix Zorg

∗ can be expressed as CZ of equation (7):

CZ =
cov �Y∗, �Y∗� �

⋯ cov �Y∗, E IMF4½ �∗� �
⋮ ⋱ ⋮

cov E IMF4½ �∗, �Y∗� �
⋯ cov E IMF4½ �∗, E IMF4½ �∗ð Þ

2
664

3
775:
ð7Þ

Because the covariance matrix is a symmetric matrix and
the diagonal line of the matrix is the variance of each dimen-
sion, it not only reflects the correlation measure between all
feature dimensions but also reflects the degree of data redun-
dancy. The larger the value on the diagonal line of the matrix,
the variables are more important. Conversely, the smaller the
value, the smaller the corresponding variable is the secondary
variable of the noise signal [15–17].

Next, the covariance matrix CZ is transformed into a
diagonal matrix by Jacobi iteration method [18], and then,
all eigenvalues are solved. Assuming that the eigenvalue of
the covariance matrix is λi ði = 1, 2,⋯,mÞ, it is regarded as
a diagonal matrix composed of principal diagonal ele-
ments, and Λ is used to represent the orthogonal matrix
composed of the eigenvectors corresponding to eigen-
values. According to the property of symmetric matrix
RTCZR =Λ, thus the problem of finding eigenvalues of
covariance matrix CZ is transformed into solving orthogo-
nal matrix R [19]. Furthermore, according to the iteration
principle of Jacobi’s method, the orthogonal transforma-
tion of covariance matrix can be realized by constructing
a series of planar rotating orthogonal matrices so that
the proportion of diagonal elements of the covariance

Table 1: Feature vector table of roll vibration signal for flexible material R2R system.

Num Eigenvector type Eigenvector expression

1 Average value of vibration signal �Y∗ = �Y1
∗, �Y2

∗,⋯, �Yn
∗� �T

2 RMS of vibration signal YRMS
∗ = YRMS1

∗, YRMS2
∗,⋯, YRMS1 n

∗
� �T

3 Kurtosis of vibration signal KV
∗ = KV 1

∗, KV 2
∗,⋯, KVn

∗ð ÞT

4 FC (frequency domain parameters) FC
∗ = FC1

∗, FC2
∗,⋯, FCn

∗� �T
5 RMSF (frequency domain parameters) RMSF∗ = RMSFC1

∗, RMSFC2
∗,⋯, RMSFCn

∗� �T
6 RVF (frequency domain parameters) RVF∗ = RVF1∗, RVF2∗,⋯, RVFn∗ð ÞT

7 The energy of IMF1 E IMF1½ �∗ = E IMF1½ �1∗, E IMF1½ �2∗,⋯, E IMF1½ �n∗
� �T

8 The energy of IMF2 E IMF2½ �∗ = E IMF2½ �1∗, E IMF2½ �2∗,⋯, E IMF2½ �n∗
� �T

9 The energy of IMF3 E IMF3½ �∗ = E IMF3½ �1∗, E IMF3½ �2∗,⋯, E IMF3½ �n∗
� �T

10 The energy of IMF4 E IMF4½ �∗ = E IMF4½ �1∗, E IMF4½ �2∗,⋯, E IMF4½ �n∗
� �T

Zorg
∗ =

�Y∗
1 YRMS1

∗ KV1
∗ FC1

∗ RMSF∗1 RVF∗1 E IMF1½ �∗1 E IMF2½ �∗1 E IMF3½ �∗1 E IMF4½ �∗1
�Y∗
2 YRMS2

∗ KV2
∗ FC2

∗ RMSF∗2 RVF∗2 E IMF1½ �∗2 E IMF2½ �∗2 E IMF3½ �∗2 E IMF4½ �∗2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
�Y∗
n YRMSn

∗ KVn

∗ FCn

∗ RMSF∗n RVF∗n E IMF1½ �∗n E IMF2½ �∗n E IMF3½ �∗n E IMF4½ �∗n

0
BBBBB@

1
CCCCCA: ð6Þ
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matrix CZ increases step by step, while the nondiagonal
elements become smaller. When the nondiagonal elements
approach zero, the principal diagonal elements can be
approximated as matrices. Eigenvalues of CZ and expres-
sions of matrix Λ obtained from diagonalization of covari-
ance matrix CZ are as follows:

Λ =

λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ λm

2
666664

3
777775: ð8Þ

In order to solve the diagonal matrix Λ of equation
(8), it is necessary to construct a rotating orthogonal
matrix to transform covariance matrix CZ orthogonally.
The rotation angle of the covariance matrix [20] is θ,
and the subscripts of the absolute maximum element of

covariance matrix CZ on nonprincipal diagonal line are
expressed by p and q, respectively. The rotating orthogonal
matrix RpqðθÞ is constructed:

Rpq θð Þ =

1
⋱

pth→ cos θ sin θ

⋱

qth→ −sin θ cos θ
⋱

↑
pth

↑
qth

1

2
6666666666666664

3
7777777777777775

:

ð9Þ

Further, if the initial value of the covariance matrix is

CZ
0 and the first rotating orthogonal matrix Rð1Þ

pq ðθÞ is

Tachometer Tension sensor CCD industrial camera

Acceleration sensor
installation position

Material coil

Unwinding roller

Guide roller Driving roller

Rewinding roller

Acceleration sensor
installation position

Material coil

Acceleration sensor
installation position

Figure 2: Flexible material roll-to-roll processing equipment.
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constructed, the covariance matrix CZ is transformed into
CZ

ð1Þ by the first orthogonal transformation.

CZ
1ð Þ = R

1ð ÞT
pq θð ÞCZ

0ð ÞR 1ð Þ
pq θð Þ: ð10Þ

The element values of No j column and No i row of
matrix CZ

ð1Þ and CZ
0 are represented by cð1Þij and cð0Þij,

respectively. Equation (9) is substituted in equation (10)
and expanded to obtain as equation (11)

c 1ð Þ
ip = c 1ð Þ

pi = c 0ð Þ
pi cos θ − c 0ð Þ

qi sin θ, i ≠ p, q,

c 1ð Þ
iq = c 1ð Þ

qi = c 0ð Þ
pi sin θ + c 0ð Þ

qi cos θ, i ≠ p, q,

c 1ð Þ
pp = c 0ð Þ

pp cos2θ + c 0ð Þ
qq sin2θ − c 0ð Þ

pq sin 2θ,

c 1ð Þ
qq = c 0ð Þ

pp sin2θ + c 0ð Þ
qq cos2θ + c 0ð Þ

pq sin 2θ,

c 1ð Þ
pq = c 1ð Þ

qp = c 0ð Þ
pq cos 2θ +

c 0ð Þ
pp − c 0ð Þ

qq

2 sin 2θ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ

Furthermore, to reduce nondiagonal element compo-
nent, set cð1Þpq = cð1Þqp = 0, introduce the variables s and t,

and assume s = cð0Þqq − cð0Þpp/2cð0Þpq, t = tan θ. According

to trigonometric function t =
t2 + 2ts − 1 = 0, s ≠ 0
1, s = 0

(
, g is

used to denote cos θ = 1/ð ffiffiffiffiffiffiffiffiffiffiffi
1 + t2

p Þ = g, and h is used to

represent sin θ = t/ð ffiffiffiffiffiffiffiffiffiffiffi
1 + t2

p Þ = h; then, equation (11) is
simplified as [21] equation (12). Equation (12) is the
matrix after the first orthogonal transformation.

c 1ð Þ
ip = c 1ð Þ

pi = gc 0ð Þ
pi − hc 0ð Þ

qi, i ≠ p, q,

c 1ð Þ
iq = c 1ð Þ

qi = hc 0ð Þ
pi + gc 0ð Þ

qi, i ≠ p, q,

c 1ð Þ
pp = c 0ð Þ

pp − tc 0ð Þ
pq,

c 1ð Þ
qq = c 0ð Þ

qq + tc 0ð Þ
pq,

c 1ð Þ
pq = c 1ð Þ

qp = 0:

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

Further, iteratively calculates CZ
ð1Þ, according to j

cðk−1Þpqj =max
i≠j

jcðk−1Þijj, the subscript of the largest ele-

ment of absolute value on nonmain diagonal of the

rotation matrix Rðk−1Þ
pq ðθÞ is selected as the p and q

values of rotation matrix RðkÞ
pq ðθÞ. The covariance matrix

CZ is obtained after k times of orthogonal transforma-
tions equation (13).

CZ
kð Þ = R

kð ÞT
pq θð ÞCZ

k−1ð ÞR kð Þ
pq θð Þ

= R
kð ÞT
pq R

k−1ð ÞT
pq ⋯ R

1ð ÞT
pq CZ

0ð ÞR 1ð Þ
pq θð Þ⋯ R k−1ð Þ

pq θð ÞR kð Þ
pq θð Þ:
ð13Þ
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Figure 3: Moving average filtering effect diagram.
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If the form of the covariance matrix CZ
ðkÞ is consis-

tent with the form of the symmetric matrix shown in
equation (8), terminate iterating. CZ

ðkÞ is obtained as
equation (14).

CZ
kð Þ =

λ1 0 ⋯ 0
0 λ2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ λk

2
666664

3
777775: ð14Þ

According to the properties of symmetric matrices,
we further derive from equation (14) and have equation
(15):

CZ
kð Þ =Λ = RTCZR: ð15Þ

In equation (15), the relationship between the
orthogonal matrix R and rotating orthogonal matrix

RðkÞ
pq ðθÞ of equation (13) is R = Rð1Þ

pq ðθÞ⋯ RðkÞ
pq ðθÞ⋯ RðnÞ

pq ð
θÞ, and the principal diagonal element of CZ

ðkÞ is all
the eigenvalues of the covariance matrix CZ .

In order to better screen eigenvalues of covariance matrix
CZ , it is necessary to calculate the cumulative contribution
rate of eigenvalues. Let λi denote eigenvalue of covariance

matrix CZ , the cumulative sum of the first eigenvalues is
∑l

i=1λi, and cumulative sum of all eigenvalues is ∑m
i=1λi , l

<m. Then, the principal component value (or variance ratio)
of single eigenvalue is calculated by λi/∑m

i=1λi. The cumula-
tive contribution rate η of eigenvalues is calculated by the fol-
lowing equation (16). The constant ε = 0:85 is introduced as
the screening condition in this paper, and the principal com-
ponents are retained only when η ≥ ε is satisfied, which is
used for subsequent weighted fusion calculation of eigenvec-
tors [4].

η =
∑l

i=1λi
� �
∑m

i=1λið Þ , l <m: ð16Þ

3.4. Derivation of Principal Component Selection Algorithms
for Feature Matrix. The normalization of the original feature
parameter matrix and screening method of covariance
matrix eigenvalue of vibration signal are discussed before.
The algorithm of selecting principal components of the fea-
ture matrix of the vibration signal of processing roll is
deduced below.

The eigenvector matrix consisting of eigenvectors corre-
sponding to selected eigenvalues is represented by U . The eigen-
vector matrix is expressed as follows when
Ui = ½u1i, u2i,⋯, uri�T is used to represent the eigenvectors of
No i column (r is used to represent the number of eigenvalues
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Figure 4: The calculation results of mean value, root mean square, and kurtosis index.
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contained in each column of eigenvectors) shown as equation
(17).

U = U1,U2,⋯,Ulð Þ =

u11 u12 ⋯ u1l

u21 u22 ⋯ u2l

⋮ ⋮ ⋯ ⋮

ur1 ur2 ⋯ url

0
BBBBB@

1
CCCCCA: ð17Þ

Then, the normalized matrix Zorg
∗ of original feature

parameters shown in equation (6) and the eigenvector matrix

U are calculated by linear weighting fusion, and feature prin-
cipal component matrix F of the vibration signal is obtained
as equation (18).

Thus, the first principal component, the second principal
component,…, the No l principal component of the vibration
signal features F1, F2,⋯, Fl can be obtained, which is calcu-
lated as equation (19).

To this point, the principal component extraction
method of vibration signal features of R2R processing roll
for flexible material has been deduced. The validity of the
above aspects is verified by experiments.
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Figure 5: Calculations of center of gravity frequency, frequency root mean square, and frequency standard deviation.

F = Zorg
∗•U ⇒

�Y1
∗ YRMS1

∗ KV 1
∗ FC1

∗ RMSF1∗ RVF1∗ E IMF1½ �1∗ E IMF2½ �1∗ E IMF3½ �1∗ E IMF4½ �1∗

�Y∗
2 YRMS2

∗ KV2
∗ FC2

∗ RMSF2∗ RVF2∗ E IMF1½ �2∗ E IMF2½ �2∗ E IMF3½ �2∗ E IMF4½ �2∗

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
�Yn

∗ YRMSn
∗ KVn

∗ FCn

∗ RMSFn∗ RVFn∗ E IMF1½ �n∗ E IMF2½ �n∗ E IMF3½ �n∗ E IMF4½ �n∗

0
BBBBB@

1
CCCCCA•

u11 u12 ⋯ u1l

u21 u22 ⋯ u2l

⋮ ⋮ ⋯ ⋮

ur1 ur2 ⋯ url

0
BBBBB@

1
CCCCCA,

ð18Þ
F1 = u11�Y

∗
1 + u21YRMS1

∗+⋯+ur1E IMF4½ �1∗,
F2 = u12�Y

∗
2 + u22YRMS2

∗+⋯+ur2E IMF4½ �2∗,
⋮

Fl = u1l �Y
∗
n + u2lYRMS

∗
n+⋯+urlE IMF4½ �n∗:

8>>>>><
>>>>>:

ð19Þ
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Table 2: Original feature parameter matrix for flexible material R2R system roller vibration signal.

Num �Y YRMS KV FC RMSF RVF E IMF1½ � E IMF2½ � E IMF3½ � E IMF4½ �
1 -0.0101 0.0448 2.7899 1050.3 1450.9 3.6648 1.5456 7.65 18.466 4.3143

2 -0.0025 0.0438 2.9485 1090.8 1500.4 3.7297 1.464 6.3859 18.301 5.1165

3 -0.0024 0.0450 2.7206 1086.4 1475.1 3.7481 1.6174 6.5097 19.865 4.8536

4 -0.0022 0.0456 2.8154 1124.9 1511.9 3.7737 2.0447 8.9721 19.397 4.6997

5 -0.0020 0.0450 2.904 1083.8 1465 3.7934 1.6842 9.3842 18.735 5.5927

6 -0.0016 0.0454 2.8232 1099.8 1474.4 3.7414 1.849 8.0205 19.899 5.2631

7 -0.0016 0.0463 2.7588 1092.5 1457.1 3.7846 1.5508 8.9071 19.252 5.9994

8 -0.0020 0.0451 2.7163 1100.2 1461.9 3.7018 1.4852 8.1622 20.417 4.457

9 -0.0019 0.0464 2.7459 1097.1 1459.3 3.7545 1.6455 7.6253 22.406 4.5061

10 -0.0020 0.0452 2.7131 1064.5 1412.2 3.5901 1.2887 9.374 19.036 3.8459

11 -0.0017 0.0461 2.7201 1076.2 1425.3 3.6759 1.6932 9.0578 20.679 4.7048

12 -0.0015 0.0456 2.8312 1085.7 1439.5 3.7056 1.3783 7.0055 21.292 5.7499

13 -0.0024 0.0455 2.7019 1084.2 1443.5 3.6366 1.4298 7.8123 20.856 4.8974

14 -0.0010 0.0458 2.8815 1114.1 1476 3.7454 1.8362 8.809 20.021 4.9207

15 -0.0023 0.0464 2.673 1086.4 1448.9 3.7169 1.5678 7.0345 22.417 5.7741

16 -0.0015 0.0456 2.8445 1093 1464.7 3.7109 1.4436 6.2753 21.639 5.8342

17 -0.0020 0.0460 2.7972 1072.2 1415.8 3.6375 1.4832 9.8345 19.733 4.19

18 -0.0016 0.0459 2.7316 1065.1 1415.7 3.6443 1.5549 9.4308 19.652 4.6853

19 -0.0027 0.0467 2.6466 1074.4 1422.4 3.6713 1.5905 9.2169 20.213 4.994

20 -0.0022 0.0462 2.8096 1086.8 1440.8 3.755 1.7385 9.0918 19.174 5.4398

21 -0.0014 0.0460 2.7279 1076.6 1432 3.7479 1.4753 6.2085 22.214 5.1469

22 -0.0018 0.0461 2.8124 1060.7 1421.7 3.7194 1.523 7.1764 21.749 4.9088

23 -0.0018 0.04621 2.7699 1076.6 1449.6 3.7643 1.5759 6.3511 21.832 5.1766

24 -0.0022 0.0454 2.8573 1087.6 1469.2 3.7647 1.5709 7.9958 19.243 5.5585

25 -0.0019 0.0471 2.7946 1057.5 1434.7 3.7989 1.6254 5.8172 23.342 5.8649

26 -0.0021 0.0452 2.7171 1048.3 1421.4 3.6266 1.6351 7.578 18.711 3.7897

27 -0.0015 0.0455 2.6652 1068.9 1428.3 3.6984 1.4681 7.601 21.644 4.2268

28 -0.0022 0.0463 2.7377 1042.7 1392.9 3.6335 1.3731 7.2178 20.923 5.395

29 -0.0023 0.0468 2.6593 1033.1 1400.7 3.7300 1.3639 8.9799 21.367 4.476

30 -0.0024 0.0458 2.7841 1063.2 1438.5 3.7285 1.5706 6.7465 21.867 4.3497

… … … … … … … … … … …

721 -0.0027 0.0530 3.1491 1656.5 2201.3 4.9816 8.1026 14.202 22.892 8.0045

722 -0.0021 0.0528 3.0908 1641 2192.9 4.9686 7.7509 11.637 24.213 8.4416

723 -0.0021 0.0532 3.197 1643.1 2182.1 4.9455 7.8388 13.55 23.99 8.3561

724 -0.0021 0.0544 3.1498 1593.5 2131.6 5.0232 7.9186 12.452 26.366 6.6946

725 -0.0022 0.0538 3.3512 1644.6 2172.7 4.9371 8.0091 12.501 24.489 8.3043

726 -0.0026 0.0540 3.2107 1637.6 2179.1 5.0231 7.8501 12.894 24.837 9.0401

727 -0.0021 0.0534 3.1239 1656 2201.2 4.9376 8.8428 12.423 24.195 6.4097

728 -0.0015 0.0540 3.1796 1650.7 2180 4.979 7.7268 13.344 22.71 9.5417

729 -0.0023 0.0534 3.1097 1621.9 2164.1 4.9523 7.7175 13.518 24.363 6.6699

730 -0.0019 0.0549 3.271 1595.3 2125.1 5.032 6.8475 12.85 27.136 8.3782

… … … … … … … … … … …

965 -0.0009 0.0991 3.0364 1487.9 2097.5 9.54 21.225 32.315 82.163 37.627

966 -0.0006 0.1268 2.8109 1515.1 1937.2 10.976 27.715 92.465 140.51 40.1

967 -0.0019 0.1162 2.8857 1421.4 1958.3 10.576 27.599 28.219 161.65 27.7

968 -0.0008 0.1139 2.5798 1555.5 2121.7 10.546 34.988 40.41 134.55 36.982

969 -0.0019 0.1175 2.4147 1624.7 2152.2 10.742 33.982 84.171 82.756 49.921

970 -0.0006 0.1346 3.3694 1529.6 2086.0 13.284 39.086 113.03 126.62 56.488
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4. Verification Experiment

In order to verify the validity of the principal component
extraction method for vibration signal feature parameters of
R2R processing roll for flexible material, an experimental
platform for flexible material roll-to-roll processing was built
as shown in Figure 2. The experimental platform was mainly
composed of mechanical structure and driving control unit.
The mechanical structure used standard reinforced alumi-
num alloy profiles as the support frame, including unwinding
module, driving module, and rewinding module. The
unwinding, rewinding, and driving module all adopt 120W
speed regulating motor; the driving module adopts counter-
roll mode, and the roll rotates under the motor driving. The
upper roll was controlled by a hand-operated lifting handle.
The upper rubber-covered roll should be lifted to make the
material go around the upper rubber-covered roll and then
flat the material. After the correct alignment, the upper
rubber-covered roll should be put down, and the upper and
lower roll rotates simultaneously to realize the material trans-
mission. The adaptive maximum width of experimental plat-
form is 450mm, which can be used to transport material
thickness of 0.1-5mm. Blue PET polyester film with a width
of 50mm, a thickness of 0.05mm, a density of 1450 kg/m3, an
elastic modulus of 3495MPa, and a Poisson’s ratio of 0.3 was
used in the experiment. The magnet adsorption triaxial accel-
erometer was selected to realize data acquisition. The sensi-
tivity is 20mv/g, the frequency response is 5-5000Hz, and
the size is 24 ∗ 24 ∗ 15mm. The adsorption installation
method will not destroy the measured object, so it was conve-

nient to move. In addition to the hardware mentioned above,
the experimental platform also includes a professional ver-
sion of the Lenovo desktop computer inWindows 7 and soft-
ware data processing software MATLAB R2014a.

Considering that the driving module is the core of the
whole experimental platform as well as the roll and the bearing
are closely connected, the vibration of the roll will be fully
reflected in the bearing, so the three-axis accelerometer was
adsorbed on the bearing seat on one side of the driving roll
to realize data acquisition of vibration signal. The sampling
frequency is 10kHz, data acquisition was conducted every 60
minutes, each time for 1 s, and a total of 984 groups of samples
were collected. With the gradual progress of the experiment,
performance of driving rolls declines in varying degrees.

(1) Sample data denoising processing. According to equation
(1), sliding average filtering method yL = ðxL + xL‐1 + xL‐2+⋯
+xL‐M‐1Þ/M, the sliding window widthM was 5, input 984 sets
of sample data for calculation. By using the sliding smoothing
algorithm, the original sample data was further smoothed and
denoised which means the systematic errors and random
errors of the sample data were finally eliminated and reduced.
Figure 3 is a comparison of the effects before and after noise
reduction of partial data of the first group of samples.

(2) Constructed the original feature parameter matrix Zorg
. Substitute the noise-reduced sample data into the original
feature parameter matrix Zorg of flexible material R2R pro-
cessing roller vibration signal of Section 1 (see equation
(3)), shown in the equation below

Table 2: Continued.

Num �Y YRMS KV FC RMSF RVF E IMF1½ � E IMF2½ � E IMF3½ � E IMF4½ �
971 -0.0030 0.1604 3.2912 1541.5 2029.4 15.441 48.641 148.64 170.37 84.156

972 -0.0021 0.1741 5.6245 1529.0 2118.3 17.824 63.52 77.414 191.18 126.03

973 -0.0022 0.1537 3.9313 1676.3 2168.1 14.944 57.251 190.61 137.94 62.819

974 -0.0023 0.1478 9.198 1712.6 2278 16.219 48.644 99.237 93.873 86.746

975 -0.0024 0.1931 3.8436 1721.9 2111.3 17.819 72.926 400.09 178.84 64.739

976 0.0033 0.3194 13.925 1586.2 2060.7 31.139 175.56 276.13 498.11 459.64

977 -0.0052 0.2257 12.091 1587.2 2047.1 22.023 88.389 245.69 171.25 209.03

978 -0.0032 0.1931 6.1532 1688.3 2100.0 17.47 64.441 349.32 160.57 114.69

979 -0.0003 0.1467 4.3359 1568.5 2057.8 14.038 43.377 90.334 178.96 84.912

980 -0.0027 0.3737 13.955 1515.8 1912.7 32.214 177.87 832.19 504.77 552.48

981 -0.0044 0.2026 8.5665 1535 2008 19.342 64.232 200.84 197.54 175.44

982 -0.0016 0.2355 10.819 1473.8 1907.3 20.928 97.985 323.58 299.29 201.22

983 0.0018 0.0019 1.4515 67.2 464.93 0.1035 0.0003 0.0008 0.0010 0.0009

984 -0.0011 0.0014 1.7458 104.61 492.94 0.07541 0.0002 0.0004 0.0006 0.0010

Zorg =

�Y1 YRMS1 KV1
FC1

RMSF1 RVF1 E IMF1½ �1 E IMF2½ �1 E IMF3½ �1 E IMF4½ �1
�Y2 YRMS2 KV2

FC2
RMSF2 RVF2 E IMF1½ �2 E IMF2½ �2 E IMF3½ �2 E IMF4½ �2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
�Yn YRMSn KVn

FCn
RMSFn RVFn E IMF1½ �n E IMF2½ �n E IMF3½ �n E IMF4½ �n

0
BBBBB@

1
CCCCCA: ð20Þ

14 International Journal of Rotating Machinery



Table 3: Normalized feature parameter matrix of roller vibration signal of flexible material R2R processing.

Num �Y YRMS KV FC RMSF RVF E IMF1½ � E IMF2½ � E IMF3½ � E IMF4½ �
1 5.24780 0.85109 0.95367 0.87938 0.91096 0.83445 0.35141 0.50069 0.65705 0.48691

2 1.33210 0.83235 1.00790 0.91329 0.94204 0.84923 0.33286 0.41796 0.65118 0.57744

3 1.27590 0.85543 0.92999 0.9096 0.92616 0.85343 0.36774 0.42606 0.70683 0.54777

4 1.17040 0.86733 0.96239 0.94184 0.94926 0.85925 0.46489 0.58723 0.69018 0.5304

5 1.23780 0.86618 0.99268 0.90743 0.91982 0.86374 0.38293 0.6142 0.66662 0.63119

6 0.83498 0.86318 0.96506 0.92082 0.92572 0.85189 0.4204 0.52494 0.70804 0.59399

7 0.82787 0.87967 0.94304 0.91471 0.91486 0.86173 0.3526 0.58297 0.68502 0.67709

8 1.04540 0.85718 0.92852 0.92116 0.91787 0.84288 0.33768 0.53422 0.72647 0.50301

9 0.98681 0.88172 0.93863 0.91856 0.91624 0.85487 0.37413 0.49908 0.79724 0.50855

10 1.07670 0.85809 0.92742 0.89127 0.88667 0.81744 0.293 0.61353 0.67733 0.43404

11 0.92484 0.87578 0.92981 0.90106 0.89489 0.83697 0.38497 0.59284 0.73579 0.53098

12 0.80199 0.86565 0.96779 0.90902 0.90381 0.84375 0.31338 0.45851 0.7576 0.64893

13 1.26200 0.86441 0.92359 0.90776 0.90632 0.82802 0.32509 0.51132 0.74209 0.55272

14 0.53033 0.8703 0.98499 0.9328 0.92672 0.85279 0.41749 0.57655 0.71238 0.55535

15 1.21920 0.88188 0.91371 0.9096 0.90971 0.84631 0.35646 0.46041 0.79763 0.65166

16 0.78526 0.8673 0.97234 0.91513 0.91963 0.84494 0.32822 0.41072 0.76995 0.65844

17 1.03830 0.87362 0.95617 0.89772 0.88893 0.82824 0.33723 0.64367 0.70213 0.47288

18 0.85757 0.87202 0.93375 0.89177 0.88886 0.82978 0.35353 0.61725 0.69925 0.52878

19 1.41970 0.88696 0.90469 0.89956 0.89307 0.83592 0.36162 0.60325 0.71921 0.56362

20 1.16230 0.87736 0.96041 0.90994 0.90462 0.85499 0.39527 0.59506 0.68224 0.61393

21 0.74434 0.87358 0.93248 0.9014 0.8991 0.85338 0.33543 0.40635 0.79041 0.58087

22 0.93086 0.87694 0.96137 0.88809 0.89263 0.84688 0.34628 0.4697 0.77386 0.5540

23 0.93045 0.87721 0.94684 0.9014 0.91015 0.8571 0.3583 0.41568 0.77682 0.58423

24 1.15700 0.86185 0.97671 0.91061 0.92245 0.85719 0.35717 0.52333 0.6847 0.62733

25 1.01660 0.89488 0.95528 0.88541 0.90079 0.86499 0.36956 0.38074 0.83055 0.66191

26 1.11800 0.85819 0.92879 0.8777 0.89244 0.82575 0.37176 0.49598 0.66577 0.4277

27 0.78011 0.86437 0.91105 0.89495 0.89677 0.84211 0.33379 0.49749 0.77013 0.47703

28 1.15440 0.87994 0.93583 0.87302 0.87455 0.82733 0.31219 0.47241 0.74447 0.60887

29 1.21180 0.88856 0.90903 0.86498 0.87945 0.84929 0.3101 0.58774 0.76027 0.50516

30 1.25660 0.86975 0.95169 0.89018 0.90318 0.84895 0.3571 0.44156 0.77806 0.4909

… … … … … … … … … … …

721 1.42710 1.00740 1.07650 1.38690 1.38210 1.13430 1.84220 0.92952 0.81453 0.90338

722 1.11540 1.00290 1.05650 1.37400 1.37680 1.13130 1.76230 0.76164 0.86154 0.95271

723 1.09110 1.01050 1.09280 1.37570 1.37010 1.12610 1.78230 0.88685 0.8536 0.94306

724 1.09370 1.03290 1.07670 1.33420 1.33830 1.14380 1.80040 0.81499 0.93815 0.75555

725 1.16310 1.02140 1.14550 1.37700 1.36420 1.12420 1.82100 0.81819 0.87136 0.93722

726 1.33680 1.02560 1.09750 1.37110 1.36820 1.14370 1.78480 0.84392 0.88374 1.0203

727 1.10150 1.01420 1.06780 1.38650 1.38200 1.12430 2.01050 0.81309 0.8609 0.72339

728 0.80770 1.02520 1.08690 1.38210 1.36870 1.13370 1.75680 0.87337 0.80806 1.0769

729 1.18380 1.01510 1.06300 1.35800 1.35880 1.12760 1.75470 0.88476 0.86688 0.75276

730 1.0100 1.02530 1.08540 1.36890 1.36230 1.13010 1.81890 0.8505 0.8628 0.86240

… … … … … … … … … … …

965 0.47103 1.88220 1.03790 1.24580 1.31690 2.17220 4.82580 2.11500 2.92350 4.246500

966 0.31825 2.40740 0.96085 1.26850 1.21630 2.49920 6.30140 6.05190 4.99960 4.52560

967 1.01440 2.20690 0.98642 1.19010 1.22950 2.40810 6.27500 1.84690 5.75180 3.12620

968 0.42577 2.16310 0.88186 1.30240 1.33210 2.40120 7.95500 2.64480 4.78750 4.17380

969 0.99849 2.23220 0.82542 1.36030 1.35130 2.44600 7.72630 5.50900 2.94460 5.63400

970 0.32912 2.55640 1.15180 1.28070 1.30970 3.02470 8.88680 7.39780 4.50530 6.37520
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The average value, root mean square, kurtosis index,
center of gravity frequency, root mean square of the fre-
quency, standard deviation of frequency, and the energy
of intrinsic mode function components of sample data
were calculated. The calculation results of the above
indexes are given in Figures 4–6, respectively, and some
calculation results of each feature index are given in
Table 2.

The root mean square and kurtosis indicators in Figure 4
have a slight upward trend in the early stage of the fault, and
the mutation phenomenon appeared until the 970th sample
point. The sensitivity of immediate domain feature to the
early fault and medium fault was general, and the fault char-
acterization of late failure phase was relatively strong. In
Figure 5, the frequency-domain feature curves of the center
of gravity frequency were slightly increased at about 500th
sample point and rose sharply at 700 points. Both were in
the upper and lower oscillating unstable state in subsequent
time period and were significantly mutated at the 970th sam-
ple point. The trend of the frequency standard deviation fea-
ture curve was like the trend of the time domain feature
change. In Figure 6, the energy of different eigenmode func-
tions has a great difference in energy variation when the fault
occurs and can characterize the energy distribution of the
roller vibration signal in the frequency domain.

(3) Normalization of the original feature parameter matrix.
Substituting the original feature data of Table 2 into the
equation (6) of Section 2, as shown below

Table 3: Continued.

Num �Y YRMS KV FC RMSF RVF E IMF1½ � E IMF2½ � E IMF3½ � E IMF4½ �
971 1.56240 3.04540 1.12500 1.29060 1.27420 3.51590 11.0590 9.72850 6.0620 9.49780

972 1.09310 3.3060 1.92260 1.28020 1.33000 4.05830 14.4420 5.06680 6.80250 14.2240

973 1.17300 2.91760 1.34380 1.40350 1.36130 3.40270 13.0170 12.4750 4.90810 7.08970

974 1.18180 2.80640 3.14420 1.43390 1.43030 3.69300 11.060 6.49510 3.34020 9.79010

975 1.25600 3.66710 1.31390 1.44170 1.32560 4.05720 16.5810 26.1860 6.36340 7.30640

976 -1.74260 6.06420 4.76000 1.32810 1.29380 7.09030 39.9160 18.0730 17.7240 51.8750

977 2.70040 4.28550 4.13310 1.32890 1.28530 5.01450 20.0960 16.0800 6.09340 23.5910

978 1.64570 3.66710 2.10340 1.41360 1.31850 3.97790 14.6520 22.8630 5.71330 12.9440

979 0.18971 2.78550 1.48210 1.31320 1.29200 3.19650 9.86240 5.91240 6.36077 9.58310

980 1.42060 7.09550 4.77030 1.26910 1.20090 7.33490 40.4410 54.4670 17.9610 62.3520

981 2.31030 3.84700 2.92830 1.28520 1.26070 4.40410 14.6040 13.1450 7.02880 19.8000

982 0.86468 4.47100 3.69830 1.23400 1.19750 4.76520 22.2780 21.1780 10.6490 22.7090

983 -0.95567 0.03758 0.49617 0.05626 0.29191 0.02356 0.00008 0.00005 0.00003 0.00010

984 0.59807 0.02724 0.59677 0.08758 0.30950 0.01717 0.00005 0.00003 0.00002 0.00010

Table 4: Cumulative variance contribution rate table of roll
vibration signals for flexible material R2R system.

Eigenvalue
number

Eigenvalue
Variance
ratio

Accumulated
contribution rate

λ1 21.213 0.930 0.930

λ2 0.924 0.041 0.971

λ3 0.427 0.019 0.989

λ4 0.145 0.006 0.995

λ5 0.063 0.003 0.998

λ6 0.027 0.001 0.999

λ7 0.009 0.000 1.000

λ8 0.005 0.000 1.000

λ9 0.001 0.000 1.000

λ10 0.000 0.000 1.000

Zorg
∗ =

�Y1
∗ YRMS1

∗ KV 1
∗ FC1

∗ RMSF1∗ RVF1∗ E IMF1½ �1∗ E IMF2½ �1∗ E IMF3½ �1∗ E IMF4½ �1∗

�Y∗
2 YRMS2

∗ KV2
∗ FC2

∗ RMSF2∗ RVF2∗ E IMF1½ �2∗ E IMF2½ �2∗ E IMF3½ �2∗ E IMF4½ �2∗

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
�Yn

∗ YRMSn
∗ KVn

∗ FCn

∗ RMSFn∗ RVFn∗ E IMF1½ �n∗ E IMF2½ �n∗ E IMF3½ �n∗ E IMF4½ �n∗

0
BBBBB@

1
CCCCCA: ð21Þ
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The original feature matrix was normalized and calculated,
and the normalized average value, root mean square, kurtosis
index, center of gravity frequency, frequency root mean square,
frequency standard deviation, and energy of intrinsic mode
functions component were obtained, as shown in Table 3.

(4) Constructing the covariance matrix of normalized feature
parameters. On the basis of normalized processing of Zorg
feature parameter matrix, the normalized feature parameter
matrix of roller vibration signals processed by R2R flexible

material in Table 3 is divided into columns and substituted
into Section 3.3 equation (7) as follows

CZ =
cov �Y∗, �Y∗� �

⋯ cov �Y∗, E IMF4½ �∗� �
⋮ ⋱ ⋮

cov E IMF4½ �∗, �Y∗� �
⋯ cov E IMF4½ �∗, E IMF4½ �∗ð Þ

2
664

3
775:

ð22Þ

The covariance matrix of the feature parameters was
calculated.

(5) Solving the eigenvalues and eigenvectors of the covariance
matrix. According to jcðk−1Þpqj =max

i≠j
jcðk−1Þijj in Section 3.3, p

, q, and RpqðθÞ were determined, and the covariance matrix
CZ′ was transformed orthogonally according to the equation

In the experiment, the number of orthogonal transforma-

tions is k = 18. The eigenvalue of the covariance matrix was
calculated as follows:

CZ′ =

0:0664 ‐0:0022 0:0003 0:0009 0:0006 ‐0:0031 ‐0:0445 0:0278 ‐0:0283 ‐0:0557
‐0:0022 0:1951 0:0879 0:0315 0:0249 0:2150 1:0156 0:9626 0:4895 1:1391
0:0003 0:0879 0:0610 0:0135 0:0119 0:1021 0:5413 0:4774 0:2188 0:6696
0:0009 0:0315 0:0135 0:0210 0:0188 0:0384 0:1515 0:1209 0:0610 0:1094
0:0006 0:0249 0:0119 0:0188 0:0176 0:0323 0:1298 0:0938 0:0466 0:0913
‐0:0031 0:2150 0:1021 0:0384 0:0323 0:2432 1:1529 1:0534 0:5343 1:2796
‐0:0445 1:0156 0:5413 0:1515 0:1298 1:1529 5:9754 5:4208 2:6112 6:9105
0:0278 0:9626 0:4774 0:1209 0:0938 1:0534 5:4208 6:0386 2:4058 6:4036
‐0:0283 0:4895 0:2188 0:0610 0:0466 0:5343 2:6112 2:4058 1:3060 3:0370
‐0:0557 1:1391 0:6696 0:1094 0:0913 1:2796 6:9105 6:4036 3:0370 8:8900

2
666666666666666666666664

: ð23Þ

CZ
kð Þ = R

kð ÞT
pq θð ÞCZ

k−1ð ÞR kð Þ
pq θð Þ = R

kð ÞT
pq R

k−1ð ÞT
pq ⋯ R

1ð ÞT
pq CZ

0ð ÞR 1ð Þ
pq θð Þ⋯ R k−1ð Þ

pq θð ÞR kð Þ
pq θð Þ: ð24Þ

CZ
18ð Þ =

21:213 0 0 0 0 0 0 0 0 0
0 0:924 0 0 0 0 0 0 0 0
0 0 0:472 0 0 0 0 0 0 0
0 0 0 0:145 0 0 0 0 0 0
0 0 0 0 0:063 0 0 0 0 0
0 0 0 0 0 0:027 0 0 0 0
0 0 0 0 0 0 0:009 0 0 0
0 0 0 0 0 0 0 0:005 0 0
0 0 0 0 0 0 0 0 0:001 0
0 0 0 0 0 0 0 0 0 0:0000936

2
666666666666666666666664

3
777777777777777777777775

: ð25Þ
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Furthermore, the eigenvectors corresponding to the 10
eigenvalues on the diagonal line of the above eigenvalue
matrix CZ

ð18Þ were calculated, respectively. Finally, the eigen-

vectors corresponding to all eigenvalues were obtained as
shown in matrix U ′.

Then, the 10 eigenvalues on the diagonal line of the
above eigenvalue matrix CZ

ð18Þ were substituted into λi/
∑m

i=1λi ,m = 10 to calculate the variance ratio (principal
component value of a single eigenvalue). The cumulative
contribution rate of the eigenvalues was calculated by
substituting 10 eigenvalues on the diagonal line of the
above eigenvalue matrix CZ

ð18Þ into η = ð∑l
i=1λiÞ/ð∑m

i=1λiÞ,
l = ½1, 2,⋯, 10�,m = 10. The calculation results of the vari-
ance ratio and the cumulative contribution ratio are
shown in Table 4.

From Table 4, it can be seen that the variance ratios of
eigenvalues λ1, λ2, λ3, λ4, λ5, and λ6 are 0.930, 0.041, 0.019,
0.006, 0.003, and 0.001, respectively, while the variance ratios
of eigenvalues λ7, λ8, λ9, and λ10 are close to 0.000, which
indicates that λ7, λ8, λ9, and λ10 contain almost no feature
information of vibration signals and can be regarded as sec-
ondary variables. Similarly, the variance ratio of the eigen-
values λ5 and λ6 is less than 0.005. Compared with the
eigenvalues λ1, λ2, λ3, and λ4, it can also be considered as a
secondary variable. So λ1, λ2, λ3, and λ4 were selected to cal-
culate the principal component.

(6) Constructing PCA principal component performance degra-
dation index and draw three-dimensional contour map. The
normalized feature parameter matrix (see Table 3) and the
abovementioned eigenvector matrix U ′ of vibration signal of
the R2R processing roll for flexible material were used to cal-
culate the principal component of vibration signal feature
parameters by equation (19), and the results are shown in
Table 5 (part)

F1 = u11�Y
∗
1 + u21YRMS1

∗+⋯+ur1E IMF4½ �1∗,
F2 = u12�Y

∗
2 + u22YRMS2

∗+⋯+ur2E IMF4½ �2∗,
⋮

Fl = u1l �Y
∗
n + u2lYRMS

∗
n+⋯+urlE IMF4½ �n∗:

8>>>>><
>>>>>:

ð27Þ

For the accuracy of performance degradation assessment,
the selection of principal component requires that the dimen-
sion of principal component is minimum to reduce the com-
putational complexity of the principal component analysis
process while the original signal feature information is
included. According to Table 4, the variance ratio of λ1 is
0.930. In principle, only the principal component F1 is
selected to characterize the decline of the performance of the
roll shafts for flexible material R2R processing. The perfor-
mance declining curve of principal component F1 which plot-
ted according to the calculation results in Table 5 is shown in
Figure 7. The performance declining curve of principal com-
ponent F1 is plotted as shown in Figure 7.

As can be seen from Figure 7, the changing trend of prin-
cipal component F1 tends to be stable in the early stage (near
500 sample points) and the middle stage (near 700 sample
points) of the performance decline, but it does not show a sig-
nificant upward trend until the late stage (near 900 sample
points) of the performance decline, which cannot clearly
distinguish the early performance decline from the midper-
formance decline of the roll shaft. To this end, the perfor-
mance degradation curve of the principal components
F1, F2, F3, and , F4 corresponding to eigenvalues λ1, λ2, λ3,
and λ4 was drawn, as shown in Figure 8.

U ′ =

−0:002 −0:069 0:053 0:071 0:965 −0:207 0:116 0:001 −0:002 −0:005
0:089 −0:040 −0:188 −0:177 0:129 0:277 −0:378 0:203 0:743 0:307
0:048 0:048 0:009 0:137 0:096 0:191 −0:509 −0:813 −0:099 0:017
0:011 −0:024 −0:115 0:102 0:070 0:575 0:400 −0:137 0:265 −0:625
0:009 −0:013 −0:101 0:126 0:060 0:516 0:406 −0:060 −0:259 0:684
0:100 −0:019 −0:231 −0:054 0:153 0:389 −0:470 0:457 −0:531 −0:215
0:521 0:109 −0:612 0:510 −0:059 −0:269 0:057 0:005 0:047 0:003
0:504 −0:817 0:267 −0:016 −0:068 0:018 0:008 −0:024 −0:024 −0:003
0:231 0:028 −0:421 −0:804 0:041 −0:103 0:184 −0:246 −0:123 −0:021
0:633 0:556 0:511 −0:094 0:040 0:112 0:033 0:069 0:011 −0:002

2
666666666666666666666664

3
777777777777777777777775

: ð26Þ
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Table 5: Principal component calculation of feature parameters of vibration signals (part).

Num F1 F2 F3 F4 Num F1 F2 F3 F4
1 -1.03820 0.24010 -0.45960 -0.30863 701 -0.66965 -0.066206 0.059745 -0.17043

2 -1.02110 -0.14789 -0.28357 -0.0355 702 -0.58086 -0.094848 0.083001 -0.24488

3 -1.0060 -0.12953 -0.21881 0.01018 703 0.21294 -0.24727 0.78798 -0.75369

4 -0.88494 -0.00550 -0.18563 -0.05253 704 0.32029 -0.27405 0.71352 -0.77368

5 -0.85476 -0.02788 -0.31445 -0.02149 705 0.34432 -0.28957 0.70823 -0.83357

6 -0.89577 -0.11181 -0.21073 0.01696 706 0.33246 -0.40324 0.75217 -0.67510

7 -0.85337 -0.10144 -0.31579 0.05071 707 0.34225 -0.15256 0.77493 -0.75078

8 -0.99127 -0.02931 -0.22439 0.05503 708 0.33916 -0.34021 0.70677 -0.67815

9 -0.96615 -0.07045 -0.15579 0.10155 709 0.2658 -0.28443 0.63715 -0.64778

10 -1.03280 0.080777 -0.27235 0.03679 710 0.24144 -0.3201 0.66818 -0.73402

… … … … … … … … … …

500 -1.03050 -0.03557 -0.26615 0.00225 974 14.6570 -1.51460 2.20830 -2.2781

501 -1.00070 -0.13426 -0.29863 -0.04624 975 26.6130 15.4070 3.11460 -2.1513

502 -1.01900 -0.11944 -0.24604 0.00183 976 66.1990 -19.1070 2.83770 -0.52186

503 -0.97923 -0.18848 -0.29467 -0.06398 977 33.8730 -2.28540 -0.24986 -3.1073

504 -0.92120 -0.12961 -0.28593 -0.01329 978 27.3770 9.77000 -0.38371 -1.3508

505 -0.99977 -0.12605 -0.25503 -0.00760 979 14.1770 -1.83210 2.93250 1.03660

506 -1.09560 -0.11377 -0.13928 0.03664 980 91.6100 5.00480 -11.7640 0.95157

507 -0.99919 -0.19812 -0.20236 0.00973 981 27.1900 -2.00060 -0.69597 0.13394

508 -0.98075 -0.14233 -0.19172 0.03616 982 38.0490 1.90030 2.14970 -0.32731

509 -1.03910 -0.17238 -0.19803 0.03396 983 -2.10840 -0.32350 -0.73284 -0.23275

510 -0.94198 -0.02021 -0.24582 -0.02016 984 -2.10840 -0.22067 -0.81421 -0.36467
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Figure 7: Performance declining curve of principal component F1.
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Figure 8: Continued.
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In Figure 8, principal components F1 and F2 in
Figures 8(a) and 8(b) tend to be stable in the early stage (near
the 500 sample points) and middle stage of performance deg-
radation (near the 700 sample points) and does not show a
significant upward trend until the late stage of performance
degradation (near the 900 sample points). Principal compo-
nents F3 and F4 in Figures 8(c) and 8(d) tend to be stable
in the early stage of performance degradation and increase
slightly in the middle stage of performance degradation and
does not show a significant upward trend until the late stage
of performance degradation. Compared with the principal
components F1 and F2, the changing trend of the principal
components F3 and F4 is more obvious, which indicates that
the feature information contained solely in the principal
components F1 and F2 is not enough to characterize the
decline of the performance of the R2R processing roll for
flexible material.

Considering the computational complexity in dimension
reduction of principal component analysis data and the
cumulative contribution rate of the eigenvalues λ1, λ2, and
, λ3 was 0.989, which was much larger than the screening
requirement of principal component analysis, three principal
components F1, F2, and F3 were selected to achieve the pur-
pose of evaluating the performance degradation of R2R pro-
cessing roll for flexible material. On the basis of this, a three-
dimensional contour map was drawn (see Figures 9(a) and
9(b)).

As can be seen from Figure 9(a), it is impossible to distin-
guish the decline process clearly because the amplitude of
principal component feature index in the early stage is
smaller and more concentrated, and the amplitude in late
degradation stage is larger and more dispersed. For this rea-
son, the red rectangular region in Figure 9(a) is enlarged
locally as shown in Figure 9(b). The principal component
values are clearly divided into three regions: the leftmost data
centralized region, the middle narrow band region, and the
right upper scatter region, which represents good perfor-
mance and early degradation, medium-term degradation,

and late degradation, respectively. Among them, the different
colored contour lines on the left of Figure 9 realize the divi-
sion between the good performance state (red area) and the
early degradation state (purple area).

The experimental results showed that the principal com-
ponents F1, F2, and F3 of the vibration feature parameter of
the R2R processing roll for flexible material can not only dis-
tinguish the medium-term degradation and the late degrada-
tion state but also distinguish the normal state from the early
degradation state, and the distinction is much more visual-
ized. Therefore, it is further proved that the principal compo-
nents F1, F2, and F3obtained by the method in the paper not
only realizes data dimensionality reduction but also can char-
acterize the performance degradation state of the R2R pro-
cessing roll for flexible material.

5. Conclusion

In this paper, a new principal component analysis method for
data dimensionality reduction was proposed, to handle the
problem of high-dimensional performance characterization
and the complexity of calculating the performance indicators
in flexible material roll-to-roll processing.

Based on the analysis of the performance influencing fac-
tors of flexible material roll-to-roll processing roller, a princi-
pal component analysis extraction model was constructed.
And the research on the derivation of the extraction model
algorithm was carried out.

The original feature parameter matrix composed of 10-
dimensional feature parameters such as time domain, fre-
quency domain, and time-frequency domain vibration signal
of the roll shaft was established; then, we used the means of
averaging to normalize the original feature parameters
matrix. The correlation measure between every two parame-
ters in the matrix was used as the eigenvalue to establish the
covariance matrix of the performance degradation feature
parameters. The Jacobi iteration method was introduced to
derive the algorithm for solving eigenvalue and eigenvector
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Figure 8: Performance decline curve of principal components F1, F2, F3, and F4.
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of the covariance matrix. Finally, using the eigenvalue cumu-
lative contribution rate as the screening rule, we linearly
weighted and fused the eigenvectors and derived the feature
principal component matrix F of the processing roller vibra-
tion signal.

Experiments results showed that after the extraction by
principal component analysis model, the initially obtained
10-dimensional features of the processing rollers’ vibration
signals, such as average, root mean square, kurtosis index,
centroid frequency, root mean square of frequency, standard

deviation of frequency, and energy of the intrinsic mode
function component, can be expressed by 3-dimensional
principal components F1, F2, and F3. These three compo-
nents contain 98.9% data information of the original vibra-
tion signal, which means that the feature parameter
dimension reduction of processing roller vibration signal
has been realized. The three-dimensional contour map
drawn by F1, F2, and F3 value not only can clearly distin-
guish the degraded state in the middle and late stages but also
can monitor the state process of the roller from normal to
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Figure 9: Three-dimensional contour map of principal components F1, F2, and F3.
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early degradation and can also provide the roller predictive
maintenance subsequent research with strong theoretical
support.

The above experimental results show that the method in
this paper has high accuracy in feature extraction of the per-
formance degradation of flexible material R2R processing; it
also has the advantages of eliminating the correlation
between the feature variables and reducing the workload of
feature selection. The research results of this paper can pro-
vide strong theoretical support for the follow-up predictive
maintenance research of roll shaft.
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